1
|
Zandbagleh A, Sanei S, Penalba-Sánchez L, Rodrigues PM, Crook-Rumsey M, Azami H. Intra- and Inter-Regional Complexity in Multi-Channel Awake EEG Through Multivariate Multiscale Dispersion Entropy for Assessing Sleep Quality and Aging. BIOSENSORS 2025; 15:240. [PMID: 40277553 PMCID: PMC12024975 DOI: 10.3390/bios15040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025]
Abstract
Aging and poor sleep quality are associated with altered brain dynamics, yet current electroencephalography (EEG) analyses often overlook regional complexity. This study addresses this gap by introducing a novel integration of intra- and inter-regional complexity analysis using multivariate multiscale dispersion entropy (mvMDE) from awake resting-state EEG for the first time. Moreover, assessing both intra- and inter-regional complexity provides a comprehensive perspective on the dynamic interplay between localized neural activity and its coordination across brain regions, which is essential for understanding the neural substrates of aging and sleep quality. Data from 58 participants-24 young adults (mean age = 24.7 ± 3.4) and 34 older adults (mean age = 72.9 ± 4.2)-were analyzed, with each age group further divided based on Pittsburgh Sleep Quality Index (PSQI) scores. To capture inter-regional complexity, mvMDE was applied to the most informative group of sensors, with one sensor selected from each brain region using four methods: highest average correlation, highest entropy, highest mutual information, and highest principal component loading. This targeted approach reduced computational cost and enhanced the effect sizes (ESs), particularly at large scale factors (e.g., 25) linked to delta-band activity, with the PCA-based method achieving the highest ESs (1.043 for sleep quality in older adults). Overall, we expect that both inter- and intra-regional complexity will play a pivotal role in elucidating neural mechanisms as captured by various physiological data modalities-such as EEG, magnetoencephalography, and magnetic resonance imaging-thereby offering promising insights for a range of biomedical applications.
Collapse
Affiliation(s)
- Ahmad Zandbagleh
- School of Electrical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran;
| | - Saeid Sanei
- Electrical and Electronic Engineering Department, Imperial College London, London SW7 2AZ, UK;
| | - Lucía Penalba-Sánchez
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke-University Magdeburg (OVGU), 39120 Magdeburg, Germany;
- Human Neurobehavioral Laboratory (HNL), Research Centre for Human Development (CEDH), Faculty of Education and Psychology, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
| | - Pedro Miguel Rodrigues
- Centro de Biotecnologia e Química Fina (CBQF)—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| | - Mark Crook-Rumsey
- UK Dementia Research Institute (UK DRI), Centre for Care Research and Technology, Imperial College London, London W1T 7NF, UK;
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London SE5 9RX, UK
| | - Hamed Azami
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON M6J 1H1, Canada
| |
Collapse
|
2
|
Rostaghi M, Khatibi MM, Ashory MR, Azami H. Refined Composite Multiscale Fuzzy Dispersion Entropy and Its Applications to Bearing Fault Diagnosis. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1494. [PMID: 37998186 PMCID: PMC10670069 DOI: 10.3390/e25111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Rotary machines often exhibit nonlinear behavior due to factors such as nonlinear stiffness, damping, friction, coupling effects, and defects. Consequently, their vibration signals display nonlinear characteristics. Entropy techniques prove to be effective in detecting these nonlinear dynamic characteristics. Recently, an approach called fuzzy dispersion entropy (DE-FDE) was introduced to quantify the uncertainty of time series. FDE, rooted in dispersion patterns and fuzzy set theory, addresses the sensitivity of DE to its parameters. However, FDE does not adequately account for the presence of multiple time scales inherent in signals. To address this limitation, the concept of multiscale fuzzy dispersion entropy (MFDE) was developed to capture the dynamical variability of time series across various scales of complexity. Compared to multiscale DE (MDE), MFDE exhibits reduced sensitivity to noise and higher stability. In order to enhance the stability of MFDE, we propose a refined composite MFDE (RCMFDE). In comparison with MFDE, MDE, and RCMDE, RCMFDE's performance is assessed using synthetic signals and three real bearing datasets. The results consistently demonstrate the superiority of RCMFDE in detecting various patterns within synthetic and real bearing fault data. Importantly, classifiers built upon RCMFDE achieve notably high accuracy values for bearing fault diagnosis applications, outperforming classifiers based on refined composite multiscale dispersion and sample entropy methods.
