1
|
Ehm T, Philipp J, Barkey M, Ober M, Brinkop AT, Simml D, von Westphalen M, Nickel B, Beck R, Rädler JO. 3D-printed SAXS chamber for controlled in situ dialysis and optical characterization. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1014-1019. [PMID: 35787568 PMCID: PMC9255564 DOI: 10.1107/s1600577522005136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
3D printing changes the scope of how samples can be mounted for small-angle X-ray scattering (SAXS). In this paper a 3D-printed X-ray chamber, which allows for in situ exchange of buffer and in situ optical transmission spectroscopy, is presented. The chamber is made of cyclic olefin copolymers (COC), including COC X-ray windows providing ultra-low SAXS background. The design integrates a membrane insert for in situ dialysis of the 100 µl sample volume against a reservoir, which enables measurements of the same sample under multiple conditions using an in-house X-ray setup equipped with a 17.4 keV molybdenum source. The design's capabilities are demonstrated by measuring reversible structural changes in lipid and polymer systems as a function of salt concentration and pH. In the same chambers optical light transmission spectroscopy was carried out measuring the optical turbidity of the mesophases and local pH values using pH-responsive dyes. Microfluidic exchange and optical spectroscopy combined with in situ X-ray scattering enables vast applications for the study of responsive materials.
Collapse
Affiliation(s)
- Tamara Ehm
- School of Physics and Astronomy, Center for Physics and Chemistry of Living Systems, and Center for Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Israel
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Julian Philipp
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Martin Barkey
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Martina Ober
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Achim Theo Brinkop
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - David Simml
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Miriam von Westphalen
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Bert Nickel
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Roy Beck
- School of Physics and Astronomy, Center for Physics and Chemistry of Living Systems, and Center for Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Joachim O. Rädler
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| |
Collapse
|
2
|
Bacchin P, Leng J, Salmon JB. Microfluidic Evaporation, Pervaporation, and Osmosis: From Passive Pumping to Solute Concentration. Chem Rev 2021; 122:6938-6985. [PMID: 34882390 DOI: 10.1021/acs.chemrev.1c00459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evaporation, pervaporation, and forward osmosis are processes leading to a mass transfer of solvent across an interface: gas/liquid for evaporation and solid/liquid (membrane) for pervaporation and osmosis. This Review provides comprehensive insight into the use of these processes at the microfluidic scales for applications ranging from passive pumping to the screening of phase diagrams and micromaterials engineering. Indeed, for a fixed interface relative to the microfluidic chip, these processes passively induce flows driven only by gradients of chemical potential. As a consequence, these passive-transport phenomena lead to an accumulation of solutes that cannot cross the interface and thus concentrate solutions in the microfluidic chip up to high concentration regimes, possibly up to solidification. The purpose of this Review is to provide a unified description of these processes and associated microfluidic applications to highlight the differences and similarities between these three passive-transport phenomena.
Collapse
Affiliation(s)
- Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Jacques Leng
- CNRS, Solvay, LOF, UMR 5258, Université de Bordeaux, 33600 Pessac, France
| | | |
Collapse
|
3
|
Schroen K, Berton-Carabin C, Renard D, Marquis M, Boire A, Cochereau R, Amine C, Marze S. Droplet Microfluidics for Food and Nutrition Applications. MICROMACHINES 2021; 12:863. [PMID: 34442486 PMCID: PMC8400250 DOI: 10.3390/mi12080863] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/05/2023]
Abstract
Droplet microfluidics revolutionizes the way experiments and analyses are conducted in many fields of science, based on decades of basic research. Applied sciences are also impacted, opening new perspectives on how we look at complex matter. In particular, food and nutritional sciences still have many research questions unsolved, and conventional laboratory methods are not always suitable to answer them. In this review, we present how microfluidics have been used in these fields to produce and investigate various droplet-based systems, namely simple and double emulsions, microgels, microparticles, and microcapsules with food-grade compositions. We show that droplet microfluidic devices enable unprecedented control over their production and properties, and can be integrated in lab-on-chip platforms for in situ and time-resolved analyses. This approach is illustrated for on-chip measurements of droplet interfacial properties, droplet-droplet coalescence, phase behavior of biopolymer mixtures, and reaction kinetics related to food digestion and nutrient absorption. As a perspective, we present promising developments in the adjacent fields of biochemistry and microbiology, as well as advanced microfluidics-analytical instrument coupling, all of which could be applied to solve research questions at the interface of food and nutritional sciences.
