1
|
Cirigliano V, Dekens W, de Vries J, Gandolfi S, Hoferichter M, Mereghetti E. Radiative Corrections to Superallowed β Decays in Effective Field Theory. PHYSICAL REVIEW LETTERS 2024; 133:211801. [PMID: 39642482 DOI: 10.1103/physrevlett.133.211801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/27/2024] [Indexed: 12/09/2024]
Abstract
The accuracy of V_{ud} determinations from superallowed β decays critically hinges on control over radiative corrections. Recently, substantial progress has been made on the single-nucleon, universal corrections, while nucleus-dependent effects, typically parametrized by a quantity δ_{NS}, are much less well constrained. Here, we lay out a program to evaluate this correction from effective field theory (EFT), highlighting the dominant terms as predicted by the EFT power counting. Moreover, we compare the results to a dispersive representation of δ_{NS} and show that the expected momentum scaling applies even in the case of low-lying intermediate states. Our EFT framework paves the way toward ab initio calculations of δ_{NS} and thereby addresses the dominant uncertainty in V_{ud}.
Collapse
Affiliation(s)
| | | | - Jordy de Vries
- Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Nikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
2
|
Belley A, Yao JM, Bally B, Pitcher J, Engel J, Hergert H, Holt JD, Miyagi T, Rodríguez TR, Romero AM, Stroberg SR, Zhang X. Ab Initio Uncertainty Quantification of Neutrinoless Double-Beta Decay in ^{76}Ge. PHYSICAL REVIEW LETTERS 2024; 132:182502. [PMID: 38759198 DOI: 10.1103/physrevlett.132.182502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 05/19/2024]
Abstract
The observation of neutrinoless double-beta (0νββ) decay would offer proof of lepton number violation, demonstrating that neutrinos are Majorana particles, while also helping us understand why there is more matter than antimatter in the Universe. If the decay is driven by the exchange of the three known light neutrinos, a discovery would, in addition, link the observed decay rate to the neutrino mass scale through a theoretical quantity known as the nuclear matrix element (NME). Accurate values of the NMEs for all nuclei considered for use in 0νββ experiments are therefore crucial for designing and interpreting those experiments. Here, we report the first comprehensive ab initio uncertainty quantification of the 0νββ-decay NME, in the key nucleus ^{76}Ge. Our method employs nuclear strong and weak interactions derived within chiral effective field theory and recently developed many-body emulators. Our result, with a conservative treatment of uncertainty, is an NME of 2.60_{-1.36}^{+1.28}, which, together with the best-existing half-life sensitivity and phase-space factor, sets an upper limit for effective neutrino mass of 187_{-62}^{+205} meV. The result is important for designing next-generation germanium detectors aiming to cover the entire inverted hierarchy region of neutrino masses.
Collapse
Affiliation(s)
- A Belley
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - J M Yao
- School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
| | - B Bally
- ESNT, IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - J Pitcher
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Engel
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA
| | - H Hergert
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
- Department of Physics & Astronomy, Michigan State University, East Lansing, Michigan 48824-1321, USA
| | - J D Holt
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics, McGill University, Montréal, Quebec, Canada
| | - T Miyagi
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - T R Rodríguez
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, E-28040 Madrid, Spain
- Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Centro de Investigación Avanzada en Física Fundamental-CIAFF-UAM, E-28049 Madrid, Spain
| | - A M Romero
- Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028 Barcelona, Spain
- Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028 Barcelona, Spain
| | - S R Stroberg
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - X Zhang
- School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
| |
Collapse
|
3
|
Rebeiro BM, Triambak S, Garrett PE, Ball GC, Brown BA, Menéndez J, Romeo B, Adsley P, Lenardo BG, Lindsay R, Bildstein V, Burbadge C, Coleman R, Diaz Varela A, Dubey R, Faestermann T, Hertenberger R, Kamil M, Leach KG, Natzke C, Nzobadila Ondze JC, Radich A, Rand E, Wirth HF. ^{138}Ba(d,α) Study of States in ^{136}Cs: Implications for New Physics Searches with Xenon Detectors. PHYSICAL REVIEW LETTERS 2023; 131:052501. [PMID: 37595245 DOI: 10.1103/physrevlett.131.052501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/07/2023] [Indexed: 08/20/2023]
Abstract
We used the ^{138}Ba(d,α) reaction to carry out an in-depth study of states in ^{136}Cs, up to around 2.5 MeV. In this Letter, we place emphasis on hitherto unobserved states below the first 1^{+} level, which are important in the context of solar neutrino and fermionic dark matter (FDM) detection in large-scale xenon-based experiments. We identify for the first time candidate metastable states in ^{136}Cs, which would allow a real-time detection of solar neutrino and FDM events in xenon detectors, with high background suppression. Our results are also compared with shell-model calculations performed with three Hamiltonians that were previously used to evaluate the nuclear matrix element (NME) for ^{136}Xe neutrinoless double beta decay. We find that one of these Hamiltonians, which also systematically underestimates the NME compared with the others, dramatically fails to describe the observed low-energy ^{136}Cs spectrum, while the other two show reasonably good agreement.
