1
|
Dutta B, Huang WC, Kim D, Newstead JL, Park JC, Ali IS. Prospects for Light Dark Matter Searches at Large-Volume Neutrino Detectors. PHYSICAL REVIEW LETTERS 2024; 133:161801. [PMID: 39485968 DOI: 10.1103/physrevlett.133.161801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/22/2024] [Accepted: 09/04/2024] [Indexed: 11/03/2024]
Abstract
We propose a new approach to search for light dark matter (DM), with keV-GeV mass, via inelastic nucleus scattering at large-volume neutrino detectors such as Borexino, DUNE, Super-K, Hyper-K, and JUNO. The approach uses inelastic nuclear scattering of cosmic-ray boosted DM, enabling a low-background search for DM in these experiments. Large neutrino detectors, with higher thresholds than dark matter detectors, can be used, since the nuclear deexcitation lines are O(10) MeV. Using a hadrophilic dark-gauge-boson-portal model as a benchmark, we show that the nuclear inelastic channels generally provide better sensitivity than the elastic scattering for a large region of light DM parameter space.
Collapse
Affiliation(s)
- Bhaskar Dutta
- Texas A&M University, Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, College Station, Texas 77843, USA
| | - Wei-Chih Huang
- Texas A&M University, Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, College Station, Texas 77843, USA
| | - Doojin Kim
- Texas A&M University, Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, College Station, Texas 77843, USA
- University of South Dakota, Department of Physics, Vermillion, South Dakota 57069, USA
| | - Jayden L Newstead
- ARC Centre of Excellence for Dark Matter Particle Physics, School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - Jong-Chul Park
- Chungnam National University, Department of Physics and Institute of Quantum Systems (IQS), Daejeon 34134, Republic of Korea
| | - Iman Shaukat Ali
- ARC Centre of Excellence for Dark Matter Particle Physics, School of Physics, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
2
|
Ambrosone A, Chianese M, Fiorillo DFG, Marinelli A, Miele G. Starburst Galactic Nuclei as Light Dark Matter Laboratories. PHYSICAL REVIEW LETTERS 2023; 131:111003. [PMID: 37774278 DOI: 10.1103/physrevlett.131.111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 10/01/2023]
Abstract
Starburst galaxies are well-motivated astrophysical emitters of high-energy gamma rays. They are well-known cosmic-ray "reservoirs," thanks to their expected large magnetic field turbulence which confine high-energy protons for ∼10^{5} years. Over such long times, cosmic-ray transport can be significantly affected by scatterings with sub-GeV dark matter. Here we point out that this scattering distorts the cosmic-ray spectrum, and the distortion can be indirectly observed by measuring the gamma rays produced by cosmic rays via hadronic collisions. Present gamma-ray data show no sign of such a distortion, leading to stringent bounds on the cross section between protons and dark matter. These are highly complementary with current bounds and have large room for improvement with the future gamma-ray measurements in the 0.1-10 TeV range from the Cherenkov Telescope Array, which can strengthen the limits by as much as 2 orders of magnitude.
Collapse
Affiliation(s)
- Antonio Ambrosone
- Dipartimento di Fisica "Ettore Pancini," Università degli studi di Napoli "Federico II," Complesso Univ. Monte S. Angelo, I-80126 Napoli, Italy
- INFN - Sezione di Napoli, Complesso Univ. Monte S. Angelo, I-80126 Napoli, Italy
| | - Marco Chianese
- Dipartimento di Fisica "Ettore Pancini," Università degli studi di Napoli "Federico II," Complesso Univ. Monte S. Angelo, I-80126 Napoli, Italy
- INFN - Sezione di Napoli, Complesso Univ. Monte S. Angelo, I-80126 Napoli, Italy
| | - Damiano F G Fiorillo
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Copenhagen Blegdamsvej 17 2100 Copenhagen, Denmark
| | - Antonio Marinelli
- Dipartimento di Fisica "Ettore Pancini," Università degli studi di Napoli "Federico II," Complesso Univ. Monte S. Angelo, I-80126 Napoli, Italy
- INFN - Sezione di Napoli, Complesso Univ. Monte S. Angelo, I-80126 Napoli, Italy
- INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Naples, Italy
| | - Gennaro Miele
- Dipartimento di Fisica "Ettore Pancini," Università degli studi di Napoli "Federico II," Complesso Univ. Monte S. Angelo, I-80126 Napoli, Italy
- INFN - Sezione di Napoli, Complesso Univ. Monte S. Angelo, I-80126 Napoli, Italy
- Scuola Superiore Meridionale, Università degli studi di Napoli "Federico II," Largo San Marcellino 10, 80138 Napoli, Italy
| |
Collapse
|
3
|
Agnes P, Albuquerque IFM, Alexander T, Alton AK, Ave M, Back HO, Batignani G, Biery K, Bocci V, Bonivento WM, Bottino B, Bussino S, Cadeddu M, Cadoni M, Calaprice F, Caminata A, Campos MD, Canci N, Caravati M, Cargioli N, Cariello M, Carlini M, Cataudella V, Cavalcante P, Cavuoti S, Chashin S, Chepurnov A, Cicalò C, Covone G, D'Angelo D, Davini S, De Candia A, De Cecco S, De Filippis G, De Rosa G, Derbin AV, Devoto A, D'Incecco M, Dionisi C, Dordei F, Downing M, D'Urso D, Fairbairn M, Fiorillo G, Franco D, Gabriele F, Galbiati C, Ghiano C, Giganti C, Giovanetti GK, Goretti AM, Grilli di Cortona G, Grobov A, Gromov M, Guan M, Gulino M, Hackett BR, Herner K, Hessel T, Hosseini B, Hubaut F, Hungerford EV, Ianni A, Ippolito V, Keeter K, Kendziora CL, Kimura M, Kochanek I, Korablev D, Korga G, Kubankin A, Kuss M, La Commara M, Lai M, Li X, Lissia M, Longo G, Lychagina O, Machulin IN, Mapelli LP, Mari SM, Maricic J, Messina A, Milincic R, Monroe J, Morrocchi M, Mougeot X, Muratova VN, Musico P, Nozdrina AO, Oleinik A, Ortica F, Pagani L, Pallavicini M, Pandola L, Pantic E, Paoloni E, Pelczar K, Pelliccia N, Piacentini S, et alAgnes P, Albuquerque IFM, Alexander T, Alton AK, Ave M, Back HO, Batignani G, Biery K, Bocci V, Bonivento WM, Bottino B, Bussino S, Cadeddu M, Cadoni M, Calaprice F, Caminata A, Campos MD, Canci N, Caravati M, Cargioli N, Cariello M, Carlini M, Cataudella V, Cavalcante P, Cavuoti S, Chashin S, Chepurnov A, Cicalò C, Covone G, D'Angelo D, Davini S, De Candia A, De Cecco S, De Filippis G, De Rosa G, Derbin AV, Devoto A, D'Incecco M, Dionisi C, Dordei F, Downing M, D'Urso D, Fairbairn M, Fiorillo G, Franco D, Gabriele F, Galbiati C, Ghiano C, Giganti C, Giovanetti GK, Goretti AM, Grilli di Cortona G, Grobov A, Gromov M, Guan M, Gulino M, Hackett BR, Herner K, Hessel T, Hosseini B, Hubaut F, Hungerford EV, Ianni A, Ippolito V, Keeter K, Kendziora CL, Kimura M, Kochanek I, Korablev D, Korga G, Kubankin A, Kuss M, La Commara M, Lai M, Li X, Lissia M, Longo G, Lychagina O, Machulin IN, Mapelli LP, Mari SM, Maricic J, Messina A, Milincic R, Monroe J, Morrocchi M, Mougeot X, Muratova