Collapse
Affiliation(s)
- Mostafa Rostaghi
- Modal Analysis (MA) Research Laboratory, Faculty of Mechanical Engineering, Semnan University, Semnan 35131-19111, Iran; (M.R.); (M.R.A.)
| | - Mohammad Mahdi Khatibi
- Modal Analysis (MA) Research Laboratory, Faculty of Mechanical Engineering, Semnan University, Semnan 35131-19111, Iran; (M.R.); (M.R.A.)
| | - Mohammad Reza Ashory
- Modal Analysis (MA) Research Laboratory, Faculty of Mechanical Engineering, Semnan University, Semnan 35131-19111, Iran; (M.R.); (M.R.A.)
| | - Hamed Azami
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON M6J 1H1, Canada;
| |
Collapse
|
3
|
Kamal SM, Babini MH, Tee R, Krejcar O, Namazi H. Decoding the correlation between heart activation and walking path by information-based analysis. Technol Health Care 2023; 31:205-215. [PMID: 35848002 DOI: 10.3233/thc-220191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROND One of the important areas of heart research is to analyze heart rate variability during (HRV) walking. OBJECTIVE In this research, we investigated the correction between heart activation and the variations of walking paths. METHOD We employed Shannon entropy to analyze how the information content of walking paths affects the information content of HRV. Eight healthy students walked on three designed walking paths with different information contents while we recorded their ECG signals. We computed and analyzed the Shannon entropy of the R-R interval time series (as an indicator of HRV) versus the Shannon entropy of different walking paths and accordingly evaluated their relation. RESULTS According to the obtained results, walking on the path that contains more information leads to less information in the R-R time series. CONCLUSION The analysis method employed in this research can be extended to analyze the relation between other physiological signals (such as brain or muscle reactions) and the walking path.
Collapse
Affiliation(s)
| | | | - Rui Tee
- School of Pharmacy, Monash University, Selangor, Malaysia
| | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Hamidreza Namazi
- School of Engineering, Monash University, Selangor, Malaysia.,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Nieto-del-Amor F, Beskhani R, Ye-Lin Y, Garcia-Casado J, Diaz-Martinez A, Monfort-Ortiz R, Diago-Almela VJ, Hao D, Prats-Boluda G. Assessment of Dispersion and Bubble Entropy Measures for Enhancing Preterm Birth Prediction Based on Electrohysterographic Signals. SENSORS 2021; 21:s21186071. [PMID: 34577278 PMCID: PMC8471282 DOI: 10.3390/s21186071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
One of the remaining challenges for the scientific-technical community is predicting preterm births, for which electrohysterography (EHG) has emerged as a highly sensitive prediction technique. Sample and fuzzy entropy have been used to characterize EHG signals, although they require optimizing many internal parameters. Both bubble entropy, which only requires one internal parameter, and dispersion entropy, which can detect any changes in frequency and amplitude, have been proposed to characterize biomedical signals. In this work, we attempted to determine the clinical value of these entropy measures for predicting preterm birth by analyzing their discriminatory capacity as an individual feature and their complementarity to other EHG characteristics by developing six prediction models using obstetrical data, linear and non-linear EHG features, and linear discriminant analysis using a genetic algorithm to select the features. Both dispersion and bubble entropy better discriminated between the preterm and term groups than sample, spectral, and fuzzy entropy. Entropy metrics provided complementary information to linear features, and indeed, the improvement in model performance by including other non-linear features was negligible. The best model performance obtained an F1-score of 90.1 ± 2% for testing the dataset. This model can easily be adapted to real-time applications, thereby contributing to the transferability of the EHG technique to clinical practice.