Collapse
Affiliation(s)
- B M Rebeiro
- Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa
- Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
| | - S Triambak
- Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa
| | - P E Garrett
- Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - G C Ball
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - B A Brown
- Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321, USA
| | - J Menéndez
- Department of Quantum Physics and Astrophysics and Institute of Cosmos Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - B Romeo
- Donostia International Physics Center, 20018 San Sebastián, Spain
| | - P Adsley
- Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
| | - B G Lenardo
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - R Lindsay
- Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa
| | - V Bildstein
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - C Burbadge
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - R Coleman
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - A Diaz Varela
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - R Dubey
- Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa
- Institute of Physics, University of Szczecin, 70-451 Szczecin, Poland
| | - T Faestermann
- Physik Department, Technische Universität München, D-85748 Garching, Germany
| | - R Hertenberger
- Fakultät für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany
| | - M Kamil
- Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa
| | - K G Leach
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
| | - C Natzke
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
| | - J C Nzobadila Ondze
- Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa
| | - A Radich
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - E Rand
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - H-F Wirth
- Fakultät für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany
| |
Collapse
|
4
|
|
5
|
Hoferichter M. Interplay of nuclear physics, effective field theories, phenomenology, and lattice QCD in neutrino physics. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227401010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Experiments in neutrino physics cover a wide range—from deep inelastic scattering, over long base-line oscillation experiments and low-energy coherent neutrino–nucleus scattering (CEνNS), to searches for neutrinoless double β decay (0νββ)—yet in all cases a key aspect in interpreting the results concerns understanding neutrino–nucleus interactions. If the neutrino energy is sufficiently low, the required matrix elements can be constrained in a systematic way by the interplay of effective field theories, phenomenology, and lattice QCD. In these proceedings, we illustrate this strategy focusing on the CEνNS and 0νββ processes.
Collapse
|
6
|
Wirth R, Yao JM, Hergert H. Ab Initio Calculation of the Contact Operator Contribution in the Standard Mechanism for Neutrinoless Double Beta Decay. PHYSICAL REVIEW LETTERS 2021; 127:242502. [PMID: 34951798 DOI: 10.1103/physrevlett.127.242502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/27/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Starting from chiral nuclear interactions, we evaluate the contribution of the leading-order contact transition operator to the nuclear matrix element (NME) of neutrinoless double-beta decay, assuming a light Majorana neutrino-exchange mechanism. The corresponding low-energy constant (LEC) is determined by fitting the transition amplitude of the nn→ppe^{-}e^{-} process to a recently proposed synthetic datum. We examine the dependence of the amplitude on similarity renormalization group scale and chiral expansion order of the nuclear interaction, finding that both dependences can be compensated to a large extent by readjusting the LEC. We evaluate the contribution of both the leading-order contact operator and standard long-range operator to the neutrinoless double-beta decays in the light nuclei ^{6,8}He and the candidate nucleus ^{48}Ca. Our results provide the first clear demonstration that the contact term enhances the NME in calculations with commonly used chiral two- plus three-nucleon interactions. In the case of ^{48}Ca, for example, the NME obtained with the EM(1.8/2.0) interaction is enhanced from 0.61 to 0.87(4), where the uncertainty is propagated from the synthetic datum.
Collapse
Affiliation(s)
- R Wirth
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
| | - J M Yao
- School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
| | - H Hergert
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
- Department of Physics & Astronomy, Michigan State University, East Lansing, Michigan 48824-1321, USA
| |
Collapse
|
7
|
Novario S, Gysbers P, Engel J, Hagen G, Jansen GR, Morris TD, Navrátil P, Papenbrock T, Quaglioni S. Coupled-Cluster Calculations of Neutrinoless Double-β Decay in ^{48}Ca. PHYSICAL REVIEW LETTERS 2021; 126:182502. [PMID: 34018796 DOI: 10.1103/physrevlett.126.182502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
We use coupled-cluster theory and nuclear interactions from chiral effective field theory to compute the nuclear matrix element for the neutrinoless double-β decay of ^{48}Ca. Benchmarks with the no-core shell model in several light nuclei inform us about the accuracy of our approach. For ^{48}Ca we find a relatively small matrix element. We also compute the nuclear matrix element for the two-neutrino double-β decay of ^{48}Ca with a quenching factor deduced from two-body currents in recent ab initio calculation of the Ikeda sum rule in ^{48}Ca [Gysbers et al., Nat. Phys. 15, 428 (2019)NPAHAX1745-247310.1038/s41567-019-0450-7].