VN, Musico P, Nozdrina AO, Oleinik A, Ortica F, Pagani L, Pallavicini M, Pandola L, Pantic E, Paoloni E, Pelczar K, Pelliccia N, Piacentini S, Pocar A, Poehlmann DM, Pordes S, Poudel SS, Pralavorio P, Price DD, Ragusa F, Razeti M, Razeto A, Renshaw AL, Rescigno M, Rode J, Romani A, Sablone D, Samoylov O, Sandford E, Sands W, Sanfilippo S, Savarese C, Schlitzer B, Semenov DA, Shchagin A, Sheshukov A, Skorokhvatov MD, Smirnov O, Sotnikov A, Stracka S, Suvorov Y, Tartaglia R, Testera G, Tonazzo A, Unzhakov EV, Vishneva A, Vogelaar RB, Wada M, Wang H, Wang Y, Westerdale S, Wojcik MM, Xiao X, Yang C, Zuzel G. Search for Dark-Matter-Nucleon Interactions via Migdal Effect with DarkSide-50. PHYSICAL REVIEW LETTERS 2023; 130:101001. [PMID: 36962014 DOI: 10.1103/physrevlett.130.101001] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/23/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Dark matter elastic scattering off nuclei can result in the excitation and ionization of the recoiling atom through the so-called Migdal effect. The energy deposition from the ionization electron adds to the energy deposited by the recoiling nuclear system and allows for the detection of interactions of sub-GeV/c^{2} mass dark matter. We present new constraints for sub-GeV/c^{2} dark matter using the dual-phase liquid argon time projection chamber of the DarkSide-50 experiment with an exposure of (12 306±184) kg d. The analysis is based on the ionization signal alone and significantly enhances the sensitivity of DarkSide-50, enabling sensitivity to dark matter with masses down to 40 MeV/c^{2}. Furthermore, it sets the most stringent upper limit on the spin independent dark matter nucleon cross section for masses below 3.6 GeV/c^{2}.
Collapse
Affiliation(s)
- P Agnes
- Department of Physics, Royal Holloway University of London, Egham TW20 0EX, United Kingdom
| | - I F M Albuquerque
- Instituto de Física, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - T Alexander
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - A K Alton
- Physics Department, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - M Ave
- Instituto de Física, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - H O Back
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - G Batignani
- INFN Pisa, Pisa 56127, Italy
- Physics Department, Università degli Studi di Pisa, Pisa 56127, Italy
| | - K Biery
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - V Bocci
- INFN Sezione di Roma, Roma 00185, Italy
| | | | - B Bottino
- Physics Department, Università degli Studi di Genova, Genova 16146, Italy
- INFN Genova, Genova 16146, Italy
| | - S Bussino
- INFN Roma Tre, Roma 00146, Italy
- Mathematics and Physics Department, Università degli Studi Roma Tre, Roma 00146, Italy
| | - M Cadeddu
- INFN Cagliari, Cagliari 09042, Italy
| | - M Cadoni
- INFN Cagliari, Cagliari 09042, Italy
- Physics Department, Università degli Studi di Cagliari, Cagliari 09042, Italy
| | - F Calaprice
- Physics Department, Princeton University, Princeton, New Jersey 08544, USA
| | | | - M D Campos
- Physics, Kings College London, Strand, London WC2R 2LS, United Kingdom
| | - N Canci
- INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
| | | | | | | | - M Carlini
- INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
- Gran Sasso Science Institute, L'Aquila 67100, Italy
| | - V Cataudella
- Physics Department, Università degli Studi "Federico II" di Napoli, Napoli 80126, Italy
- INFN Napoli, Napoli 80126, Italy
| | - P Cavalcante
- INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
- Virginia Tech, Blacksburg, Virginia 24061, USA
| | - S Cavuoti
- Physics Department, Università degli Studi "Federico II" di Napoli, Napoli 80126, Italy
- INFN Napoli, Napoli 80126, Italy
| | - S Chashin
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - A Chepurnov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - C Cicalò
- INFN Cagliari, Cagliari 09042, Italy
| | - G Covone
- Physics Department, Università degli Studi "Federico II" di Napoli, Napoli 80126, Italy
- INFN Napoli, Napoli 80126, Italy
| | - D D'Angelo
- Physics Department, Università degli Studi di Milano, Milano 20133, Italy
- INFN Milano, Milano 20133, Italy
| | - S Davini
- INFN Genova, Genova 16146, Italy
| | - A De Candia
- Physics Department, Università degli Studi "Federico II" di Napoli, Napoli 80126, Italy
- INFN Napoli, Napoli 80126, Italy
| | - S De Cecco
- INFN Sezione di Roma, Roma 00185, Italy
- Physics Department, Sapienza Università di Roma, Roma 00185, Italy
| | - G De Filippis
- Physics Department, Università degli Studi "Federico II" di Napoli, Napoli 80126, Italy
- INFN Napoli, Napoli 80126, Italy
| | - G De Rosa
- Physics Department, Università degli Studi "Federico II" di Napoli, Napoli 80126, Italy
- INFN Napoli, Napoli 80126, Italy
| | - A V Derbin
- Saint Petersburg Nuclear Physics Institute, Gatchina 188350, Russia
| | - A Devoto
- INFN Cagliari, Cagliari 09042, Italy
- Physics Department, Università degli Studi di Cagliari, Cagliari 09042, Italy
| | - M D'Incecco
- INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
| | - C Dionisi
- INFN Sezione di Roma, Roma 00185, Italy
- Physics Department, Sapienza Università di Roma, Roma 00185, Italy
| | - F Dordei
- INFN Cagliari, Cagliari 09042, Italy
| | - M Downing
- Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - D D'Urso
- Chemistry and Pharmacy Department, Università degli Studi di Sassari, Sassari 07100, Italy
- INFN Laboratori Nazionali del Sud, Catania 95123, Italy
| | - M Fairbairn
- Physics, Kings College London, Strand, London WC2R 2LS, United Kingdom
| | - G Fiorillo
- Physics Department, Università degli Studi "Federico II" di Napoli, Napoli 80126, Italy
- INFN Napoli, Napoli 80126, Italy
| | - D Franco
- APC, Université de Paris, CNRS, Astroparticule et Cosmologie, Paris F-75013, France
| | | | - C Galbiati
- Physics Department, Princeton University, Princeton, New Jersey 08544, USA
- INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
- Gran Sasso Science Institute, L'Aquila 67100, Italy
| | - C Ghiano
- INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
| | - C Giganti
- LPNHE, CNRS/IN2P3, Sorbonne Université, Université Paris Diderot, Paris 75252, France
| | - G K Giovanetti
- Physics Department, Princeton University, Princeton, New Jersey 08544, USA
| | - A M Goretti
- INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
| | | | - A Grobov
- National Research Centre Kurchatov Institute, Moscow 123182, Russia
- National Research Nuclear University MEPhI, Moscow 115409, Russia
| | - M Gromov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119234, Russia
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - M Guan
