1
|
Gao G, Shao T, Li T, Wang S. Harnessing optical forces with advanced nanophotonic structures: principles and applications. DISCOVER NANO 2025; 20:76. [PMID: 40317364 PMCID: PMC12049358 DOI: 10.1186/s11671-025-04252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/09/2025] [Indexed: 05/07/2025]
Abstract
Non-contact mechanical control of light has given rise to optical manipulation, facilitating diverse light-matter interactions and enabling pioneering applications like optical tweezers. However, the practical adoption of versatile optical tweezing systems remains constrained by the complexity and bulkiness of their optical setups, underscoring the urgent requirement for advancements in miniaturization and functional integration. In this paper, we present innovations in optical manipulation within the nanophotonic domain, including fiber-based and metamaterial tweezers, as well as their emerging applications in manipulating cells and artificial micro-nano robots. Furthermore, we explore interdisciplinary on-chip devices that integrate photonic crystals and optofluidics. By merging optical manipulation with the dynamism of nanophotonics and metamaterials, this work seeks to chart a transformative pathway for the future of optomechanics and beyond.
Collapse
Affiliation(s)
- Geze Gao
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Tianhua Shao
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Tianyue Li
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.
| | - Shuming Wang
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
2
|
Pi H, Sun C, Kiang KS, Georgescu T, Ou BJY, Ulbricht H, Yan J. Levitation and controlled MHz rotation of a nanofabricated rod by a high-NA metalens. MICROSYSTEMS & NANOENGINEERING 2025; 11:67. [PMID: 40258834 PMCID: PMC12012181 DOI: 10.1038/s41378-025-00886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 04/23/2025]
Abstract
An optically levitated nanoparticle in a vacuum provides an ideal platform for ultra-precision measurements and fundamental physics studies because of the exceptionally high-quality factor and rich motion modes, which can be engineered by manipulating the optical field and the geometry of the nanoparticle. Nanofabrication technology with the ability to create arbitrary nanostructure arrays offers a precise way of engineering the optical field and the geometry of the nanoparticle. Here, for the first time, we optically levitate and rotate a nanofabricated nanorod via a nanofabricated a-Si metalens which strongly focuses a 1550 nm laser beam with a numerical aperture of 0.953. By manipulating the laser beam's polarization, the levitated nanorod's translation frequencies can be tuned, and the spin rotation mode can be switched on and off. Then, we showed the control of rotational frequency by changing the laser beam's intensity and polarization as well as the air pressure. Finally, a MHz spin rotation frequency of the nanorod is achieved in the experiment. This is the first demonstration of controlled optical spin in a metalens-based compact optical levitation system. Our research holds promise for realizing scalable on-chip integrated optical levitation systems.
Collapse
Affiliation(s)
- Hailong Pi
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
| | - Chuang Sun
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
| | - Kian Shen Kiang
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tiberius Georgescu
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
| | - Bruce Jun-Yu Ou
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
| | - Hendrik Ulbricht
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jize Yan
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
3
|
Yang M, Shi Y, Song Q, Wei Z, Dun X, Wang Z, Wang Z, Qiu CW, Zhang H, Cheng X. Optical sorting: past, present and future. LIGHT, SCIENCE & APPLICATIONS 2025; 14:103. [PMID: 40011460 DOI: 10.1038/s41377-024-01734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 02/28/2025]
Abstract
Optical sorting combines optical tweezers with diverse techniques, including optical spectrum, artificial intelligence (AI) and immunoassay, to endow unprecedented capabilities in particle sorting. In comparison to other methods such as microfluidics, acoustics and electrophoresis, optical sorting offers appreciable advantages in nanoscale precision, high resolution, non-invasiveness, and is becoming increasingly indispensable in fields of biophysics, chemistry, and materials science. This review aims to offer a comprehensive overview of the history, development, and perspectives of various optical sorting techniques, categorised as passive and active sorting methods. To begin, we elucidate the fundamental physics and attributes of both conventional and exotic optical forces. We then explore sorting capabilities of active optical sorting, which fuses optical tweezers with a diversity of techniques, including Raman spectroscopy and machine learning. Afterwards, we reveal the essential roles played by deterministic light fields, configured with lens systems or metasurfaces, in the passive sorting of particles based on their varying sizes and shapes, sorting resolutions and speeds. We conclude with our vision of the most promising and futuristic directions, including AI-facilitated ultrafast and bio-morphology-selective sorting. It can be envisioned that optical sorting will inevitably become a revolutionary tool in scientific research and practical biomedical applications.