Collapse
Affiliation(s)
- Félix Nieto-del-Amor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (F.N.-d.-A.); (R.B.); (J.G.-C.); (A.D.-M.); (G.P.-B.)
| | - Raja Beskhani
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (F.N.-d.-A.); (R.B.); (J.G.-C.); (A.D.-M.); (G.P.-B.)
| | - Yiyao Ye-Lin
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (F.N.-d.-A.); (R.B.); (J.G.-C.); (A.D.-M.); (G.P.-B.)
- Correspondence:
| | - Javier Garcia-Casado
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (F.N.-d.-A.); (R.B.); (J.G.-C.); (A.D.-M.); (G.P.-B.)
| | - Alba Diaz-Martinez
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (F.N.-d.-A.); (R.B.); (J.G.-C.); (A.D.-M.); (G.P.-B.)
| | - Rogelio Monfort-Ortiz
- Servicio de Obstetricia, H.U.P. La Fe, 46026 Valencia, Spain; (R.M.-O.); (V.J.D.-A.)
| | | | - Dongmei Hao
- Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China;
| | - Gema Prats-Boluda
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (F.N.-d.-A.); (R.B.); (J.G.-C.); (A.D.-M.); (G.P.-B.)
| |
Collapse
|
5
|
Ahamed MRA, Babini MH, Namazi H. Analysis of the information transfer between brains during a conversation. Technol Health Care 2021; 29:283-293. [DOI: 10.3233/thc-202366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND: The interaction between people is one of the usual daily activities. For this purpose, people mainly connect with others, using their voice. Voices act as the auditory stimuli on the brain during a conversation. OBJECTIVE: In this research, we analyze the relationship between the brains’ activities of subjects during a conversation. METHODS: Since human voice transfers information from one subject to another, we used information theory for our analysis. We investigated the alterations of Shannon entropy of electroencephalography (EEG) signals for subjects during a conversation. RESULTS: The results demonstrated that the alterations in the information contents of the EEG signals for the listeners and speakers are correlated. Therefore, we concluded that the brains’ activities of both subjects are linked. CONCLUSION: Our results can be expanded to analyze the coupling among other physiological signals of subjects (such as heart rate) during the conversation.
Collapse
|
6
|
Entropy Indicators: An Approach for Low-Speed Bearing Diagnosis. SENSORS 2021; 21:s21030849. [PMID: 33513922 PMCID: PMC7865646 DOI: 10.3390/s21030849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022]
Abstract
To increase the competitiveness of wind energy, the maintenance costs of offshore floating and fixed wind turbines need to be reduced. One strategy is the enhancement of the condition monitoring techniques for pitch bearings, because their low operational speed and the high loads applied to them make their monitoring challenging. Vibration analysis has been widely used for monitoring the bearing condition with good results obtained for regular bearings, but with difficulties when the operational speed decreases. Therefore, new techniques are required to enhance the capabilities of vibration analysis for bearings under such operational conditions. This study proposes the use of indicators based on entropy for monitoring a low-speed bearing condition. The indicators used are approximate, dispersion, singular value decomposition, and spectral entropy of the permutation entropy. This approach has been tested with vibration signals acquired in a test rig with bearings under different health conditions. The results show that entropy indicators (EIs) can discriminate with higher-accuracy damaged bearings for low-speed bearings compared with the regular indicators. Furthermore, it is shown that the combination of regular and entropy-based indicators can also contribute to a more reliable diagnosis.