Collapse
Affiliation(s)
- S Novario
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - P Gysbers
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - J Engel
- Department of Physics, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - G Hagen
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - G R Jansen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - T D Morris
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - P Navrátil
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - T Papenbrock
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - S Quaglioni
- Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA
| |
Collapse
|
8
|
Cirigliano V, Dekens W, de Vries J, Hoferichter M, Mereghetti E. Toward Complete Leading-Order Predictions for Neutrinoless Double β Decay. PHYSICAL REVIEW LETTERS 2021; 126:172002. [PMID: 33988430 DOI: 10.1103/physrevlett.126.172002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The amplitude for the neutrinoless double β (0νββ) decay of the two-neutron system nn→ppe^{-}e^{-} constitutes a key building block for nuclear-structure calculations of heavy nuclei employed in large-scale 0νββ searches. Assuming that the 0νββ process is mediated by a light-Majorana-neutrino exchange, a systematic analysis in chiral effective field theory shows that already at leading order a contact operator is required to ensure renormalizability. In this Letter, we develop a method to estimate the numerical value of its coefficient (in analogy to the Cottingham formula for electromagnetic contributions to hadron masses) and validate the result by reproducing the charge-independence-breaking contribution to the nucleon-nucleon scattering lengths. Our central result, while derived in dimensional regularization, is given in terms of the renormalized amplitude A_{ν}(|p|,|p^{'}|), matching to which will allow one to determine the contact-term contribution in regularization schemes employed in nuclear-structure calculations. Our results thus greatly reduce a crucial uncertainty in the interpretation of searches for 0νββ decay.
Collapse
Affiliation(s)
- Vincenzo Cirigliano
- Los Alamos National Laboratory, Theoretical Division, Los Alamos, New Mexico 87545, USA
| | - Wouter Dekens
- Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
| | - Jordy de Vries
- Department of Physics, Amherst Center for Fundamental Interactions, University of Massachusetts, Amherst, Massachusetts 01003, USA
- RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
- Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Nikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands
| | - Martin Hoferichter
- Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Emanuele Mereghetti
- Los Alamos National Laboratory, Theoretical Division, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
9
|
Li G, Ramsey-Musolf MJ, Vasquez JC. Left-Right Symmetry and Leading Contributions to Neutrinoless Double Beta Decay. PHYSICAL REVIEW LETTERS 2021; 126:151801. [PMID: 33929232 DOI: 10.1103/physrevlett.126.151801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
We study the impact of the mixing (LR mixing) between the standard model W boson and its hypothetical, heavier right-handed parter W_{R} on the neutrinoless double beta decay (0νββ decay) rate. Our study is done in the minimal left-right symmetric model assuming a type-II dominance scenario with charge conjugation as the left-right symmetry. We then show that the 0νββ decay rate may be dominated by the contribution proportional to this LR mixing, which at the hadronic level induces the leading-order contribution to the interaction between two pions and two charged leptons. The resulting long-range pion exchange contribution can significantly enhance the decay rate compared to previously considered short-range contributions. Finally, we find that even if future cosmological experiments rule out the inverted hierarchy for neutrino masses, there are still good prospects for a positive signal in the next generation of 0νββ decay experiments.
Collapse
Affiliation(s)
- Gang Li
- Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Michael J Ramsey-Musolf
- Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA
| | - Juan Carlos Vasquez
- Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
10
|
Davoudi Z, Kadam SV. Path from Lattice QCD to the Short-Distance Contribution to 0νββ Decay with a Light Majorana Neutrino. PHYSICAL REVIEW LETTERS 2021; 126:152003. [PMID: 33929257 DOI: 10.1103/physrevlett.126.152003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Neutrinoless double-β (0νββ) decay of certain atomic isotopes, if observed, will have significant implications for physics of neutrinos and models of physics beyond the standard model. In the simplest scenario, if the mass of the light neutrino of the standard model has a Majorana component, it can mediate the decay. Systematic theoretical studies of the decay rate in this scenario, through effective field theories matched to ab initio nuclear many-body calculations, are needed to draw conclusions about the hierarchy of neutrino masses, and to plan the design of future experiments. However, a recently identified short-distance contribution at leading order in the effective field theory amplitude of the subprocess nn→pp(ee) remains unknown, and only lattice quantum chromodynamics (QCD) can directly and reliably determine the associated low-energy constant. While the numerical computations of the correlation function for this process are underway with lattice QCD, the connection to the physical amplitude, and hence this short-distance contribution, is missing. A complete framework that enables this complex matching is developed in this Letter. The complications arising from the Euclidean and finite-volume nature of the corresponding correlation function are fully resolved, and the value of the formalism is demonstrated through a simple example. The result of this work, therefore, fills the gap between first-principles studies of the nn→pp(ee) amplitude from lattice QCD and those from effective field theory, and can be readily employed in the ongoing lattice-QCD studies of this process.