Collapse
Affiliation(s)
- Karin Schroen
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (K.S.); (C.B.-C.)
| | - Claire Berton-Carabin
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (K.S.); (C.B.-C.)
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Denis Renard
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | | | - Adeline Boire
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Rémy Cochereau
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Chloé Amine
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Sébastien Marze
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| |
Collapse
|
4
|
Kursula P. Small-angle X-ray scattering for the proteomics community: current overview and future potential. Expert Rev Proteomics 2021; 18:415-422. [PMID: 34210208 DOI: 10.1080/14789450.2021.1951242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Proteins are biological nanoparticles. For structural proteomics and hybrid structural biology, complementary methods are required that allow both high throughput and accurate automated data analysis. Small-angle X-ray scattering (SAXS) is a method for observing the size and shape of particles, such as proteins and complexes, in solution. SAXS data can be used to model both the structure, oligomeric state, conformational changes, and flexibility of biomolecular samples.Areas covered: The key principles of SAXS, its sample requirements, and its current and future applications for structural proteomics are briefly reviewed. Recent technical developments in SAXS experiments are discussed, and future potential of the method in structural proteomics is evaluated.Expert opinion: SAXS is a method suitable for several aspects of integrative structural proteomics, with current technical developments allowing for higher throughput and time-resolved studies, as well as the analysis of complex samples, such as membrane proteins. Increasing automation and streamlined data analysis are expected to equip SAXS for structure-based screening workflows. Originally, structural genomics had a heavy focus on folded, crystallizable proteins and complexes - SAXS is a method allowing an expansion of this focus to flexible and disordered systems.
Collapse
Affiliation(s)
- Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Nguyen HT, Massino M, Keita C, Salmon JB. Microfluidic dialysis using photo-patterned hydrogel membranes in PDMS chips. LAB ON A CHIP 2020; 20:2383-2393. [PMID: 32510526 DOI: 10.1039/d0lc00279h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the fabrication of permeable membranes for microfluidic dialysis applications in poly(dimethylsiloxane) (PDMS) channels. A maskless UV projection device was used to photo-pattern long hydrogel membranes (mm-cm) with a spatial resolution of a few microns in PDMS chips integrating also micro-valves. We show in particular that multi-layer soft lithography allows one to deplete oxygen from the PDMS walls using a nitrogen gas flow and therefore makes possible in situ UV-induced polymerization of hydrogels. We also report a simple surface modification of the PDMS channels leading to strongly anchored hydrogel membranes that can withstand trans-membrane pressure drops up to 1 bar without leakages. We then measured the Darcy permeability of these membranes and estimated their cut-off by measuring the kinetics of diffusion of macromolecules of different sizes through the membrane. Finally, we illustrate the opportunities offered by such microfluidic chips for dialysis applications by observing in real time the crystallization of a model protein in a chamber of a few nanoliters.
