1
|
Alqahtani MM, Alanazi AMM, Algarni SS, Aljohani H, Alenezi FK, F Alotaibi T, Alotaibi M, K Alqahtani M, Alahmari M, S Alwadeai K, M Alghamdi S, Almeshari MA, Alshammari TF, Mumenah N, Al Harbi E, Al Nufaiei ZF, Alhuthail E, Alzahrani E, Alahmadi H, Alarifi A, Zaidan A, T Ismaeil T. Unveiling the Influence of AI on Advancements in Respiratory Care: Narrative Review. Interact J Med Res 2024; 13:e57271. [PMID: 39705080 PMCID: PMC11699506 DOI: 10.2196/57271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/22/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Artificial intelligence is experiencing rapid growth, with continual innovation and advancements in the health care field. OBJECTIVE This study aims to evaluate the application of artificial intelligence technologies across various domains of respiratory care. METHODS We conducted a narrative review to examine the latest advancements in the use of artificial intelligence in the field of respiratory care. The search was independently conducted by respiratory care experts, each focusing on their respective scope of practice and area of interest. RESULTS This review illuminates the diverse applications of artificial intelligence, highlighting its use in areas associated with respiratory care. Artificial intelligence is harnessed across various areas in this field, including pulmonary diagnostics, respiratory care research, critical care or mechanical ventilation, pulmonary rehabilitation, telehealth, public health or health promotion, sleep clinics, home care, smoking or vaping behavior, and neonates and pediatrics. With its multifaceted utility, artificial intelligence can enhance the field of respiratory care, potentially leading to superior health outcomes for individuals under this extensive umbrella. CONCLUSIONS As artificial intelligence advances, elevating academic standards in the respiratory care profession becomes imperative, allowing practitioners to contribute to research and understand artificial intelligence's impact on respiratory care. The permanent integration of artificial intelligence into respiratory care creates the need for respiratory therapists to positively influence its progression. By participating in artificial intelligence development, respiratory therapists can augment their clinical capabilities, knowledge, and patient outcomes.
Collapse
Affiliation(s)
- Mohammed M Alqahtani
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Services, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdullah M M Alanazi
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Services, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Saleh S Algarni
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Services, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Hassan Aljohani
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Services, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Faraj K Alenezi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Anesthesia Technology Department, College of Applied Medical Sciences, King Saud Bin Abdul-Aziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tareq F Alotaibi
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Services, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mansour Alotaibi
- Department of Physical Therapy, Northern Border University, Arar, Saudi Arabia
| | - Mobarak K Alqahtani
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Services, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mushabbab Alahmari
- Department of Respiratory Therapy, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
- Health and Humanities Research Center, University of Bisha, Bisha, Saudi Arabia
| | - Khalid S Alwadeai
- Department of Rehabilitation Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saeed M Alghamdi
- Clinical Technology Department, Respiratory Care Program, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mekkah, Saudi Arabia
| | - Mohammed A Almeshari
- Department of Rehabilitation Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Noora Mumenah
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Services, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ebtihal Al Harbi
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Services, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ziyad F Al Nufaiei
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Eyas Alhuthail
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Basic Sciences Department, College of Sciences and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Esam Alzahrani
- Department of Computer Engineering, Al-Baha University, Alaqiq, Saudi Arabia
| | - Husam Alahmadi
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulaziz Alarifi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Basic Sciences Department, College of Sciences and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Amal Zaidan
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Public Health, College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Taha T Ismaeil