- Institute of High Energy Physics, Beijing 100049, China
| | - M Gulino
- INFN Laboratori Nazionali del Sud, Catania 95123, Italy
- Engineering and Architecture Faculty, Università di Enna Kore, Enna 94100, Italy
| | - B R Hackett
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - K Herner
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - T Hessel
- APC, Université de Paris, CNRS, Astroparticule et Cosmologie, Paris F-75013, France
| | | | - F Hubaut
- Centre de Physique des Particules de Marseille, Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
| | - E V Hungerford
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - An Ianni
- Physics Department, Princeton University, Princeton, New Jersey 08544, USA
- INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
| | | | - K Keeter
- School of Natural Sciences, Black Hills State University, Spearfish, South Dakota 57799, USA
| | - C L Kendziora
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - M Kimura
- AstroCeNT, Nicolaus Copernicus Astronomical Center, 00-614 Warsaw, Poland
| | - I Kochanek
- INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
| | - D Korablev
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - G Korga
- INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - A Kubankin
- Radiation Physics Laboratory, Belgorod National Research University, Belgorod 308007, Russia
| | - M Kuss
- INFN Pisa, Pisa 56127, Italy
| | - M La Commara
- Physics Department, Università degli Studi "Federico II" di Napoli, Napoli 80126, Italy
- INFN Napoli, Napoli 80126, Italy
| | - M Lai
- INFN Cagliari, Cagliari 09042, Italy
- Physics Department, Università degli Studi di Cagliari, Cagliari 09042, Italy
| | - X Li
- Physics Department, Princeton University, Princeton, New Jersey 08544, USA
| | - M Lissia
- INFN Cagliari, Cagliari 09042, Italy
| | - G Longo
- Physics Department, Università degli Studi "Federico II" di Napoli, Napoli 80126, Italy
- INFN Napoli, Napoli 80126, Italy
| | - O Lychagina
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119234, Russia
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - I N Machulin
- National Research Centre Kurchatov Institute, Moscow 123182, Russia
- National Research Nuclear University MEPhI, Moscow 115409, Russia
| | - L P Mapelli
- Physics and Astronomy Department, University of California, Los Angeles, California 90095, USA
| | - S M Mari
- INFN Roma Tre, Roma 00146, Italy
- Mathematics and Physics Department, Università degli Studi Roma Tre, Roma 00146, Italy
| | - J Maricic
- Department of Physics and Astronomy, University of Hawai'i, Honolulu, Hawaii 96822, USA
| | - A Messina
- INFN Sezione di Roma, Roma 00185, Italy
- Physics Department, Sapienza Università di Roma, Roma 00185, Italy
| | - R Milincic
- Department of Physics and Astronomy, University of Hawai'i, Honolulu, Hawaii 96822, USA
| | - J Monroe
- Department of Physics, Royal Holloway University of London, Egham TW20 0EX, United Kingdom
| | - M Morrocchi
- INFN Pisa, Pisa 56127, Italy
- Physics Department, Università degli Studi di Pisa, Pisa 56127, Italy
| | - X Mougeot
- Université Paris-Saclay, CEA, List, Laboratoire National Henri Becquerel (LNE-LNHB), F-91120 Palaiseau, France
| | - V N Muratova
- Saint Petersburg Nuclear Physics Institute, Gatchina 188350, Russia
| | - P Musico
- INFN Genova, Genova 16146, Italy
| | - A O Nozdrina
- National Research Centre Kurchatov Institute, Moscow 123182, Russia
- National Research Nuclear University MEPhI, Moscow 115409, Russia
| | - A Oleinik
- Radiation Physics Laboratory, Belgorod National Research University, Belgorod 308007, Russia
| | - F Ortica
- Chemistry, Biology and Biotechnology Department, Università degli Studi di Perugia, Perugia 06123, Italy
- INFN Perugia, Perugia 06123, Italy
| | - L Pagani
- Department of Physics, University of California, Davis, California 95616, USA
| | - M Pallavicini
- Physics Department, Università degli Studi di Genova, Genova 16146, Italy
- INFN Genova, Genova 16146, Italy
| | - L Pandola
- INFN Laboratori Nazionali del Sud, Catania 95123, Italy
| | - E Pantic
- Department of Physics, University of California, Davis, California 95616, USA
| | - E Paoloni
- INFN Pisa, Pisa 56127, Italy
- Physics Department, Università degli Studi di Pisa, Pisa 56127, Italy
| | - K Pelczar
- INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
- M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Krakow, Poland
| | - N Pelliccia
- Chemistry, Biology and Biotechnology Department, Università degli Studi di Perugia, Perugia 06123, Italy
- INFN Perugia, Perugia 06123, Italy
| | | | - A Pocar
- Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - D M Poehlmann
- Department of Physics, University of California, Davis, California 95616, USA
| | - S Pordes
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - S S Poudel
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - P Pralavorio
- Centre de Physique des Particules de Marseille, Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
| | - D D Price
- The University of Manchester, Manchester M13 9PL, United Kingdom
| | - F Ragusa
- Physics Department, Università degli Studi di Milano, Milano 20133, Italy
- INFN Milano, Milano 20133, Italy
| | - M Razeti
- INFN Cagliari, Cagliari 09042, Italy
| | - A Razeto
- INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
| | - A L Renshaw
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | | | - J Rode
- APC, Université de Paris, CNRS, Astroparticule et Cosmologie, Paris F-75013, France
- LPNHE, CNRS/IN2P3, Sorbonne Université, Université Paris Diderot, Paris 75252, France
| | - A Romani
- Chemistry, Biology and Biotechnology Department, Università degli Studi di Perugia, Perugia 06123, Italy
- INFN Perugia, Perugia 06123, Italy
| | - D Sablone
- Physics Department, Princeton University, Princeton, New Jersey 08544, USA
- INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
| | - O Samoylov
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - E Sandford
- The University of Manchester, Manchester M13 9PL, United Kingdom
| | - W Sands
- Physics Department, Princeton University, Princeton, New Jersey 08544, USA
| | - S Sanfilippo
- INFN Roma Tre, Roma 00146, Italy
- Mathematics and Physics Department, Università degli Studi Roma Tre, Roma 00146, Italy
| | - C Savarese
- Physics Department, Princeton University, Princeton, New Jersey 08544, USA
| | - B Schlitzer
- Department of Physics, University of California, Davis, California 95616, USA
| | - D A Semenov
- Saint Petersburg Nuclear Physics Institute, Gatchina 188350, Russia
| | - A Shchagin
- Radiation Physics Laboratory, Belgorod National Research University, Belgorod 308007, Russia