Collapse
Affiliation(s)
- Zohreh Davoudi
- Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
- RIKEN Center for Accelerator-based Sciences, Wako 351-0198, Japan
| | - Saurabh V Kadam
- Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
11
|
Belley A, Payne CG, Stroberg SR, Miyagi T, Holt JD. Ab Initio Neutrinoless Double-Beta Decay Matrix Elements for ^{48}Ca, ^{76}Ge, and ^{82}Se. PHYSICAL REVIEW LETTERS 2021; 126:042502. [PMID: 33576665 DOI: 10.1103/physrevlett.126.042502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
We calculate basis-space converged neutrinoless ββ-decay nuclear matrix elements for the lightest candidates: ^{48}Ca, ^{76}Ge, and ^{82}Se. Starting from initial two- and three-nucleon forces, we apply the ab initio in-medium similarity renormalization group to construct valence-space Hamiltonians and consistently transformed ββ-decay operators. We find that the tensor component is non-negligible in ^{76}Ge and ^{82}Se, and the resulting nuclear matrix elements are overall 25%-45% smaller than those obtained from the phenomenological shell model. While a final matrix element with uncertainties still requires substantial developments, this work nevertheless opens a path toward a true first-principles calculation of neutrinoless ββ decay in all nuclei relevant for ongoing large-scale searches.
Collapse
Affiliation(s)
- A Belley
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics, McGill University, 3600 Rue University, Montréal, Quebec City H3A 2T8, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - C G Payne
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - S R Stroberg
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - T Miyagi
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - J D Holt
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics, McGill University, 3600 Rue University, Montréal, Quebec City H3A 2T8, Canada
| |
Collapse
|
12
|
Yao J. Advances in modeling nuclear matrix elements of neutrinoless double beta decay. Sci Bull (Beijing) 2021; 66:3-5. [PMID: 36654310 DOI: 10.1016/j.scib.2020.09.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jiangming Yao
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA.
| |
Collapse
|
13
|
Yao JM, Bally B, Engel J, Wirth R, Rodríguez TR, Hergert H. Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ^{48}Ca. PHYSICAL REVIEW LETTERS 2020; 124:232501. [PMID: 32603157 DOI: 10.1103/physrevlett.124.232501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/04/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Working with Hamiltonians from chiral effective field theory, we develop a novel framework for describing arbitrary deformed medium-mass nuclei by combining the in-medium similarity renormalization group with the generator coordinate method. The approach leverages the ability of the first method to capture dynamic correlations and the second to include collective correlations without violating symmetries. We use our scheme to compute the matrix element that governs the neutrinoless double beta decay of ^{48}Ca to ^{48}Ti, and find it to have the value 0.61, near or below the predictions of most phenomenological methods. The result opens the door to ab initio calculations of the matrix elements for the decay of heavier nuclei such as ^{76}Ge, ^{130}Te, and ^{136}Xe.