Collapse
|
6
|
Junius N, Jaho S, Sallaz-Damaz Y, Borel F, Salmon JB, Budayova-Spano M. A microfluidic device for both on-chip dialysis protein crystallization and in situ X-ray diffraction. LAB ON A CHIP 2020; 20:296-310. [PMID: 31804643 DOI: 10.1039/c9lc00651f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper reports a versatile microfluidic chip developed for on-chip crystallization of proteins through the dialysis method and in situ X-ray diffraction experiments. A microfabrication process enabling the integration of regenerated cellulose dialysis membranes between two layers of the microchip is thoroughly described. We also describe a rational approach for optimizing on-chip protein crystallization via chemical composition and temperature control, allowing the crystal size, number and quality to be tailored. Combining optically transparent microfluidics and dialysis provides both precise control over the experiment and reversible exploration of the crystallization conditions. In addition, the materials composing the microfluidic chip were tested for their transparency to X-rays in order to assess their compatibility for in situ diffraction data collection. Background scattering was evaluated using a synchrotron X-ray source and the background noise generated by our microfluidic device was compared to that produced by commercial crystallization plates used for diffraction experiments at room temperature. Once crystals of 3 model proteins (lysozyme, IspE, and insulin) were grown on-chip, the microchip was mounted onto the beamline and partial diffraction data sets were collected in situ from several isomorphous crystals and were merged to a complete data set for structure determination. We therefore propose a robust and inexpensive way to fabricate microchips that cover the whole pipeline from crystal growth to the beam and does not require any handling of the protein crystals prior to the diffraction experiment, allowing the collection of crystallographic data at room temperature for solving the three-dimensional structure of the proteins under study. The results presented here allow serial crystallography experiments on synchrotrons and X-ray lasers under dynamically controllable sample conditions to be observed using the developed microchips.
Collapse
Affiliation(s)
- Niels Junius
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Sofia Jaho
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Franck Borel
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | | |
Collapse
|
7
|
Schroer MA, Blanchet CE, Gruzinov AY, Gräwert MA, Brennich ME, Hajizadeh NR, Jeffries CM, Svergun DI. Smaller capillaries improve the small-angle X-ray scattering signal and sample consumption for biomacromolecular solutions. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1113-1122. [PMID: 29979172 PMCID: PMC6038601 DOI: 10.1107/s1600577518007907] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/28/2018] [Indexed: 05/20/2023]
Abstract
Radiation damage by intense X-ray beams at modern synchrotron facilities is one of the major complications for biological small-angle X-ray scattering (SAXS) investigations of macromolecules in solution. To limit the damage, samples are typically measured under a laminar flow through a cell (typically a capillary) such that fresh solution is continuously exposed to the beam during measurement. The diameter of the capillary that optimizes the scattering-to-absorption ratio at a given X-ray wavelength can be calculated a priori based on fundamental physical properties. However, these well established scattering and absorption principles do not take into account the radiation susceptibility of the sample or the often very limited amounts of precious biological material available for an experiment. Here it is shown that, for biological solution SAXS, capillaries with smaller diameters than those calculated from simple scattering/absorption criteria allow for a better utilization of the available volumes of radiation-sensitive samples. This is demonstrated by comparing two capillary diameters di (di = 1.7 mm, close to optimal for 10 keV; and di = 0.9 mm, which is nominally sub-optimal) applied to study different protein solutions at various flow rates. The use of the smaller capillaries ultimately allows one to collect higher-quality SAXS data from the limited amounts of purified biological macromolecules.
Collapse
Affiliation(s)
- Martin A. Schroer
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Clement E. Blanchet
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrey Yu. Gruzinov
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Melissa A. Gräwert
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Martha E. Brennich
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Nelly R. Hajizadeh
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
8
|
Lopez CG, Watanabe T, Adamo M, Martel A, Porcar L, Cabral JT. Microfluidic devices for small-angle neutron scattering. J Appl Crystallogr 2018; 51:570-583. [PMID: 29896054 PMCID: PMC5988002 DOI: 10.1107/s1600576718007264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
A comparative examination is presented of materials and approaches for the fabrication of microfluidic devices for small-angle neutron scattering (SANS). Representative inorganic glasses, metals, and polymer materials and devices are evaluated under typical SANS configurations. Performance criteria include neutron absorption, scattering background and activation, as well as spatial resolution, chemical compatibility and pressure resistance, and also cost, durability and manufacturability. Closed-face polymer photolithography between boron-free glass (or quartz) plates emerges as an attractive approach for rapidly prototyped microfluidic SANS devices, with transmissions up to ∼98% and background similar to a standard liquid cell (I ≃ 10-3 cm-1). For applications requiring higher durability and/or chemical, thermal and pressure resistance, sintered or etched boron-free glass and silicon devices offer superior performance, at the expense of various fabrication requirements, and are increasingly available commercially.