Collapse
Affiliation(s)
- Meng Yang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| | - Qinghua Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zeyong Wei
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Xiong Dun
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
| | - Hui Zhang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| |
Collapse
|
4
|
He C, Li C, Wang J, Dong Y, Zhu S, Ying Q, Ma Y, Feng F, Yin Z, Hu H. Kinetic-energy-dependent over-barrier behaviors of nanorotors in tilted periodic potentials. OPTICS LETTERS 2025; 50:53-56. [PMID: 39718849 DOI: 10.1364/ol.547975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024]
Abstract
Thermal-induced transitions between multistable states hold significant interest in stochastic thermodynamics and dynamical control with nanomechanical systems. Here, we study kinetic-energy-dependent over-barrier behaviors in the rotational degree of freedom of silica nanodumbells in tilted periodic potentials. In the rotational degree of freedom, nanodumbbells can undergo critical transitions between librations and rotations as the ellipticity of the trapping laser field changes. These transitions exhibit hysteresis effects, which can be monitored in real time by introducing an additional laterally scattered light. Our experiments elucidate that the distribution of kinetic energy of nanorotors influences the critical transition ellipticities for activating or inhibiting over-barrier behaviors, which is supported by theoretical and numerical analysis. This work lays the groundwork for exploring mesoscopic thermodynamics associated with a broad spectrum of stochastic processes, e.g., non-Markovian thermal noise and evolutions of non-equilibrium steady states.
Collapse
|
5
|
Ding P, Lu M, Lu L, Wen J, Gong X, Zheng H, Chen H. Direction-switchable transverse optical torque on a dipolar phase-change nanoparticle. OPTICS LETTERS 2024; 49:5655-5658. [PMID: 39353030 DOI: 10.1364/ol.532684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
We propose that a transition from positive optical torque (OT) to negative OT occurs in a dipolar nanoparticle subjected to a simple optical field composed of two circularly polarized plane waves. This phenomenon can be observed in a phase-change nanoparticle comprising insulating and metallic phases. The analytical expression based on the multipole expansion theory reveals that the positive OT in the metallic phase originates from the electric response during light-matter interaction. However, in the insulating phase, the magnetic response is excited, leading to a significant negative OT due to the contribution of the magnetic field-magnetic dipole interaction. It is noted that the phenomenon of reversible transverse OT is robust to the angle between two constituent plane waves, ensuring its practical application.
Collapse
|
6
|
Xu X, Nieto-Vesperinas M, Zhou Y, Zhang Y, Li M, Rodríguez-Fortuño FJ, Yan S, Yao B. Gradient and curl optical torques. Nat Commun 2024; 15:6230. [PMID: 39043631 PMCID: PMC11266349 DOI: 10.1038/s41467-024-50440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
Optical forces and torques offer the route towards full degree-of-freedom manipulation of matter. Exploiting structured light has led to the discovery of gradient and curl forces, and nontrivial optomechanical manifestations, such as negative and lateral optical forces. Here, we uncover the existence of two fundamental torque components, which originate from the reactive helicity gradient and momentum curl of light, and which represent the rotational analogues to the gradient and curl forces, respectively. Based on the two components, we introduce and demonstrate the concept of lateral optical torques, which act transversely to the spin of illumination. The orbital angular momentum of vortex beams is shown to couple to the curl torque, promising a path to extreme torque enhancement or achieving negative optical torques. These results highlight the intersection between the areas of structured light, Mie-tronics and rotational optomechanics, even inspiring new paths of manipulation in acoustics and hydrodynamics.