Collapse
Affiliation(s)
- J M Yao
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
| | - B Bally
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA
| | - J Engel
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA
| | - R Wirth
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
| | - T R Rodríguez
- Departamento de Física Teórica y Centro de Investigación Avanzada en Física Fundamental, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - H Hergert
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
- Department of Physics & Astronomy, Michigan State University, East Lansing, Michigan 48824-1321, USA
| |
Collapse
|
14
|
Adams DQ, Alduino C, Alfonso K, Avignone FT, Azzolini O, Bari G, Bellini F, Benato G, Biassoni M, Branca A, Brofferio C, Bucci C, Caminata A, Campani A, Canonica L, Cao XG, Capelli S, Cappelli L, Cardani L, Carniti P, Casali N, Chiesa D, Chott N, Clemenza M, Copello S, Cosmelli C, Cremonesi O, Creswick RJ, D'Addabbo A, D'Aguanno D, Dafinei I, Davis CJ, Dell'Oro S, Di Domizio S, Dompè V, Fang DQ, Fantini G, Faverzani M, Ferri E, Ferroni F, Fiorini E, Franceschi MA, Freedman SJ, Fujikawa BK, Giachero A, Gironi L, Giuliani A, Gorla P, Gotti C, Gutierrez TD, Han K, Heeger KM, Huang RG, Huang HZ, Johnston J, Keppel G, Kolomensky YG, Ligi C, Ma YG, Ma L, Marini L, Maruyama RH, Mei Y, Moggi N, Morganti S, Napolitano T, Nastasi M, Nikkel J, Nones C, Norman EB, Novati V, Nucciotti A, Nutini I, O'Donnell T, Ouellet JL, Pagliarone CE, Pagnanini L, Pallavicini M, Pattavina L, Pavan M, Pessina G, Pettinacci V, Pira C, Pirro S, Pozzi S, Previtali E, Puiu A, Rosenfeld C, Rusconi C, Sakai M, Sangiorgio S, Schmidt B, Scielzo ND, Sharma V, Singh V, Sisti M, Speller D, Surukuchi PT, Taffarello L, Terranova F, et alAdams DQ, Alduino C, Alfonso K, Avignone FT, Azzolini O, Bari G, Bellini F, Benato G, Biassoni M, Branca A, Brofferio C, Bucci C, Caminata A, Campani A, Canonica L, Cao XG, Capelli S, Cappelli L, Cardani L, Carniti P, Casali N, Chiesa D, Chott N, Clemenza M, Copello S, Cosmelli C, Cremonesi O, Creswick RJ, D'Addabbo A, D'Aguanno D, Dafinei I, Davis CJ, Dell'Oro S, Di Domizio S, Dompè V, Fang DQ, Fantini G, Faverzani M, Ferri E, Ferroni F, Fiorini E, Franceschi MA, Freedman SJ, Fujikawa BK, Giachero A, Gironi L, Giuliani A, Gorla P, Gotti C, Gutierrez TD, Han K, Heeger KM, Huang RG, Huang HZ, Johnston J, Keppel G, Kolomensky YG, Ligi C, Ma YG, Ma L, Marini L, Maruyama RH, Mei Y, Moggi N, Morganti S, Napolitano T, Nastasi M, Nikkel J, Nones C, Norman EB, Novati V, Nucciotti A, Nutini I, O'Donnell T, Ouellet JL, Pagliarone CE, Pagnanini L, Pallavicini M, Pattavina L, Pavan M, Pessina G, Pettinacci V, Pira C, Pirro S, Pozzi S, Previtali E, Puiu A, Rosenfeld C, Rusconi C, Sakai M, Sangiorgio S, Schmidt B, Scielzo ND, Sharma V, Singh V, Sisti M, Speller D, Surukuchi PT, Taffarello L, Terranova F, Tomei C, Vignati M, Wagaarachchi SL, Wang BS, Welliver B, Wilson J, Wilson K, Winslow LA, Zanotti L, Zimmermann S, Zucchelli S. Improved Limit on Neutrinoless Double-Beta Decay in ^{130} Te with CUORE. PHYSICAL REVIEW LETTERS 2020; 124:122501. [PMID: 32281829 DOI: 10.1103/physrevlett.124.122501] [Show More Authors] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
We report new results from the search for neutrinoless double-beta decay in ^{130} Te with the CUORE detector. This search benefits from a fourfold increase in exposure, lower trigger thresholds, and analysis improvements relative to our previous results. We observe a background of (1.38±0.07)×10^{-2} counts/(keV kg yr)) in the 0νββ decay region of interest and, with a total exposure of 372.5 kg yr, we attain a median exclusion sensitivity of 1.7×10^{25} yr. We find no evidence for 0νββ decay and set a 90% credibility interval Bayesian lower limit of 3.2×10^{25} yr on the ^{130} Te half-life for this process. In the hypothesis that 0νββ decay is mediated by light Majorana neutrinos, this results in an upper limit on the effective Majorana mass of 75-350 meV, depending on the nuclear matrix elements used.