Collapse
|
7
|
Liu M, Liu X, Hildebrandt A, Zhou C. Individual Cortical Entropy Profile: Test-Retest Reliability, Predictive Power for Cognitive Ability, and Neuroanatomical Foundation. Cereb Cortex Commun 2020; 1:tgaa015. [PMID: 34296093 PMCID: PMC8153045 DOI: 10.1093/texcom/tgaa015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
The entropy profiles of cortical activity have become novel perspectives to investigate individual differences in behavior. However, previous studies have neglected foundational aspects of individual entropy profiles, that is, the test-retest reliability, the predictive power for cognitive ability in out-of-sample data, and the underlying neuroanatomical basis. We explored these issues in a large young healthy adult dataset (Human Connectome Project, N = 998). We showed the whole cortical entropy profile from resting-state functional magnetic resonance imaging is a robust personalized measure, while subsystem profiles exhibited heterogeneous reliabilities. The limbic network exhibited lowest reliability. We tested the out-of-sample predictive power for general and specific cognitive abilities based on reliable cortical entropy profiles. The default mode and visual networks are most crucial when predicting general cognitive ability. We investigated the anatomical features underlying cross-region and cross-individual variations in cortical entropy profiles. Cortical thickness and structural connectivity explained spatial variations in the group-averaged entropy profile. Cortical folding and myelination in the attention and frontoparietal networks determined predominantly individual cortical entropy profile. This study lays foundations for brain-entropy-based studies on individual differences to understand cognitive ability and related pathologies. These findings broaden our understanding of the associations between neural structures, functional dynamics, and cognitive ability.
Collapse
Affiliation(s)
- Mianxin Liu
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xinyang Liu
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Department of Physics, Zhejiang University, 310000 Hangzhou, China
| |
Collapse
|
8
|
Attention Deficit Hyperactivity Disorder Diagnosis using non-linear univariate and multivariate EEG measurements: a preliminary study. Phys Eng Sci Med 2020; 43:577-592. [DOI: 10.1007/s13246-020-00858-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
|
9
|
Sun J, Wang B, Niu Y, Tan Y, Fan C, Zhang N, Xue J, Wei J, Xiang J. Complexity Analysis of EEG, MEG, and fMRI in Mild Cognitive Impairment and Alzheimer's Disease: A Review. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E239. [PMID: 33286013 PMCID: PMC7516672 DOI: 10.3390/e22020239] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a degenerative brain disease with a high and irreversible incidence. In recent years, because brain signals have complex nonlinear dynamics, there has been growing interest in studying complex changes in the time series of brain signals in patients with AD. We reviewed studies of complexity analyses of single-channel time series from electroencephalogram (EEG), magnetoencephalogram (MEG), and functional magnetic resonance imaging (fMRI) in AD and determined future research directions. A systematic literature search for 2000-2019 was performed in the Web of Science and PubMed databases, resulting in 126 identified studies. Compared to healthy individuals, the signals from AD patients have less complexity and more predictable oscillations, which are found mainly in the left parietal, occipital, right frontal, and temporal regions. This complexity is considered a potential biomarker for accurately responding to the functional lesion in AD. The current review helps to reveal the patterns of dysfunction in the brains of patients with AD and to investigate whether signal complexity can be used as a biomarker to accurately respond to the functional lesion in AD. We proposed further studies in the signal complexities of AD patients, including investigating the reliability of complexity algorithms and the spatial patterns of signal complexity. In conclusion, the current review helps to better understand the complexity of abnormalities in the AD brain and provide useful information for AD diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jie Xiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (J.S.); (B.W.); (Y.N.); (Y.T.); (C.F.); (N.Z.); (J.X.); (J.W.)