| | - A Sheshukov
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - M D Skorokhvatov
- National Research Centre Kurchatov Institute, Moscow 123182, Russia
- National Research Nuclear University MEPhI, Moscow 115409, Russia
| | - O Smirnov
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - A Sotnikov
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | | | - Y Suvorov
- Physics Department, Università degli Studi "Federico II" di Napoli, Napoli 80126, Italy
- INFN Napoli, Napoli 80126, Italy
- National Research Centre Kurchatov Institute, Moscow 123182, Russia
| | - R Tartaglia
- INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
| | | | - A Tonazzo
- APC, Université de Paris, CNRS, Astroparticule et Cosmologie, Paris F-75013, France
| | - E V Unzhakov
- Saint Petersburg Nuclear Physics Institute, Gatchina 188350, Russia
| | - A Vishneva
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | | | - M Wada
- Physics Department, Università degli Studi di Cagliari, Cagliari 09042, Italy
- AstroCeNT, Nicolaus Copernicus Astronomical Center, 00-614 Warsaw, Poland
| | - H Wang
- Physics and Astronomy Department, University of California, Los Angeles, California 90095, USA
| | - Y Wang
- Institute of High Energy Physics, Beijing 100049, China
- Physics and Astronomy Department, University of California, Los Angeles, California 90095, USA
| | - S Westerdale
- INFN Cagliari, Cagliari 09042, Italy
- Physics Department, Princeton University, Princeton, New Jersey 08544, USA
| | - M M Wojcik
- M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Krakow, Poland
| | - X Xiao
- Physics and Astronomy Department, University of California, Los Angeles, California 90095, USA
| | - C Yang
- Institute of High Energy Physics, Beijing 100049, China
| | - G Zuzel
- M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Krakow, Poland
| |
Collapse
|
4
|
Gu Y, Wu L, Zhu B. Detection of inelastic dark matter via electron recoils in SENSEI. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.106.075004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Kahn Y, Lin T. Searches for light dark matter using condensed matter systems. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:066901. [PMID: 35313296 DOI: 10.1088/1361-6633/ac5f63] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Identifying the nature of dark matter (DM) has long been a pressing question for particle physics. In the face of ever-more-powerful exclusions and null results from large-exposure searches for TeV-scale DM interacting with nuclei, a significant amount of attention has shifted to lighter (sub-GeV) DM candidates. Direct detection of the light DM in our galaxy by observing DM scattering off a target system requires new approaches compared to prior searches. Lighter DM particles have less available kinetic energy, and achieving a kinematic match between DM and the target mandates the proper treatment of collective excitations in condensed matter systems, such as charged quasiparticles or phonons. In this context, the condensed matter physics of the target material is crucial, necessitating an interdisciplinary approach. In this review, we provide a self-contained introduction to direct detection of keV-GeV DM with condensed matter systems. We give a brief survey of DM models and basics of condensed matter, while the bulk of the review deals with the theoretical treatment of DM-nucleon and DM-electron interactions. We also review recent experimental developments in detector technology, and conclude with an outlook for the field of sub-GeV DM detection over the next decade.
Collapse
Affiliation(s)
- Yonatan Kahn
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Illinois Center for Advanced Studies of the Universe, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Tongyan Lin
- Department of Physics, University of California, San Diego, CA 92093, United States of America
| |
Collapse
|
6
|
Abstract
The property of dark matter remains to date unknown. However, a model-independent classification of dark matter candidates can be achieved by using various symmetries, as performed in the standard model. Fermionic dark matter has been extensively researched, and one favored candidate is the neutralino in the Minimal Supersymmetric Standard Model, which is required by fermion–boson symmetry and the preservation of R-parity. Bosonic dark matter has not been sufficiently studied, especially the scenario of dark matter with a mass of sub-GeV. In this paper, we consider the effect of spin-dependent (SD) on scalar and vector dark matter, which are mediated by pseudoscalar and axial-vector, and evaluate the effect on the dark matter–electron scattering cross-section. We list all the interactions and form factor of dark matter–electron SD scattering, and use XENON10/100/1T experiment data to derive the exclusion limit of the SD cross-section. We find that the SD scattering of scalar and vector dark matter can be three orders of magnitude stronger than spin-independent (SI) scattering due to the p-wave scattering.
Collapse
|
7
|
Billard J, Boulay M, Cebrián S, Covi L, Fiorillo G, Green A, Kopp J, Majorovits B, Palladino K, Petricca F, Roszkowski Chair L, Schumann M. Direct detection of dark matter-APPEC committee report. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:056201. [PMID: 35193133 DOI: 10.1088/1361-6633/ac5754] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
This report provides an extensive review of the experimental programme of direct detection searches of particle dark matter. It focuses mostly on European efforts, both current and planned, but does it within a broader context of a worldwide activity in the field. It aims at identifying the virtues, opportunities and challenges associated with the different experimental approaches and search techniques. It presents scientific and technological synergies, both existing and emerging, with some other areas of particle physics, notably collider and neutrino programmes, and beyond. It addresses the issue of infrastructure in light of the growing needs and challenges of the different experimental searches. Finally, the report makes a number of recommendations from the perspective of a long-term future of the field. They are introduced, along with some justification, in the opening overview and recommendations section and are next summarised at the end of the report. Overall, we recommend that the direct search for dark matter particle interactions with a detector target should be given top priority in astroparticle physics, and in all particle physics, and beyond, as a positive measurement will provide the most unambiguous confirmation of the particle nature of dark matter in the Universe.