Collapse
Affiliation(s)
- Xiaohao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Manuel Nieto-Vesperinas
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Yuan Zhou
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Zhang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manman Li
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francisco J Rodríguez-Fortuño
- Department of Physics, King's College London, Strand, London, WC2R 2LS, UK
- London Centre for Nanotechnology, Department of Physics, King's College London, Strand, London, WC2R 2LS, UK
| | - Shaohui Yan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Zhang Y, Li Z, Che Z, Zhang W, Zhang Y, Lin Z, Lv Z, Wu C, Han L, Tang J, Zhu W, Xiao Y, Zheng H, Zhong Y, Chen Z, Yu J. Dynamics of polarization-tuned mirror symmetry breaking in a rotationally symmetric system. Nat Commun 2024; 15:5586. [PMID: 38961090 PMCID: PMC11222497 DOI: 10.1038/s41467-024-49696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
Lateral momentum conservation is typically kept in a non-absorptive rotationally symmetric system through mirror symmetry via Noether's theorem when illuminated by a homogeneous light wave. Therefore, it is still very challenging to break the mirror symmetry and generate a lateral optical force (LOF) in the rotationally symmetric system. Here, we report a general dynamic action in the SO(2) rotationally symmetric system, originating from the polarization-tuned mirror symmetry breaking (MSB) of the light scattering. We demonstrate theoretically and experimentally that MSB can be generally applied to the SO(2) rotationally symmetric system and tuned sinusoidally by polarization orientation, leading to a highly tunable and highly efficient LOF (9.22 pN/mW/μm-2) perpendicular to the propagation direction. The proposed MSB mechanism and LOF not only complete the sets of MSB of light-matter interaction and non-conservative force only using a plane wave but also provide extra polarization manipulation freedom.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhibin Li
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhen Che
- Guangdong Science and Technology Infrastructure Center, Guangzhou, 510033, China
| | - Wang Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yusen Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Ziqi Lin
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhan Lv
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Chunling Wu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Longwei Han
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Jieyuan Tang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Wenguo Zhu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yi Xiao
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Huadan Zheng
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yongchun Zhong
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhe Chen
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Jianhui Yu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Wu YJ, Yu PP, Liu YF, Zhuang JH, Wang ZQ, Li YM, Qiu CW, Gong L. Controllable Microparticle Spinning via Light without Spin Angular Momentum. PHYSICAL REVIEW LETTERS 2024; 132:253803. [PMID: 38996228 DOI: 10.1103/physrevlett.132.253803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/20/2024] [Indexed: 07/14/2024]
Abstract
The spin angular momentum (SAM) of an elliptically or circularly polarized light beam can be transferred to matter to drive a spinning motion. It is counterintuitive to find that a light beam without SAM can also cause the spinning of microparticles. Here, we demonstrate controllable spinning of birefringent microparticles via a tightly focused radially polarized vortex beam that has no SAM prior to focusing. To this end, the orbital Hall effect is proposed to control the radial separation of two spin components in the focused field, and tunable transfer of local SAM to microparticles is achieved by manipulating the twisted wavefront of the source light. Our work broadens the perspectives for controllable exertion of optical torques via the spin-orbit interactions.
Collapse
|
9
|
Han Z, Zhang L, Li X, Li Y, Qu T, Yu X, Yu X, Ng J, Lin Z, Chen J. Pure optical twist with zero net torque. OPTICS EXPRESS 2024; 32:8484-8495. [PMID: 38439503 DOI: 10.1364/oe.518075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/11/2024] [Indexed: 03/06/2024]
Abstract
In photonic systems, bilayer or multilayer systems exhibit numerous exciting phenomena induced by twisting. Thus, it is highly desired to explore the twisting effect by engineering the light-matter interactions. Optical torque, an important means in optical micromanipulation, can rotate micro-objects in various ways, enabling a wide range of promising applications. In this study, we present an interesting phenomenon called "pure optical twist" (POT), which emerges when a bilayer structure with specific symmetry is illuminated by counter-propagating lights with opposite spin and/or orbital angular momentum. Remarkably, this leads to zero net optical torque but yet possesses an interesting mechanical effect of bilayer system twisting. The crucial determinant of this phenomenon is the rotational symmetries of each layer, which govern the allowed azimuthal channels of the scattered wave. When the rotational symmetries do not allow these channels to overlap, no resultant torque is observed. Our work will encourage further exploration of the twisting effect through engineered light-matter interactions. This opens up the possibility of creating twisted bilayer systems using optical means, and constructing a stable bilayer optical motor that maintains identical rotation frequencies for both layers.