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Services, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Favara G, Barchitta M, Maugeri A, Magnano San Lio R, Agodi A. Sensors for Smoking Detection in Epidemiological Research: Scoping Review. JMIR Mhealth Uhealth 2024; 12:e52383. [PMID: 39476379 PMCID: PMC11561437 DOI: 10.2196/52383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/16/2024] [Accepted: 05/24/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The use of wearable sensors is being explored as a challenging way to accurately identify smoking behaviors by measuring physiological and environmental factors in real-life settings. Although they hold potential benefits for aiding smoking cessation, no single wearable device currently achieves high accuracy in detecting smoking events. Furthermore, it is crucial to emphasize that this area of study is dynamic and requires ongoing updates. OBJECTIVE This scoping review aims to map the scientific literature for identifying the main sensors developed or used for tobacco smoke detection, with a specific focus on wearable sensors, as well as describe their key features and categorize them by type. METHODS According to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) protocol, an electronic search was conducted on the PubMed, MEDLINE, and Web of Science databases, using the following keywords: ("biosensors" OR "biosensor" OR "sensors" OR "sensor" OR "wearable") AND ("smoking" OR "smoke"). RESULTS Among a total of 37 studies included in this scoping review published between 2012 and March 2024, 16 described sensors based on wearable bands, 15 described multisensory systems, and 6 described other strategies to detect tobacco smoke exposure. Included studies provided details about the design or application of wearable sensors based on an elastic band to detect different aspects of tobacco smoke exposure (eg, arm, wrist, and finger movements, and lighting events). Some studies proposed a system composed of different sensor modalities (eg, Personal Automatic Cigarette Tracker [PACT], PACT 2.0, and AutoSense). CONCLUSIONS Our scoping review has revealed both the obstacles and opportunities linked to wearable devices, offering valuable insights for future research initiatives. Tackling the recognized challenges and delving into potential avenues for enhancement could elevate wearable devices into even more effective tools for aiding smoking cessation. In this context, continuous research is essential to fine-tune and optimize these devices, guaranteeing their practicality and reliability in real-world applications.
Collapse
Affiliation(s)
- Giuliana Favara
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Roberta Magnano San Lio
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
3
|
Fu R, Kundu A, Mitsakakis N, Elton-Marshall T, Wang W, Hill S, Bondy SJ, Hamilton H, Selby P, Schwartz R, Chaiton MO. Machine learning applications in tobacco research: a scoping review. Tob Control 2023; 32:99-109. [PMID: 34452986 DOI: 10.1136/tobaccocontrol-2020-056438] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/14/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Identify and review the body of tobacco research literature that self-identified as using machine learning (ML) in the analysis. DATA SOURCES MEDLINE, EMABSE, PubMed, CINAHL Plus, APA PsycINFO and IEEE Xplore databases were searched up to September 2020. Studies were restricted to peer-reviewed, English-language journal articles, dissertations and conference papers comprising an empirical analysis where ML was identified to be the method used to examine human experience of tobacco. Studies of genomics and diagnostic imaging were excluded. STUDY SELECTION Two reviewers independently screened the titles and abstracts. The reference list of articles was also searched. In an iterative process, eligible studies were classified into domains based on their objectives and types of data used in the analysis. DATA EXTRACTION Using data charting forms, two reviewers independently extracted data from all studies. A narrative synthesis method was used to describe findings from each domain such as study design, objective, ML classes/algorithms, knowledge users and the presence of a data sharing statement. Trends of publication were visually depicted. DATA SYNTHESIS 74 studies were grouped into four domains: ML-powered technology to assist smoking cessation (n=22); content analysis of tobacco on social media (n=32); smoker status classification from narrative clinical texts (n=6) and tobacco-related outcome prediction using administrative, survey or clinical trial data (n=14). Implications of these studies and future directions for ML researchers in tobacco control were discussed. CONCLUSIONS ML represents a powerful tool that could advance the research and policy decision-making of tobacco control. Further opportunities should be explored.