Collapse
Affiliation(s)
- D Q Adams
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - C Alduino
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - K Alfonso
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - F T Avignone
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - O Azzolini
- INFN-Laboratori Nazionali di Legnaro, Legnaro (Padova) I-35020, Italy
| | - G Bari
- INFN-Sezione di Bologna, Bologna I-40127, Italy
| | - F Bellini
- Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185, Italy
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - G Benato
- Department of Physics, University of California, Berkeley, California 94720, USA
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
| | - M Biassoni
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - A Branca
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - C Brofferio
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - C Bucci
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
| | - A Caminata
- INFN-Sezione di Genova, Genova I-16146, Italy
| | - A Campani
- INFN-Sezione di Genova, Genova I-16146, Italy
- Dipartimento di Fisica, Università di Genova, Genova I-16146, Italy
| | - L Canonica
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - X G Cao
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - S Capelli
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - L Cappelli
- Department of Physics, University of California, Berkeley, California 94720, USA
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - L Cardani
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - P Carniti
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - N Casali
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - D Chiesa
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - N Chott
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - M Clemenza
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - S Copello
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
- Gran Sasso Science Institute, L'Aquila I-67100, Italy
| | - C Cosmelli
- Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185, Italy
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - O Cremonesi
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | - R J Creswick
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - A D'Addabbo
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
| | - D D'Aguanno
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
- Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, Cassino I-03043, Italy
| | - I Dafinei
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - C J Davis
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S Dell'Oro
- Center for Neutrino Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - S Di Domizio
- INFN-Sezione di Genova, Genova I-16146, Italy
- Dipartimento di Fisica, Università di Genova, Genova I-16146, Italy
| | - V Dompè
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
- Gran Sasso Science Institute, L'Aquila I-67100, Italy
| | - D Q Fang
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - G Fantini
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
- Gran Sasso Science Institute, L'Aquila I-67100, Italy
| | - M Faverzani
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - E Ferri
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - F Ferroni
- INFN-Sezione di Roma, Roma I-00185, Italy
- Gran Sasso Science Institute, L'Aquila I-67100, Italy
| | - E Fiorini
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - M A Franceschi
- INFN-Laboratori Nazionali di Frascati, Frascati (Roma) I-00044, Italy
| | - S J Freedman
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B K Fujikawa
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - A Giachero
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - L Gironi
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - A Giuliani
- CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay, France
| | - P Gorla
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
| | - C Gotti
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - T D Gutierrez
- Physics Department, California Polytechnic State University, San Luis Obispo, California 93407, USA
| | - K Han
- INPAC and School of Physics and Astronomy, Shanghai Jiao Tong University; Shanghai Laboratory for Particle Physics and Cosmology, Shanghai 200240, China
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - R G Huang
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - H Z Huang
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - J Johnston
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - G Keppel
- INFN-Laboratori Nazionali di Legnaro, Legnaro (Padova) I-35020, Italy
| | - Yu G Kolomensky
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - C Ligi
- INFN-Laboratori Nazionali di Frascati, Frascati (Roma) I-00044, Italy
| | - Y G Ma
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
| | - L Ma
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - L Marini
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - R H Maruyama
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Y Mei
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - N Moggi
- INFN-Sezione di Bologna, Bologna I-40127, Italy
- Dipartimento di Fisica e Astronomia, Alma Mater Studiorum-Università di Bologna, Bologna I-40127, Italy
| | - S Morganti
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - T Napolitano
- INFN-Laboratori Nazionali di Frascati, Frascati (Roma) I-00044, Italy
| | - M Nastasi
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - J Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - C Nones
- Service de Physique des Particules, CEA/Saclay, 91191 Gif-sur-Yvette, France
| | - E B Norman
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- Department of Nuclear Engineering, University of California, Berkeley, California 94720, USA
| | - V Novati
- CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universit Paris-Saclay, 91405 Orsay, France
| | - A Nucciotti
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - I Nutini
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - T O'Donnell
- Center for Neutrino Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - J L Ouellet
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - C E Pagliarone
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
- Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, Cassino I-03043, Italy
| | - L Pagnanini
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - M Pallavicini
- INFN-Sezione di Genova, Genova I-16146, Italy
- Dipartimento di Fisica, Università di Genova, Genova I-16146, Italy
| | - L Pattavina
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