Collapse
|
10
|
Luo H, Fang X, Li C, Dai X, Ru N, You M, He T, Wu PC, Wang Z, Shi Y, Cheng X. 1 nm-Resolution Sorting of Sub-10 nm Nanoparticles Using a Dielectric Metasurface with Toroidal Responses. SMALL SCIENCE 2023; 3:2300100. [PMID: 40212970 PMCID: PMC11935857 DOI: 10.1002/smsc.202300100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Indexed: 05/11/2025] Open
Abstract
Sorting nanoparticles is of paramount importance in numerous physical, chemical, and biomedical applications. Current technologies for sorting dielectric nanoparticles have a common size limit and resolution approximately of 20 and 10 nm, respectively. It remains a grand challenge to push the limit. Herein, the new physics that deploys toroidal and multipole responses in a dielectric metasurface to exert strong and distinguishable optical forces on sub-10 nm nanoparticles is unravelled. The electric toroidal dipole, electric dipole, and quadrupole emerge with distinct light and force patterns, which can be leveraged to promise unprecedented high-precision manipulations, such as sorting sub-10 nm polystyrene nanoparticles at 1 nm resolution, sorting 20 nm proteins/exsomes at 3 nm resolution, conveying, and concentrating 100 nm gold nanoparticles. Remarkably, the design can also be employed to screen out medium-sized nanoparticles from a mixture of nanoparticles with over three sizes. This optofluidic manipulation platform opens the new way to explore intriguing optical modes for the powerful manipulation of nanoparticles with nanometer precisions and low laser powers.
Collapse
Affiliation(s)
- Hong Luo
- Institute of Precision Optical EngineeringSchool of Physics Science and EngineeringTongji UniversityShanghai200092China
- MOE Key Laboratory of Advanced Micro-Structured MaterialsShanghai200092China
- Shanghai Institute of Intelligent Science and TechnologyTongji UniversityShanghai200092China
- Shanghai Frontiers Science Center of Digital OpticsShanghai200092China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market RegulationCenter for Advanced Measurement ScienceNational Institute of MetrologyBeijing100029China
| | - Chengfeng Li
- Institute of Precision Optical EngineeringSchool of Physics Science and EngineeringTongji UniversityShanghai200092China
- MOE Key Laboratory of Advanced Micro-Structured MaterialsShanghai200092China
- Shanghai Institute of Intelligent Science and TechnologyTongji UniversityShanghai200092China
- Shanghai Frontiers Science Center of Digital OpticsShanghai200092China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market RegulationCenter for Advanced Measurement ScienceNational Institute of MetrologyBeijing100029China
| | - Ning Ru
- Technology Innovation Center of Mass Spectrometry for State Market RegulationCenter for Advanced Measurement ScienceNational Institute of MetrologyBeijing100029China
| | - Minmin You
- National Key Laboratory of Advanced Micro and Nano Manufacture TechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Tao He
- Institute of Precision Optical EngineeringSchool of Physics Science and EngineeringTongji UniversityShanghai200092China
- MOE Key Laboratory of Advanced Micro-Structured MaterialsShanghai200092China
- Shanghai Institute of Intelligent Science and TechnologyTongji UniversityShanghai200092China
- Shanghai Frontiers Science Center of Digital OpticsShanghai200092China
| | - Pin Chieh Wu
- Department of PhotonicsNational Cheng Kung UniversityTainan70101Taiwan
- Center for Quantum Frontiers of Research & Technology (QFort)National Cheng Kung UniversityTainan70101Taiwan
| | - Zhanshan Wang
- Institute of Precision Optical EngineeringSchool of Physics Science and EngineeringTongji UniversityShanghai200092China
- MOE Key Laboratory of Advanced Micro-Structured MaterialsShanghai200092China
- Shanghai Institute of Intelligent Science and TechnologyTongji UniversityShanghai200092China
- Shanghai Frontiers Science Center of Digital OpticsShanghai200092China