Collapse
Affiliation(s)
- Carlos G. Lopez
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Takaichi Watanabe
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Marco Adamo
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Institut Laue–Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Anne Martel
- Institut Laue–Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Lionel Porcar
- Institut Laue–Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - João T. Cabral
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
9
|
Recent developments in small-angle X-ray scattering and hybrid method approaches for biomacromolecular solutions. Emerg Top Life Sci 2018; 2:69-79. [PMID: 33525782 DOI: 10.1042/etls20170138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 01/05/2023]
Abstract
Small-angle X-ray scattering (SAXS) has become a streamline method to characterize biological macromolecules, from small peptides to supramolecular complexes, in near-native solutions. Modern SAXS requires limited amounts of purified material, without the need for labelling, crystallization, or freezing. Dedicated beamlines at modern synchrotron sources yield high-quality data within or below several milliseconds of exposure time and are highly automated, allowing for rapid structural screening under different solutions and ambient conditions but also for time-resolved studies of biological processes. The advanced data analysis methods allow one to meaningfully interpret the scattering data from monodisperse systems, from transient complexes as well as flexible and heterogeneous systems in terms of structural models. Especially powerful are hybrid approaches utilizing SAXS with high-resolution structural techniques, but also with biochemical, biophysical, and computational methods. Here, we review the recent developments in the experimental SAXS practice and in analysis methods with a specific focus on the joint use of SAXS with complementary methods.
Collapse
|
10
|
Silva BFB. SAXS on a chip: from dynamics of phase transitions to alignment phenomena at interfaces studied with microfluidic devices. Phys Chem Chem Phys 2018; 19:23690-23703. [PMID: 28828415 DOI: 10.1039/c7cp02736b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of microfluidics offers attractive possibilities to perform novel experiments that are difficult (or even impossible) to perform using conventional bulk and surface-based methods. Such attractiveness comes from several important aspects inherent to these miniaturized devices. First, the flow of fluids under submillimeter confinement typically leads to a drop of inertial forces, meaning that turbulence is practically suppressed. This leads to predictable and controllable flow profiles, along with well-defined chemical gradients and stress fields that can be used for controlled mixing and actuation on the micro and nanoscale. Secondly, intricate microfluidic device designs can be fabricated using cleanroom standard procedures. Such intricate geometries can take diverse forms, designed by researchers to perform complex tasks, that require exquisite control of flow of several components and gradients, or to mimic real world examples, facilitating the establishment of more realistic models. Thirdly, microfluidic devices are usually compatible with in situ or integrated characterization methods that allow constant real-time monitoring of the processes occurring inside the microchannels. This is very different from typical bulk-based methods, where usually one can only observe the final result, or otherwise, take quick snapshots of the evolving process or take aliquots to be analyzed separately. Altogether, these characteristics inherent to microfluidic devices provide researchers with a set of tools that allow not only exquisite control and manipulation of materials at the micro and nanoscale, but also observation of these effects. In this review, we will focus on the use and prospects of combining microfluidic devices with in situ small-angle X-ray scattering (and related techniques such as small-angle neutron scattering and X-ray photon correlation spectroscopy), and their enormous potential for physical-chemical research, mainly in self-assembly and phase-transitions, and surface characterization.