| |
Collapse
|
10
|
Yang S, Bornot JMS, Wong-Lin K, Prasad G. M/EEG-Based Bio-Markers to Predict the MCI and Alzheimer's Disease: A Review From the ML Perspective. IEEE Trans Biomed Eng 2019; 66:2924-2935. [PMID: 30762522 DOI: 10.1109/tbme.2019.2898871] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper reviews the state-of-the-art neuromarkers development for the prognosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). The first part of this paper is devoted to reviewing the recently emerged machine learning (ML) algorithms based on electroencephalography (EEG) and magnetoencephalography (MEG) modalities. In particular, the methods are categorized by different types of neuromarkers. The second part of the review is dedicated to a series of investigations that further highlight the differences between these two modalities. First, several source reconstruction methods are reviewed and their source-level performances explored, followed by an objective comparison between EEG and MEG from multiple perspectives. Finally, a number of the most recent reports on classification of MCI/AD during resting state using EEG/MEG are documented to show the up-to-date performance for this well-recognized data collecting scenario. It is noticed that the MEG modality may be particularly effective in distinguishing between subjects with MCI and healthy controls, a high classification accuracy of more than 98% was reported recently; whereas the EEG seems to be performing well in classifying AD and healthy subjects, which also reached around 98% of the accuracy. A number of influential factors have also been raised and suggested for careful considerations while evaluating the ML-based diagnosis systems in the real-world scenarios.
Collapse
|
11
|
Partial Discharge Fault Diagnosis Based on Multi-Scale Dispersion Entropy and a Hypersphere Multiclass Support Vector Machine. ENTROPY 2019; 21:e21010081. [PMID: 33266797 PMCID: PMC7514191 DOI: 10.3390/e21010081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/03/2022]
Abstract
Partial discharge (PD) fault analysis is an important tool for insulation condition diagnosis of electrical equipment. In order to conquer the limitations of traditional PD fault diagnosis, a novel feature extraction approach based on variational mode decomposition (VMD) and multi-scale dispersion entropy (MDE) is proposed. Besides, a hypersphere multiclass support vector machine (HMSVM) is used for PD pattern recognition with extracted PD features. Firstly, the original PD signal is decomposed with VMD to obtain intrinsic mode functions (IMFs). Secondly proper IMFs are selected according to central frequency observation and MDE values in each IMF are calculated. And then principal component analysis (PCA) is introduced to extract effective principle components in MDE. Finally, the extracted principle factors are used as PD features and sent to HMSVM classifier. Experiment results demonstrate that, PD feature extraction method based on VMD-MDE can extract effective characteristic parameters that representing dominant PD features. Recognition results verify the effectiveness and superiority of the proposed PD fault diagnosis method.
Collapse
|
12
|
Li G, Guan Q, Yang H. Noise Reduction Method of Underwater Acoustic Signals Based on CEEMDAN, Effort-To-Compress Complexity, Refined Composite Multiscale Dispersion Entropy and Wavelet Threshold Denoising. ENTROPY 2018; 21:e21010011. [PMID: 33266727 PMCID: PMC7514116 DOI: 10.3390/e21010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022]
Abstract
Owing to the problems that imperfect decomposition process of empirical mode decomposition (EMD) denoising algorithm and poor self-adaptability, it will be extremely difficult to reduce the noise of signal. In this paper, a noise reduction method of underwater acoustic signal denoising based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), effort-to-compress complexity (ETC), refined composite multiscale dispersion entropy (RCMDE) and wavelet threshold denoising is proposed. Firstly, the original signal is decomposed into several IMFs by CEEMDAN and noise IMFs can be identified according to the ETC of IMFs. Then, calculating the RCMDE of remaining IMFs, these IMFs are divided into three kinds of IMFs by RCMDE, namely noise-dominant IMFs, real signal-dominant IMFs, real IMFs. Finally, noise IMFs are removed, wavelet soft threshold denoising is applied to noise-dominant IMFs and real signal-dominant IMFs. The denoised signal can be obtained by combining the real IMFs with the denoised IMFs after wavelet soft threshold denoising. Chaotic signals with different signal-to-noise ratio (SNR) are used for denoising experiments by comparing with EMD_MSE_WSTD and EEMD_DE_WSTD, it shows that the proposed algorithm has higher SNR and smaller root mean square error (RMSE). In order to further verify the effectiveness of the proposed method, which is applied to noise reduction of real underwater acoustic signals. The results show that the denoised underwater acoustic signals not only eliminate noise interference also restore the topological structure of the chaotic attractors more clearly, which lays a foundation for the further processing of underwater acoustic signals.