Collapse
Affiliation(s)
- Julien Billard
- Univ Lyon, Université Lyon 1, CNRS/IN2P3, IP2I-Lyon, F-69622, Villeurbanne, France
| | - Mark Boulay
- Department of Physics, Carleton University, Ottawa, Canada
| | - Susana Cebrián
- Centro de Astropartículas y Física de Altas Energías, Universidad de Zaragoza, Zaragoza, Spain
| | - Laura Covi
- Institute for Theoretical Physics, Georg-August University, Goettingen, Germany
| | - Giuliana Fiorillo
- Physics Department, Università degli Studi 'Federico II' di Napoli and INFN Napoli, Naples, Italy
| | - Anne Green
- School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Joachim Kopp
- CERN, Geneva, Switzerland and Johannes Gutenberg University, Mainz, Germany
| | | | - Kimberly Palladino
- Department of Physics, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Physics, Oxford University, Oxford, United Kingdom
| | | | - Leszek Roszkowski Chair
- Astrocent, Nicolaus Copernicus Astronomical Center PAS, Warsaw, Poland
- National Centre for Nuclear Research, Warsaw, Poland
| | - Marc Schumann
- Institute of Physics, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Bell NF, Dent JB, Dutta B, Ghosh S, Kumar J, Newstead JL. Low-mass inelastic dark matter direct detection via the Migdal effect. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.104.076013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Abstract
Dark matter is a milestone in the understanding of the Universe and a portal to the discovery of new physics beyond the Standard Model of particles. The direct search for dark matter has become one of the most active fields of experimental physics in the last few decades. Liquid Xenon (LXe) detectors demonstrated the highest sensitivities to the main dark matter candidates (Weakly Interactive Massive Particles, WIMP). The experiments of the XENON project, located in the underground INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy, are leading the field thanks to the dual-phase LXe time projection chamber (TPC) technology. Since the first prototype XENON10 built in 2005, each detector of the XENON project achieved the highest sensitivity to WIMP dark matter. XENON increased the LXe target mass by nearly a factor 400, up to the 5.9 t of the current XENONnT detector installed at LNGS in 2020. Thanks to an unprecedentedly low background level, XENON1T (predecessor of XENONnT) set the world best limits on WIMP dark matter to date, for an overall boost of more than 3 orders of magnitude to the experimental sensitivity since the XENON project started. In this work, we review the principles of direct dark matter detection with LXe TPCs, the detectors of the XENON project, the challenges posed by background mitigation to ultra-low levels, and the main results achieved by the XENON project in the search for dark matter.
Collapse
|
10
|
Kahn Y, Krnjaic G, Mandava B. Dark Matter Detection with Bound Nuclear Targets: The Poisson Phonon Tail. PHYSICAL REVIEW LETTERS 2021; 127:081804. [PMID: 34477403 DOI: 10.1103/physrevlett.127.081804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Dark matter (DM) scattering with nuclei in solid-state systems may produce elastic nuclear recoil at high energies and single-phonon excitation at low energies. When the DM momentum is comparable to the momentum spread of nuclei bound in a lattice, q_{0}=sqrt[2m_{N}ω_{0}] where m_{N} is the mass of the nucleus and ω_{0} is the optical phonon energy, an intermediate scattering regime characterized by multiphonon excitations emerges. We study a greatly simplified model of a single nucleus in a harmonic potential and show that, while the mean energy deposited for a given momentum transfer q is equal to the elastic value q^{2}/(2m_{N}), the phonon occupation number follows a Poisson distribution and thus the energy spread is ΔE=qsqrt[ω_{0}/(2m_{N})]. This observation suggests that low-threshold calorimetric detectors may have significantly increased sensitivity to sub-GeV DM compared to the expectation from elastic scattering, even when the energy threshold is above the single-phonon energy, by exploiting the tail of the Poisson distribution for phonons above the elastic energy. We use a simple model of electronic excitations to argue that this multiphonon signal will also accompany ionization signals induced from DM-electron scattering or the Migdal effect. In well-motivated models where DM couples to a heavy, kinetically mixed dark photon, we show that these signals can probe experimental milestones for cosmological DM production via thermal freeze-out, including the thermal target for Majorana fermion DM.
Collapse
Affiliation(s)
- Yonatan Kahn
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Illinois Center for Advanced Studies of the Universe, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gordan Krnjaic
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
- Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Bashi Mandava
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
11
|
Knapen S, Kozaczuk J, Lin T. Migdal Effect in Semiconductors. PHYSICAL REVIEW LETTERS 2021; 127:081805. [PMID: 34477426 DOI: 10.1103/physrevlett.127.081805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
When a nucleus in an atom undergoes a collision, there is a small probability of an electron being excited inelastically as a result of the Migdal effect. In this Letter, we present the first complete derivation of the Migdal effect from dark matter-nucleus scattering in semiconductors, which also accounts for multiphonon production. The rate of the Migdal effect can be expressed in terms of the energy loss function of the material, which we calculate with density functional theory methods. Because of the smaller gap for electron excitations, we find that the rate for the Migdal effect is much higher in semiconductors than in atomic targets. Accounting for the Migdal effect in semiconductors can therefore significantly improve the sensitivity of experiments such as DAMIC, SENSEI, and SuperCDMS to sub-GeV dark matter.
Collapse
Affiliation(s)
- Simon Knapen
- CERN, Theoretical Physics Department, 1211 Geneva 23, Switzerland
| | - Jonathan Kozaczuk
- Department of Physics, University of California, San Diego, California 92093, USA
| | - Tongyan Lin
- Department of Physics, University of California, San Diego, California 92093, USA
| |
Collapse
|
12
|
Bell NF, Dent JB, Dutta B, Ghosh S, Kumar J, Newstead JL. Explaining the XENON1T Excess with Luminous Dark Matter. PHYSICAL REVIEW LETTERS 2020; 125:161803. [PMID: 33124869 DOI: 10.1103/physrevlett.125.161803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
We show that the excess in electron recoil events seen by the XENON1T experiment can be explained by a relatively low-mass luminous dark matter candidate. The dark matter scatters inelastically in the detector (or the surrounding rock) to produce a heavier dark state with a ∼2-3 keV mass splitting. This heavier state then decays within the detector, producing a peak in the electron recoil spectrum that is a good fit to the observed excess. We comment on the ability of future direct detection experiments to differentiate this model from other "beyond the standard model" scenarios and from possible tritium backgrounds, including the use of diurnal modulation, multichannel signals, etc., as possible distinguishing features of this scenario.
Collapse
Affiliation(s)
- Nicole F Bell
- ARC Centre of Excellence for Dark Matter Particle Physics, School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - James B Dent
- Department of Physics, Sam Houston State University, Huntsville, Texas 77341, USA
| | - Bhaskar Dutta
- Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
| | - Sumit Ghosh
- Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
| | - Jason Kumar
- Department of Physics, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Jayden L Newstead
- ARC Centre of Excellence for Dark Matter Particle Physics, School of Physics, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
13
|
Baxter D, Kahn Y, Krnjaic G. Electron ionization via dark matter-electron scattering and the Migdal effect. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.101.076014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Griffin SM, Inzani K, Trickle T, Zhang Z, Zurek KM. Multichannel direct detection of light dark matter: Target comparison. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.101.055004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Essig R, Pradler J, Sholapurkar M, Yu TT. Relation between the Migdal Effect and Dark Matter-Electron Scattering in Isolated Atoms and Semiconductors. PHYSICAL REVIEW LETTERS 2020; 124:021801. [PMID: 32004054 DOI: 10.1103/physrevlett.124.021801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 06/10/2023]
Abstract
A key strategy for sub-GeV dark matter direct detection is searches for small ionization signals that arise from dark matter-electron scattering or from the "Migdal" effect in dark matter-nucleus scattering. We show that the theoretical description of both processes is closely related, allowing for a principal mapping between them. We explore this for noble-liquid targets and, for the first time, estimate the Migdal effect in semiconductors using a crystal form factor. We present new constraints using XENON10, XENON100, and SENSEI data, and give projections for proposed experiments.