| | - Yuzhi Shi
- Institute of Precision Optical EngineeringSchool of Physics Science and EngineeringTongji UniversityShanghai200092China
- MOE Key Laboratory of Advanced Micro-Structured MaterialsShanghai200092China
- Shanghai Institute of Intelligent Science and TechnologyTongji UniversityShanghai200092China
- Shanghai Frontiers Science Center of Digital OpticsShanghai200092China
| | - Xinbin Cheng
- Institute of Precision Optical EngineeringSchool of Physics Science and EngineeringTongji UniversityShanghai200092China
- MOE Key Laboratory of Advanced Micro-Structured MaterialsShanghai200092China
- Shanghai Institute of Intelligent Science and TechnologyTongji UniversityShanghai200092China
- Shanghai Frontiers Science Center of Digital OpticsShanghai200092China
| |
Collapse
|
11
|
Nan F, Li X, Zhang S, Ng J, Yan Z. Creating stable trapping force and switchable optical torque with tunable phase of light. SCIENCE ADVANCES 2022; 8:eadd6664. [PMID: 36399578 PMCID: PMC9674277 DOI: 10.1126/sciadv.add6664] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/24/2022] [Indexed: 06/03/2023]
Abstract
Light-induced rotation of microscopic objects is of general interest as the objects may serve as micromotors. Such rotation can be driven by the angular momentum of light or recoil forces arising from special light-matter interactions. However, in the absence of intensity gradient, simultaneously controlling the position and switching the rotation direction is challenging. Here, we report stable optical trapping and switchable optical rotation of nanoparticle (NP)-assembled micromotors with programmed phase of light. We imprint customized phase gradients into a circularly polarized flat-top (i.e., no intensity gradient) laser beam to trap and assemble metal NPs into reconfigurable clusters. Modulating the phase gradients allows direction-switchable and magnitude-tunable optical torque in the same cluster under fixed laser wavelength and handedness. This work provides a valuable method to achieve reversible optical torque in micro/nanomotors, and new insights for optical trapping and manipulation using the phase gradient of a spatially extended light field.
Collapse
Affiliation(s)
- Fan Nan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiao Li
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jack Ng
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zijie Yan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Zhou LM, Shi Y, Zhu X, Hu G, Cao G, Hu J, Qiu CW. Recent Progress on Optical Micro/Nanomanipulations: Structured Forces, Structured Particles, and Synergetic Applications. ACS NANO 2022; 16:13264-13278. [PMID: 36053722 DOI: 10.1021/acsnano.2c05634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical manipulation has achieved great success in the fields of biology, micro/nano robotics and physical sciences in the past few decades. To date, the optical manipulation is still witnessing substantial progress powered by the growing accessibility of the complex light field, advanced nanofabrication and developed understandings of light-matter interactions. In this perspective, we highlight recent advancements of optical micro/nanomanipulations in cutting-edge applications, which can be fostered by structured optical forces enabled with diverse auxiliary multiphysical field/forces and structured particles. We conclude with our vision of ongoing and futuristic directions, including heat-avoided and heat-utilized manipulation, nonlinearity-mediated trapping and manipulation, metasurface/two-dimensional material based optical manipulation, as well as interface-based optical manipulation.
Collapse
Affiliation(s)
- Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
| | - Xiaoyu Zhu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Guangtao Cao
- School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410004, China
| | - Jigang Hu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|