Collapse
Affiliation(s)
- Guohui Li
- Correspondence: (G.L.); (H.Y.); Tel.: +86-29-8816-6273 (G.L. & H.Y.)
| | | | - Hong Yang
- Correspondence: (G.L.); (H.Y.); Tel.: +86-29-8816-6273 (G.L. & H.Y.)
| |
Collapse
|
13
|
Azami H, Escudero J. Amplitude- and Fluctuation-Based Dispersion Entropy. ENTROPY 2018; 20:e20030210. [PMID: 33265301 PMCID: PMC7512725 DOI: 10.3390/e20030210] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/05/2018] [Accepted: 03/13/2018] [Indexed: 11/16/2022]
Abstract
Dispersion entropy (DispEn) is a recently introduced entropy metric to quantify the uncertainty of time series. It is fast and, so far, it has demonstrated very good performance in the characterisation of time series. It includes a mapping step, but the effect of different mappings has not been studied yet. Here, we investigate the effect of linear and nonlinear mapping approaches in DispEn. We also inspect the sensitivity of different parameters of DispEn to noise. Moreover, we develop fluctuation-based DispEn (FDispEn) as a measure to deal with only the fluctuations of time series. Furthermore, the original and fluctuation-based forbidden dispersion patterns are introduced to discriminate deterministic from stochastic time series. Finally, we compare the performance of DispEn, FDispEn, permutation entropy, sample entropy, and Lempel–Ziv complexity on two physiological datasets. The results show that DispEn is the most consistent technique to distinguish various dynamics of the biomedical signals. Due to their advantages over existing entropy methods, DispEn and FDispEn are expected to be broadly used for the characterization of a wide variety of real-world time series. The MATLAB codes used in this paper are freely available at http://dx.doi.org/10.7488/ds/2326.
Collapse
|
14
|
Azami H, Rostaghi M, Abasolo D, Escudero J. Refined Composite Multiscale Dispersion Entropy and its Application to Biomedical Signals. IEEE Trans Biomed Eng 2017; 64:2872-2879. [PMID: 28287954 DOI: 10.1109/tbme.2017.2679136] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE We propose a novel complexity measure to overcome the deficiencies of the widespread and powerful multiscale entropy (MSE), including, MSE values may be undefined for short signals, and MSE is slow for real-time applications. METHODS We introduce multiscale dispersion entropy (DisEn-MDE) as a very fast and powerful method to quantify the complexity of signals. MDE is based on our recently developed DisEn, which has a computation cost of O(N), compared with O(N2) for sample entropy used in MSE. We also propose the refined composite MDE (RCMDE) to improve the stability of MDE. RESULTS We evaluate MDE, RCMDE, and refined composite MSE (RCMSE) on synthetic signals and three biomedical datasets. The MDE, RCMDE, and RCMSE methods show similar results, although the MDE and RCMDE are faster, lead to more stable results, and discriminate different types of physiological signals better than MSE and RCMSE. CONCLUSION For noisy short and long time series, MDE and RCMDE are noticeably more stable than MSE and RCMSE, respectively. For short signals, MDE and RCMDE, unlike MSE and RCMSE, do not lead to undefined values. The proposed MDE and RCMDE are significantly faster than MSE and RCMSE, especially for long signals, and lead to larger differences between physiological conditions known to alter the complexity of the physiological recordings. SIGNIFICANCE MDE and RCMDE are expected to be useful for the analysis of physiological signals thanks to their ability to distinguish different types of dynamics. The MATLAB codes used in this paper are freely available at http://dx.doi.org/10.7488/ds/1982.
Collapse
|