Collapse
Affiliation(s)
- Rui Fu
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Anasua Kundu
- Ontario Tobacco Research Unit, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas Mitsakakis
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tara Elton-Marshall
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wei Wang
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sean Hill
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Susan J Bondy
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Hayley Hamilton
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Peter Selby
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Robert Schwartz
- Ontario Tobacco Research Unit, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Michael Oliver Chaiton
- Ontario Tobacco Research Unit, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Engelhard MM, D'Arcy J, Oliver JA, Kozink R, McClernon FJ. Prediction of Smoking Risk From Repeated Sampling of Environmental Images: Model Validation. J Med Internet Res 2021; 23:e27875. [PMID: 34723819 PMCID: PMC8593805 DOI: 10.2196/27875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/01/2021] [Accepted: 08/01/2021] [Indexed: 01/27/2023] Open
Abstract
Background Viewing their habitual smoking environments increases smokers’ craving and smoking behaviors in laboratory settings. A deep learning approach can differentiate between habitual smoking versus nonsmoking environments, suggesting that it may be possible to predict environment-associated smoking risk from continuously acquired images of smokers’ daily environments. Objective In this study, we aim to predict environment-associated risk from continuously acquired images of smokers’ daily environments. We also aim to understand how model performance varies by location type, as reported by participants. Methods Smokers from Durham, North Carolina and surrounding areas completed ecological momentary assessments both immediately after smoking and at randomly selected times throughout the day for 2 weeks. At each assessment, participants took a picture of their current environment and completed a questionnaire on smoking, craving, and the environmental setting. A convolutional neural network–based model was trained to predict smoking, craving, whether smoking was permitted in the current environment and whether the participant was outside based on images of participants’ daily environments, the time since their last cigarette, and baseline data on daily smoking habits. Prediction performance, quantified using the area under the receiver operating characteristic curve (AUC) and average precision (AP), was assessed for out-of-sample prediction as well as personalized models trained on images from days 1 to 10. The models were optimized for mobile devices and implemented as a smartphone app. Results A total of 48 participants completed the study, and 8008 images were acquired. The personalized models were highly effective in predicting smoking risk (AUC=0.827; AP=0.882), craving (AUC=0.837; AP=0.798), whether smoking was permitted in the current environment (AUC=0.932; AP=0.981), and whether the participant was outside (AUC=0.977; AP=0.956). The out-of-sample models were also effective in predicting smoking risk (AUC=0.723; AP=0.785), whether smoking was permitted in the current environment (AUC=0.815; AP=0.937), and whether the participant was outside (AUC=0.949; AP=0.922); however, they were not effective in predicting craving (AUC=0.522; AP=0.427). Omitting image features reduced AUC by over 0.1 when predicting all outcomes except craving. Prediction of smoking was more effective for participants whose self-reported location type was more variable (Spearman ρ=0.48; P=.001). Conclusions Images of daily environments can be used to effectively predict smoking risk. Model personalization, achieved by incorporating information about daily smoking habits and training on participant-specific images, further improves prediction performance. Environment-associated smoking risk can be assessed in real time on a mobile device and can be incorporated into device-based smoking cessation interventions.
Collapse
Affiliation(s)
- Matthew M Engelhard
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Joshua D'Arcy
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Jason A Oliver
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Rachel Kozink
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - F Joseph McClernon
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
5
|
Gullapalli BT, Carreiro S, Chapman BP, Ganesan D, Sjoquist J, Rahman T. OpiTrack: A Wearable-based Clinical Opioid Use Tracker with Temporal Convolutional Attention Networks. PROCEEDINGS OF THE ACM ON INTERACTIVE, MOBILE, WEARABLE AND UBIQUITOUS TECHNOLOGIES 2021; 5. [PMID: 35291374 DOI: 10.1145/3478107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Opioid use disorder is a medical condition with major social and economic consequences. While ubiquitous physiological sensing technologies have been widely adopted and extensively used to monitor day-to-day activities and deliver targeted interventions to improve human health, the use of these technologies to detect drug use in natural environments has been largely underexplored. The long-term goal of our work is to develop a mobile technology system that can identify high-risk opioid-related events (i.e., development of tolerance in the setting of prescription opioid use, return-to-use events in the setting of opioid use disorder) and deploy just-in-time interventions to mitigate the risk of overdose morbidity and mortality. In the current paper, we take an initial step by asking a crucial question: Can opioid use be detected using physiological signals obtained from a wrist-mounted sensor? Thirty-six individuals who were admitted to the hospital for an acute painful condition and received opioid analgesics as part of their clinical care were enrolled. Subjects wore a noninvasive wrist sensor during this time (1-14 days) that continuously measured physiological signals (heart rate, skin temperature, accelerometry, electrodermal activity, and interbeat interval). We collected a total of 2070 hours (≈ 86 days) of physiological data and observed a total of 339 opioid administrations. Our results are encouraging and show that using a Channel-Temporal Attention TCN (CTA-TCN) model, we can detect an opioid administration in a time-window with an F1-score of 0.80, a specificity of 0.77, sensitivity of 0.80, and an AUC of 0.77. We also predict the exact moment of administration in this time-window with a normalized mean absolute error of 8.6% and R 2 coefficient of 0.85.