| | - M Pavan
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - G Pessina
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
| | | | - C Pira
- INFN-Laboratori Nazionali di Legnaro, Legnaro (Padova) I-35020, Italy
| | - S Pirro
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
| | - S Pozzi
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - E Previtali
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - A Puiu
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - C Rosenfeld
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - C Rusconi
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy
| | - M Sakai
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - S Sangiorgio
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - B Schmidt
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - N D Scielzo
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - V Sharma
- Center for Neutrino Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - V Singh
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - M Sisti
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - D Speller
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - P T Surukuchi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | | | - F Terranova
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - C Tomei
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - M Vignati
- INFN-Sezione di Roma, Roma I-00185, Italy
| | - S L Wagaarachchi
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B S Wang
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- Department of Nuclear Engineering, University of California, Berkeley, California 94720, USA
| | - B Welliver
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J Wilson
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - K Wilson
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - L A Winslow
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - L Zanotti
- INFN-Sezione di Milano Bicocca, Milano I-20126, Italy
- Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126, Italy
| | - S Zimmermann
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - S Zucchelli
- INFN-Sezione di Bologna, Bologna I-40127, Italy
- Dipartimento di Fisica e Astronomia, Alma Mater Studiorum-Università di Bologna, Bologna I-40127, Italy
| |
Collapse
|
15
|
Gando A, Gando Y, Hachiya T, Ha Minh M, Hayashida S, Honda Y, Hosokawa K, Ikeda H, Inoue K, Ishidoshiro K, Kamei Y, Kamizawa K, Kinoshita T, Koga M, Matsuda S, Mitsui T, Nakamura K, Ono A, Ota N, Otsuka S, Ozaki H, Shibukawa Y, Shimizu I, Shirahata Y, Shirai J, Sato T, Soma K, Suzuki A, Takeuchi A, Tamae K, Ueshima K, Watanabe H, Chernyak D, Kozlov A, Obara S, Yoshida S, Takemoto Y, Umehara S, Fushimi K, Hirata S, Berger BE, Fujikawa BK, Learned JG, Maricic J, Winslow LA, Efremenko Y, Karwowski HJ, Markoff DM, Tornow W, O'Donnell T, Detwiler JA, Enomoto S, Decowski MP, Menéndez J, Dvornický R, Šimkovic F. Precision Analysis of the ^{136}Xe Two-Neutrino ββ Spectrum in KamLAND-Zen and Its Impact on the Quenching of Nuclear Matrix Elements. PHYSICAL REVIEW LETTERS 2019; 122:192501. [PMID: 31144924 DOI: 10.1103/physrevlett.122.192501] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/11/2019] [Indexed: 06/09/2023]
Abstract
We present a precision analysis of the ^{136}Xe two-neutrino ββ electron spectrum above 0.8 MeV, based on high-statistics data obtained with the KamLAND-Zen experiment. An improved formalism for the two-neutrino ββ rate allows us to measure the ratio of the leading and subleading 2νββ nuclear matrix elements (NMEs), ξ_{31}^{2ν}=-0.26_{-0.25}^{+0.31}. Theoretical predictions from the nuclear shell model and the majority of the quasiparticle random-phase approximation (QRPA) calculations are consistent with the experimental limit. However, part of the ξ_{31}^{2ν} range allowed by the QRPA is excluded by the present measurement at the 90% confidence level. Our analysis reveals that predicted ξ_{31}^{2ν} values are sensitive to the quenching of NMEs and the competing contributions from low- and high-energy states in the intermediate nucleus. Because these aspects are also at play in neutrinoless ββ decay, ξ_{31}^{2ν} provides new insights toward reliable neutrinoless ββ NMEs.
Collapse
Affiliation(s)
- A Gando
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - Y Gando
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - T Hachiya
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - M Ha Minh
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - S Hayashida
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - Y Honda
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - K Hosokawa
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - H Ikeda
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - K Inoue
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
| | - K Ishidoshiro
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - Y Kamei
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - K Kamizawa
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - T Kinoshita
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - M Koga
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
| | - S Matsuda
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - T Mitsui
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - K Nakamura
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
| | - A Ono
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - N Ota
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - S Otsuka
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - H Ozaki
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - Y Shibukawa
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - I Shimizu
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - Y Shirahata
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - J Shirai
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - T Sato
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - K Soma
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - A Suzuki
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - A Takeuchi
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - K Tamae
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - K Ueshima
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - H Watanabe
- Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
| | - D Chernyak
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
| | - A Kozlov
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
| | - S Obara
- Kyoto University, Department of Physics, Kyoto 606-8502, Japan
| | - S Yoshida
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Y Takemoto
- Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - S Umehara
- Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - K Fushimi
- Department of Physics, Tokushima University, Tokushima 770-8506, Japan
| | - S Hirata
- Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - B E Berger
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B K Fujikawa
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J G Learned
- Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - J Maricic
- Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - L A Winslow
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Y Efremenko
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - H J Karwowski
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA; Physics Departments at Duke University, Durham, North Carolina 27708, USA; North Carolina Central University, Durham, North Carolina 27707, USA; and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - D M Markoff
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA; Physics Departments at Duke University, Durham, North Carolina 27708, USA; North Carolina Central University, Durham, North Carolina 27707, USA; and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - W Tornow
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA; Physics Departments at Duke University, Durham, North Carolina 27708, USA; North Carolina Central University, Durham, North Carolina 27707, USA; and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - T O'Donnell
- Center for Neutrino Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - J A Detwiler
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, Washington 98195, USA
| | - S Enomoto
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, Washington 98195, USA
| | - M P Decowski
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
- Nikhef and the University of Amsterdam, Science Park, Amsterdam, the Netherlands
| | - J Menéndez
- Center for Nuclear Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - R Dvornický
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynská dolina F1, SK-842 48 Bratislava, Slovakia
- Dzhelepov Laboratory of Nuclear Problems, JINR 141980 Dubna, Russia
| | - F Šimkovic
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynská dolina F1, SK-842 48 Bratislava, Slovakia
- Bogoliubov Laboratory of Theoretical Physics, JINR 141980 Dubna, Russia
- Czech Technical University in Prague, 128-00 Prague, Czech Republic
| |
Collapse
|
16
|
Feng X, Jin LC, Tuo XY, Xia SC. Light-Neutrino Exchange and Long-Distance Contributions to 0ν2β Decays: An Exploratory Study on ππ→ee. PHYSICAL REVIEW LETTERS 2019; 122:022001. [PMID: 30720288 DOI: 10.1103/physrevlett.122.022001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Indexed: 06/09/2023]
Abstract
We present an exploratory lattice QCD calculation of the neutrinoless double beta decay ππ→ee. Under the mechanism of light-neutrino exchange, the decay amplitude involves significant long-distance contributions. The calculation reported here, with pion masses m_{π}=420 and 140 MeV, demonstrates that the decay amplitude can be computed from first principles using lattice methods. At unphysical and physical pion masses, we obtain that amplitudes are 24% and 9% smaller than the predication from leading order chiral perturbation theory. Our findings provide the lattice QCD inputs and constraints for effective field theory. A follow-on calculation with fully controlled systematic errors will be possible with adequate computational resources.
Collapse
Affiliation(s)
- Xu Feng
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Center for High Energy Physics, Peking University, Beijing 100871, China
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - Lu-Chang Jin
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
- RIKEN-BNL Research Center, Brookhaven National Laboratory, Building 510, Upton, New York 11973, USA
| | - Xin-Yu Tuo
- School of Physics, Peking University, Beijing 100871, China
| | - Shi-Cheng Xia
- School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Nicholson A, Berkowitz E, Monge-Camacho H, Brantley D, Garron N, Chang CC, Rinaldi E, Clark MA, Joó B, Kurth T, Tiburzi BC, Vranas P, Walker-Loud A. Heavy Physics Contributions to Neutrinoless Double Beta Decay from QCD. PHYSICAL REVIEW LETTERS 2018; 121:172501. [PMID: 30411940 DOI: 10.1103/physrevlett.121.172501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Observation of neutrinoless double beta decay, a lepton number violating process that has been proposed to clarify the nature of neutrino masses, has spawned an enormous world-wide experimental effort. Relating nuclear decay rates to high-energy, beyond the standard model (BSM) physics requires detailed knowledge of nonperturbative QCD effects. Using lattice QCD, we compute the necessary matrix elements of short-range operators, which arise due to heavy BSM mediators, that contribute to this decay via the leading order π^{-}→π^{+} exchange diagrams. Utilizing our result and taking advantage of effective field theory methods will allow for model-independent calculations of the relevant two-nucleon decay, which may then be used as input for nuclear many-body calculations of the relevant experimental decays. Contributions from short-range operators may prove to be equally important to, or even more important than, those from long-range Majorana neutrino exchange.
Collapse
Affiliation(s)
- A Nicholson
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - E Berkowitz
- Institut für Kernphysik and Institute for Advanced Simulation, Forschungszentrum Jülich, 54245 Jülich, Germany
| | - H Monge-Camacho
- Department of Physics, The College of William & Mary, Williamsburg, Virginia 23187, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - D Brantley
- Department of Physics, The College of William & Mary, Williamsburg, Virginia 23187, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N Garron
- Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - C C Chang
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - E Rinaldi
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M A Clark
- NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, California 95050, USA
| | - B Joó
- Scientific Computing Group, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - T Kurth
- NERSC Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B C Tiburzi
- Department of Physics, The City College of New York, New York, New York 10031, USA
- Graduate School and University Center, The City University of New York, New York, New York 10016, USA
| | - P Vranas
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A Walker-Loud
- Department of Physics, University of California, Berkeley, California 94720, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|