Collapse
Affiliation(s)
- Rouven Essig
- C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Josef Pradler
- Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, 1050 Vienna, Austria
| | - Mukul Sholapurkar
- C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Tien-Tien Yu
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
16
|
Alvey J, Campos MD, Fairbairn M, You T. Detecting Light Dark Matter via Inelastic Cosmic Ray Collisions. PHYSICAL REVIEW LETTERS 2019; 123:261802. [PMID: 31951448 DOI: 10.1103/physrevlett.123.261802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Direct detection experiments relying on nuclear recoil signatures lose sensitivity to sub-GeV dark matter for typical galactic velocities. This sensitivity is recovered if there exists another source of flux with higher momenta. Such an energetic flux of light dark matter could originate from the decay of mesons produced in inelastic cosmic ray collisions. We compute this novel production mechanism-a cosmic beam dump experiment-and estimate the resulting limits from XENON1T and LZ. We find that the dark matter flux from inelastic cosmic rays colliding with atmospheric nuclei can dominate over the flux from elastic collisions with relic dark matter. The limits that we obtain for hadrophilic scalar mediator models are competitive with those from MiniBoone for light MeV-scale mediator masses.
Collapse
Affiliation(s)
- James Alvey
- Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, London WC2R 2LS, United Kingdom
| | - Miguel D Campos
- Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, London WC2R 2LS, United Kingdom
| | - Malcolm Fairbairn
- Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, London WC2R 2LS, United Kingdom
| | - Tevong You
- DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom and Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
17
|
Liu ZZ, Yue Q, Yang LT, Kang KJ, Li YJ, Wong HT, Agartioglu M, An HP, Chang JP, Chen JH, Chen YH, Cheng JP, Deng Z, Du Q, Gong H, Guo XY, Guo QJ, He L, He SM, Hu JW, Hu QD, Huang HX, Jia LP, Jiang H, Li HB, Li H, Li JM, Li J, Li X, Li XQ, Li YL, Liao B, Lin FK, Lin ST, Liu SK, Liu YD, Liu YY, Ma H, Ma JL, Mao YC, Ning JH, Pan H, Qi NC, Ren J, Ruan XC, Sharma V, She Z, Singh L, Singh MK, Sun TX, Tang CJ, Tang WY, Tian Y, Wang GF, Wang L, Wang Q, Wang Y, Wang YX, Wu SY, Wu YC, Xing HY, Xu Y, Xue T, Yi N, Yu CX, Yu HJ, Yue JF, Zeng M, Zeng Z, Zhang FS, Zhao MG, Zhou JF, Zhou ZY, Zhu JJ. Constraints on Spin-Independent Nucleus Scattering with sub-GeV Weakly Interacting Massive Particle Dark Matter from the CDEX-1B Experiment at the China Jinping Underground Laboratory. PHYSICAL REVIEW LETTERS 2019; 123:161301. [PMID: 31702340 DOI: 10.1103/physrevlett.123.161301] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 06/10/2023]
Abstract
We report results on the searches of weakly interacting massive particles (WIMPs) with sub-GeV masses (m_{χ}) via WIMP-nucleus spin-independent scattering with Migdal effect incorporated. Analysis on time-integrated (TI) and annual modulation (AM) effects on CDEX-1B data are performed, with 737.1 kg day exposure and 160 eVee threshold for TI analysis, and 1107.5 kg day exposure and 250 eVee threshold for AM analysis. The sensitive windows in m_{χ} are expanded by an order of magnitude to lower DM masses with Migdal effect incorporated. New limits on σ_{χN}^{SI} at 90% confidence level are derived as 2×10^{-32}∼7×10^{-35} cm^{2} for TI analysis at m_{χ}∼50-180 MeV/c^{2}, and 3×10^{-32}∼9×10^{-38} cm^{2} for AM analysis at m_{χ}∼75 MeV/c^{2}-3.0 GeV/c^{2}.
Collapse
Affiliation(s)
- Z Z Liu
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - Q Yue
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - L T Yang
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - K J Kang
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - Y J Li
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - H T Wong
- Institute of Physics, Academia Sinica, Taipei 11529
| | - M Agartioglu
- Institute of Physics, Academia Sinica, Taipei 11529
- Department of Physics, Dokuz Eylül University, İzmir 35160
| | - H P An
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
- Department of Physics, Tsinghua University, Beijing 100084
| | | | - J H Chen
- Institute of Physics, Academia Sinica, Taipei 11529
| | - Y H Chen
- YaLong River Hydropower Development Company, Chengdu 610051
| | - J P Cheng
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
| | - Z Deng
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - Q Du
- College of Physical Science and Technology, Sichuan University, Chengdu 610065
| | - H Gong
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - X Y Guo
- YaLong River Hydropower Development Company, Chengdu 610051
| | - Q J Guo
- School of Physics, Peking University, Beijing 100871
| | - L He
- NUCTECH Company, Beijing 100084
| | - S M He
- YaLong River Hydropower Development Company, Chengdu 610051
| | - J W Hu
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - Q D Hu
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - H X Huang
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413
| | - L P Jia
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - H Jiang
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - H B Li
- Institute of Physics, Academia Sinica, Taipei 11529
| | - H Li
- NUCTECH Company, Beijing 100084
| | - J M Li
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - J Li
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - X Li
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413
| | - X Q Li
- School of Physics, Nankai University, Tianjin 300071
| | - Y L Li
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - B Liao
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
| | - F K Lin
- Institute of Physics, Academia Sinica, Taipei 11529
| | - S T Lin
- College of Physical Science and Technology, Sichuan University, Chengdu 610065
| | - S K Liu
- College of Physical Science and Technology, Sichuan University, Chengdu 610065
| | - Y D Liu
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
| | - Y Y Liu
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
| | - H Ma
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - J L Ma
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
- Department of Physics, Tsinghua University, Beijing 100084
| | - Y C Mao
- School of Physics, Peking University, Beijing 100871
| | - J H Ning
- YaLong River Hydropower Development Company, Chengdu 610051
| | - H Pan
- NUCTECH Company, Beijing 100084
| | - N C Qi
- YaLong River Hydropower Development Company, Chengdu 610051
| | - J Ren
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413
| | - X C Ruan
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413
| | - V Sharma
- Institute of Physics, Academia Sinica, Taipei 11529
- Department of Physics, Banaras Hindu University, Varanasi 221005
| | - Z She
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - L Singh
- Institute of Physics, Academia Sinica, Taipei 11529
- Department of Physics, Banaras Hindu University, Varanasi 221005
| | - M K Singh
- Institute of Physics, Academia Sinica, Taipei 11529
- Department of Physics, Banaras Hindu University, Varanasi 221005
| | - T X Sun
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
| | - C J Tang
- College of Physical Science and Technology, Sichuan University, Chengdu 610065
| | - W Y Tang
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - Y Tian
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - G F Wang
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
| | - L Wang
- Department of Physics, Beijing Normal University, Beijing 100875
| | - Q Wang
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
- Department of Physics, Tsinghua University, Beijing 100084
| | - Y Wang
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
- Department of Physics, Tsinghua University, Beijing 100084
| | - Y X Wang
- School of Physics, Peking University, Beijing 100871
| | - S Y Wu
- YaLong River Hydropower Development Company, Chengdu 610051
| | - Y C Wu