Collapse
Affiliation(s)
| | - Stephanie Carreiro
- Division of Medical Toxicology, Department of Emergency Medicine University of Massachusetts Medical School, USA
| | - Brittany P Chapman
- Division of Medical Toxicology, Department of Emergency Medicine University of Massachusetts Medical School, USA
| | | | | | | |
Collapse
|
6
|
Imtiaz MH, Hossain D, Senyurek VY, Belsare P, Tiffany S, Sazonov E. Wearable Egocentric Camera as a Monitoring Tool of Free-Living Cigarette Smoking: A Feasibility Study. Nicotine Tob Res 2020; 22:1883-1890. [PMID: 31693162 DOI: 10.1093/ntr/ntz208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Wearable sensors may be used for the assessment of behavioral manifestations of cigarette smoking under natural conditions. This paper introduces a new camera-based sensor system to monitor smoking behavior. The goals of this study were (1) identification of the best position of sensor placement on the body and (2) feasibility evaluation of the sensor as a free-living smoking-monitoring tool. METHODS A sensor system was developed with a 5MP camera that captured images every second for continuously up to 26 hours. Five on-body locations were tested for the selection of sensor placement. A feasibility study was then performed on 10 smokers to monitor full-day smoking under free-living conditions. Captured images were manually annotated to obtain behavioral metrics of smoking including smoking frequency, smoking environment, and puffs per cigarette. The smoking environment and puff counts captured by the camera were compared with self-reported smoking. RESULTS A camera located on the eyeglass temple produced the maximum number of images of smoking and the minimal number of blurry or overexposed images (53.9%, 4.19%, and 0.93% of total captured, respectively). During free-living conditions, 286,245 images were captured with a mean (±standard deviation) duration of sensor wear of 647(±74) minutes/participant. Image annotation identified consumption of 5(±2.3) cigarettes/participant, 3.1(±1.1) cigarettes/participant indoors, 1.9(±0.9) cigarettes/participant outdoors, and 9.02(±2.5) puffs/cigarette. Statistical tests found significant differences between manual annotations and self-reported smoking environment or puff counts. CONCLUSIONS A wearable camera-based sensor may facilitate objective monitoring of cigarette smoking, categorization of smoking environments, and identification of behavioral metrics of smoking in free-living conditions. IMPLICATIONS The proposed camera-based sensor system can be employed to examine cigarette smoking under free-living conditions. Smokers may accept this unobtrusive sensor for extended wear, as the sensor would not restrict the natural pattern of smoking or daily activities, nor would it require any active participation from a person except wearing it. Critical metrics of smoking behavior, such as the smoking environment and puff counts obtained from this sensor, may generate important information for smoking interventions.
Collapse
Affiliation(s)
- Masudul H Imtiaz
- Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL
| | - Delwar Hossain
- Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL
| | - Volkan Y Senyurek
- Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL
| | - Prajakta Belsare
- Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL
| | - Stephen Tiffany
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY
| | - Edward Sazonov
- Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL
| |
Collapse
|