Collapse
Affiliation(s)
- Bruno F B Silva
- Department of Life Sciences, INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-330, Portugal.
| |
Collapse
|
11
|
Ghazal A, Lafleur JP, Mortensen K, Kutter JP, Arleth L, Jensen GV. Recent advances in X-ray compatible microfluidics for applications in soft materials and life sciences. LAB ON A CHIP 2016; 16:4263-4295. [PMID: 27731448 DOI: 10.1039/c6lc00888g] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The increasingly narrow and brilliant beams at X-ray facilities reduce the requirements for both sample volume and data acquisition time. This creates new possibilities for the types and number of sample conditions that can be examined but simultaneously increases the demands in terms of sample preparation. Microfluidic-based sample preparation techniques have emerged as elegant alternatives that can be integrated directly into the experimental X-ray setup remedying several shortcomings of more traditional methods. We review the use of microfluidic devices in conjunction with X-ray measurements at synchrotron facilities in the context of 1) mapping large parameter spaces, 2) performing time resolved studies of mixing-induced kinetics, and 3) manipulating/processing samples in ways which are more demanding or not accessible on the macroscale. The review covers the past 15 years and focuses on applications where synchrotron data collection is performed in situ, i.e. directly on the microfluidic platform or on a sample jet from the microfluidic device. Considerations such as the choice of materials and microfluidic designs are addressed. The combination of microfluidic devices and measurements at large scale X-ray facilities is still emerging and far from mature, but it definitely offers an exciting array of new possibilities.
Collapse
Affiliation(s)
- Aghiad Ghazal
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Josiane P Lafleur
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Jörg P Kutter
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Grethe V Jensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
12
|
Jeffries CM, Graewert MA, Blanchet CE, Langley DB, Whitten AE, Svergun DI. Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments. Nat Protoc 2016; 11:2122-2153. [PMID: 27711050 PMCID: PMC5402874 DOI: 10.1038/nprot.2016.113] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume, including the solvent and buffer components, as well as the macromolecules of interest. To obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis, so it is essential that the samples be pure and monodisperse for the duration of the experiment. This protocol outlines the basic physics of SAXS and SANS, and it reveals how the underlying conceptual principles of the techniques ultimately 'translate' into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size-exclusion chromatography (SEC) and light scattering. Also included are procedures that are specific to X-rays (in-line SEC-SAXS) and neutrons, specifically preparing samples for contrast matching or variation experiments and deuterium labeling of proteins.
Collapse
Affiliation(s)
- Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| | - Melissa A. Graewert
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| | - Clément E. Blanchet
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| | - David B. Langley
- Victor Chang Cardiac Research and Garvan Institutes, Darlinghurst,
NSW, Australia
| | - Andrew E. Whitten
- Australian Nuclear Science and Technology Organisation, Lucas
Heights, NSW, Australia
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| |
Collapse
|
13
|
Vestergaard B. Analysis of biostructural changes, dynamics, and interactions – Small-angle X-ray scattering to the rescue. Arch Biochem Biophys 2016; 602:69-79. [DOI: 10.1016/j.abb.2016.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 12/27/2022]
|
14
|
Vestergaard B, Sayers Z. Investigating increasingly complex macromolecular systems with small-angle X-ray scattering. IUCRJ 2014; 1:523-9. [PMID: 25485132 PMCID: PMC4224470 DOI: 10.1107/s2052252514020843] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/17/2014] [Indexed: 05/04/2023]
Abstract
The biological solution small-angle X-ray scattering (BioSAXS) field has undergone tremendous development over recent decades. This means that increasingly complex biological questions can be addressed by the method. An intricate synergy between advances in hardware and software development, data collection and evaluation strategies and implementations that readily allow integration with complementary techniques result in significant results and a rapidly growing user community with ever increasing ambitions. Here, a review of these developments, by including a selection of novel BioSAXS method-ologies and recent results, is given.
Collapse
Affiliation(s)
- Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
- Correspondence e-mail:
| | - Zehra Sayers
- Faculty of Engineering and Natural Science, Sabanci University, Orhanli, Istanbul Tuzla 34956, Turkey
| |
Collapse
|