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - H Y Xing
- College of Physical Science and Technology, Sichuan University, Chengdu 610065
| | - Y Xu
- School of Physics, Nankai University, Tianjin 300071
| | - T Xue
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - N Yi
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - C X Yu
- School of Physics, Nankai University, Tianjin 300071
| | - H J Yu
- NUCTECH Company, Beijing 100084
| | - J F Yue
- YaLong River Hydropower Development Company, Chengdu 610051
| | - M Zeng
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - Z Zeng
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084
| | - F S Zhang
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
| | - M G Zhao
- School of Physics, Nankai University, Tianjin 300071
| | - J F Zhou
- YaLong River Hydropower Development Company, Chengdu 610051
| | - Z Y Zhou
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413
| | - J J Zhu
- College of Physical Science and Technology, Sichuan University, Chengdu 610065
| |
Collapse
|
18
|
Bringmann T, Pospelov M. Novel Direct Detection Constraints on Light Dark Matter. PHYSICAL REVIEW LETTERS 2019; 122:171801. [PMID: 31107056 DOI: 10.1103/physrevlett.122.171801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 06/09/2023]
Abstract
All attempts to directly detect particle dark matter (DM) scattering on nuclei suffer from the partial or total loss of sensitivity for DM masses in the GeV range or below. We derive novel constraints from the inevitable existence of a subdominant, but highly energetic, component of DM generated through collisions with cosmic rays. Subsequent scattering inside conventional DM detectors, as well as neutrino detectors sensitive to nuclear recoils, limits the DM-nucleon scattering cross section to be below 10^{-31} cm^{2} for both spin-independent and spin-dependent scattering of light DM.
Collapse
Affiliation(s)
- Torsten Bringmann
- Department of Physics, University of Oslo, Box 1048, N-0371 Oslo, Norway
| | - Maxim Pospelov
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J 2W9, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
19
|
Akerib DS, Alsum S, Araújo HM, Bai X, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Boxer B, Brás P, Burdin S, Byram D, Carmona-Benitez MC, Chan C, Cutter JE, Davison TJR, Druszkiewicz E, Fallon SR, Fan A, Fiorucci S, Gaitskell RJ, Genovesi J, Ghag C, Gilchriese MGD, Gwilliam C, Hall CR, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Jahangir O, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Korolkova EV, Kravitz S, Kudryavtsev VA, Lenardo BG, Lesko KT, Liao J, Lin J, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marangou N, Marzioni MF, McKinsey DN, Mei DM, Moongweluwan M, Morad JA, Murphy ASJ, Naylor A, Nehrkorn C, Nelson HN, Neves F, Oliver-Mallory KC, Palladino KJ, Pease EK, Riffard Q, Rischbieter GRC, Rhyne C, Rossiter P, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Utku U, Uvarov S, Velan V, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Woodward D, Xu J, Yazdani K, Zhang C. Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data. PHYSICAL REVIEW LETTERS 2019; 122:131301. [PMID: 31012624 DOI: 10.1103/physrevlett.122.131301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Indexed: 06/09/2023]
Abstract
The scattering of dark matter (DM) particles with sub-GeV masses off nuclei is difficult to detect using liquid xenon-based DM search instruments because the energy transfer during nuclear recoils is smaller than the typical detector threshold. However, the tree-level DM-nucleus scattering diagram can be accompanied by simultaneous emission of a bremsstrahlung photon or a so-called "Migdal" electron. These provide an electron recoil component to the experimental signature at higher energies than the corresponding nuclear recoil. The presence of this signature allows liquid xenon detectors to use both the scintillation and the ionization signals in the analysis where the nuclear recoil signal would not be otherwise visible. We report constraints on spin-independent DM-nucleon scattering for DM particles with masses of 0.4-5 GeV/c^{2} using 1.4×10^{4} kg day of search exposure from the 2013 data from the Large Underground Xenon (LUX) experiment for four different classes of mediators. This analysis extends the reach of liquid xenon-based DM search instruments to lower DM masses than has been achieved previously.
Collapse
Affiliation(s)
- D S Akerib
- Case Western Reserve University, Department of Physics, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94205, USA
- Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94309, USA
| | - S Alsum
- University of Wisconsin-Madison, Department of Physics, 1150 University Avenue, Madison, Wisconsin 53706, USA
| | - H M Araújo
- Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ, United Kingdom
| | - X Bai
- South Dakota School of Mines and Technology, 501 East St. Joseph Street, Rapid City, South Dakota 57701, USA
| | - J Balajthy
- University of California Davis, Department of Physics, One Shields Avenue, Davis, California 95616, USA
| | - P Beltrame
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - E P Bernard
- University of California Berkeley, Department of Physics, Berkeley, California 94720, USA
| | - A Bernstein
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| | - T P Biesiadzinski
- Case Western Reserve University, Department of Physics, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94205, USA
- Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94309, USA
| | - E M Boulton
- University of California Berkeley, Department of Physics, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
- Yale University, Department of Physics, 217 Prospect Street, New Haven, Connecticut 06511, USA
| | - B Boxer
- University of Liverpool, Department of Physics, Liverpool L69 7ZE, United Kingdom
| | - P Brás
- LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| | - S Burdin
- University of Liverpool, Department of Physics, Liverpool L69 7ZE, United Kingdom
| | - D Byram
- University of South Dakota, Department of Physics, 414E Clark Street, Vermillion, South Dakota 57069, USA
- South Dakota Science and Technology Authority, Sanford Underground Research Facility, Lead, South Dakota 57754, USA
| | - M C Carmona-Benitez
- Pennsylvania State University, Department of Physics, 104 Davey Lab, University Park, Pennsylvania 16802-6300, USA
| | - C Chan
- Brown University, Department of Physics, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - J E Cutter
- University of California Davis, Department of Physics, One Shields Avenue, Davis, California 95616, USA
| | - T J R Davison
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - E Druszkiewicz
- University of Rochester, Department of Physics and Astronomy, Rochester, New York 14627, USA
| | - S R Fallon
- University at Albany, State University of New York, Department of Physics, 1400 Washington Avenue, Albany, New York 12222, USA
| | - A Fan
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94205, USA
- Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94309, USA
| | - S Fiorucci
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
- Brown University, Department of Physics, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - R J Gaitskell
- Brown University, Department of Physics, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - J Genovesi
- University at Albany, State University of New York, Department of Physics, 1400 Washington Avenue, Albany, New York 12222, USA
| | - C Ghag
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - M G D Gilchriese
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - C Gwilliam
- University of Liverpool, Department of Physics, Liverpool L69 7ZE, United Kingdom
| | - C R Hall
- University of Maryland, Department of Physics, College Park, Maryland 20742, USA
| | - S J Haselschwardt
- University of California Santa Barbara, Department of Physics, Santa Barbara, California 93106, USA
| | - S A Hertel
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
- University of Massachusetts, Amherst Center for Fundamental Interactions and Department of Physics, Amherst, Massachusetts 01003-9337, USA
| | - D P Hogan
- University of California Berkeley, Department of Physics, Berkeley, California 94720, USA
| | - M Horn
- University of California Berkeley, Department of Physics, Berkeley, California 94720, USA
- South Dakota Science and Technology Authority, Sanford Underground Research Facility, Lead, South Dakota 57754, USA
| | - D Q Huang
- Brown University, Department of Physics, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - C M Ignarra
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94205, USA
- Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94309, USA
| | - R G Jacobsen
- University of California Berkeley, Department of Physics, Berkeley, California 94720, USA
| | - O Jahangir
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - W Ji
- Case Western Reserve University, Department of Physics, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94205, USA
- Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94309, USA
| | - K Kamdin
- University of California Berkeley, Department of Physics, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - K Kazkaz
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| | - D Khaitan
- University of Rochester, Department of Physics and Astronomy, Rochester, New York 14627, USA
| | - R Knoche
- University of Maryland, Department of Physics, College Park, Maryland 20742, USA
| | - E V Korolkova
- University of Sheffield, Department of Physics and Astronomy, Sheffield, S3 7RH, United Kingdom
| | - S Kravitz
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - V A Kudryavtsev
- University of Sheffield, Department of Physics and Astronomy, Sheffield, S3 7RH, United Kingdom
| | - B G Lenardo
- University of California Davis, Department of Physics, One Shields Avenue, Davis, California 95616, USA
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| | - K T Lesko
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - J Liao
- Brown University, Department of Physics, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - J Lin
- University of California Berkeley, Department of Physics, Berkeley, California 94720, USA
| | - A Lindote
- LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| | - M I Lopes
- LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| | - A Manalaysay
- University of California Davis, Department of Physics, One Shields Avenue, Davis, California 95616, USA
| | - R L Mannino
- University of Wisconsin-Madison, Department of Physics, 1150 University Avenue, Madison, Wisconsin 53706, USA
- Texas A & M University, Department of Physics, College Station, Texas 77843, USA
| | - N Marangou
- Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ, United Kingdom
| | - M F Marzioni
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - D N McKinsey
- University of California Berkeley, Department of Physics, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - D-M Mei
- University of South Dakota, Department of Physics, 414E Clark Street, Vermillion, South Dakota 57069, USA
| | - M Moongweluwan
- University of Rochester, Department of Physics and Astronomy, Rochester, New York 14627, USA
| | - J A Morad
- University of California Davis, Department of Physics, One Shields Avenue, Davis, California 95616, USA
| | - A St J Murphy
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - A Naylor
- University of Sheffield, Department of Physics and Astronomy, Sheffield, S3 7RH, United Kingdom
| | - C Nehrkorn
- University of California Santa Barbara, Department of Physics, Santa Barbara, California 93106, USA
| | - H N Nelson
- University of California Santa Barbara, Department of Physics, Santa Barbara, California 93106, USA
| | - F Neves
- LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| | - K C Oliver-Mallory
- University of California Berkeley, Department of Physics, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - K J Palladino
- University of Wisconsin-Madison, Department of Physics, 1150 University Avenue, Madison, Wisconsin 53706, USA
| | - E K Pease
- University of California Berkeley, Department of Physics, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Q Riffard
- University of California Berkeley, Department of Physics, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - G R C Rischbieter
- University at Albany, State University of New York, Department of Physics, 1400 Washington Avenue, Albany, New York 12222, USA
| | - C Rhyne
- Brown University, Department of Physics, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - P Rossiter
- University of Sheffield, Department of Physics and Astronomy, Sheffield, S3 7RH, United Kingdom
| | - S Shaw
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
- University of California Santa Barbara, Department of Physics, Santa Barbara, California 93106, USA
| | - T A Shutt
- Case Western Reserve University, Department of Physics, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94205, USA
- Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94309, USA
| | - C Silva
- LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| | - M Solmaz
- University of California Santa Barbara, Department of Physics, Santa Barbara, California 93106, USA
| | - V N Solovov
- LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| | - P Sorensen
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - T J Sumner
- Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ, United Kingdom
| | - M Szydagis
- University at Albany, State University of New York, Department of Physics, 1400 Washington Avenue, Albany, New York 12222, USA
| | - D J Taylor
- South Dakota Science and Technology Authority, Sanford Underground Research Facility, Lead, South Dakota 57754, USA
| | - W C Taylor
- Brown University, Department of Physics, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - B P Tennyson
- Yale University, Department of Physics, 217 Prospect Street, New Haven, Connecticut 06511, USA
| | - P A Terman
- Texas A & M University, Department of Physics, College Station, Texas 77843, USA
| | - D R Tiedt
- South Dakota School of Mines and Technology, 501 East St. Joseph Street, Rapid City, South Dakota 57701, USA
| | - W H To
- California State University Stanislaus, Department of Physics, 1 University Circle, Turlock, California 95382, USA
| | - M Tripathi
- University of California Davis, Department of Physics, One Shields Avenue, Davis, California 95616, USA
| | - L Tvrznikova
- University of California Berkeley, Department of Physics, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
- Yale University, Department of Physics, 217 Prospect Street, New Haven, Connecticut 06511, USA
| | - U Utku
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - S Uvarov
- University of California Davis, Department of Physics, One Shields Avenue, Davis, California 95616, USA
| | - V Velan
- University of California Berkeley, Department of Physics, Berkeley, California 94720, USA
| | - R C Webb
- Texas A & M University, Department of Physics, College Station, Texas 77843, USA
| | - J T White
- Texas A & M University, Department of Physics, College Station, Texas 77843, USA
| | - T J Whitis
- Case Western Reserve University, Department of Physics, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94205, USA
- Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94309, USA
| | - M S Witherell
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - F L H Wolfs
- University of Rochester, Department of Physics and Astronomy, Rochester, New York 14627, USA
| | - D Woodward
- Pennsylvania State University, Department of Physics, 104 Davey Lab, University Park, Pennsylvania 16802-6300, USA
| | - J Xu
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| | - K Yazdani
- Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ, United Kingdom
| | - C Zhang
- University of South Dakota, Department of Physics, 414E Clark Street, Vermillion, South Dakota 57069, USA
| |
Collapse
|