1
|
Xuan P, Qi X, Chen S, Gu J, Wang X, Cui H, Lu J, Zhang T. Subgraph Topology and Dynamic Graph Topology Enhanced Graph Learning and Pairwise Feature Context Relationship Integration for Predicting Disease-Related miRNAs. J Chem Inf Model 2025; 65:1631-1640. [PMID: 39865931 DOI: 10.1021/acs.jcim.4c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
As an increasing number of microRNAs (miRNAs) have become biomarkers of various human diseases, prediction of the candidate disease-related miRNAs is helpful for facilitating the early diagnosis of diseases. Most of the recent prediction models concentrated on learning of the features from the heterogeneous graph composed of miRNAs and diseases. However, they failed to fully exploit the subgraph structures consisting of multiple miRNA and disease nodes, and they also did not completely integrate the context relationships among the pairwise features. We proposed a prediction model, SFPred, to integrate and encode the local topologies from neighborhood subgraphs, the dynamically evolved heterogeneous graph topology, and the context among pairwise features. First, the importance of an miRNA (disease) node to another node is formulated according to the subgraphs composed of their neighbors. Second, the features of each miRNA (disease) node continuously change when the graph encoding gradually deepens for the miRNA-disease heterogeneous network. A strategy based on multi-layer perceptron (MLP) is designed to estimate the edge weights according to the changed node features and form the dynamic graph topology. Third, considering the context relationships among the features of a pair of miRNA and disease nodes, a context relationship sensitive transformer is constructed to integrate these relationships. Finally, since the previous encoding layer of the transformer contains more detailed features of the pairwise, we present a multiperspective residual strategy to supplement the detailed features to the following encoding layer from the channel perspective and the feature one, respectively. The extensive experiments confirmed that SFPred outperforms eight state-of-the-art methods for the prediction of miRNA-disease associations, and the ablation experiments validate the effectiveness of the proposed innovations. The recall rates for the top-ranked candidate miRNAs related to the diseases and the case studies on three diseases indicate SFPred's ability in screening the reliable candidates for subsequent biological experiments.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- Department of Computer Science and Technology, Shantou University, Shantou 515063, China
| | - Xiaoying Qi
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Sentao Chen
- Department of Computer Science and Technology, Shantou University, Shantou 515063, China
| | - Jing Gu
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Xiuju Wang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne 3083, Australia
| | - Jun Lu
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Tiangang Zhang
- School of Cyberspace Security, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Cordoba-Caballero J, Perkins JR, García-Criado F, Gallego D, Navarro-Sánchez A, Moreno-Estellés M, Garcés C, Bonet F, Romá-Mateo C, Toro R, Perez B, Sanz P, Kohl M, Rojano E, Seoane P, Ranea JAG. Exploring miRNA-target gene pair detection in disease with coRmiT. Brief Bioinform 2024; 25:bbae060. [PMID: 38436559 PMCID: PMC10939301 DOI: 10.1093/bib/bbae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 03/05/2024] Open
Abstract
A wide range of approaches can be used to detect micro RNA (miRNA)-target gene pairs (mTPs) from expression data, differing in the ways the gene and miRNA expression profiles are calculated, combined and correlated. However, there is no clear consensus on which is the best approach across all datasets. Here, we have implemented multiple strategies and applied them to three distinct rare disease datasets that comprise smallRNA-Seq and RNA-Seq data obtained from the same samples, obtaining mTPs related to the disease pathology. All datasets were preprocessed using a standardized, freely available computational workflow, DEG_workflow. This workflow includes coRmiT, a method to compare multiple strategies for mTP detection. We used it to investigate the overlap of the detected mTPs with predicted and validated mTPs from 11 different databases. Results show that there is no clear best strategy for mTP detection applicable to all situations. We therefore propose the integration of the results of the different strategies by selecting the one with the highest odds ratio for each miRNA, as the optimal way to integrate the results. We applied this selection-integration method to the datasets and showed it to be robust to changes in the predicted and validated mTP databases. Our findings have important implications for miRNA analysis. coRmiT is implemented as part of the ExpHunterSuite Bioconductor package available from https://bioconductor.org/packages/ExpHunterSuite.
Collapse
Affiliation(s)
- Jose Cordoba-Caballero
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, Cádiz, Spain
| | - James R Perkins
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain
| | - Federico García-Criado
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
| | - Diana Gallego
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
- Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Alicia Navarro-Sánchez
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Departament de Fisiologia, Facultat de Medicina i Odontologia, Universitat de València, Av. Blasco Ibáñez 15, 46010, València, Spain
| | - Mireia Moreno-Estellés
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Jaime Roig 11, 46010, Valencia, Spain
| | - Concepción Garcés
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Departament de Fisiologia, Facultat de Medicina i Odontologia, Universitat de València, Av. Blasco Ibáñez 15, 46010, València, Spain
| | - Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, Cádiz, Spain
- Medicine Department, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Carlos Romá-Mateo
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Departament de Fisiologia, Facultat de Medicina i Odontologia, Universitat de València, Av. Blasco Ibáñez 15, 46010, València, Spain
- Incliva Biomedical Research Institute, 46010, València, Spain
| | - Rocio Toro
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, Cádiz, Spain
- Medicine Department, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Belén Perez
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
- Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Pascual Sanz
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Jaime Roig 11, 46010, Valencia, Spain
| | - Matthias Kohl
- Faculty of Medical and Life Sciences, Furtwangen University, Germany
| | - Elena Rojano
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain
| | - Pedro Seoane
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Juan A G Ranea
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Instituto Nacional de Bioinformática (INB/ELIXIR-ES), Instituto de Salud Carlos III (ISCIII), C/ Sinesio Delgado, 4, Madrid, 28029, Spain
| |
Collapse
|
4
|
Chen M, Deng Y, Li Z, Ye Y, He Z. KATZNCP: a miRNA-disease association prediction model integrating KATZ algorithm and network consistency projection. BMC Bioinformatics 2023; 24:229. [PMID: 37268893 DOI: 10.1186/s12859-023-05365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Clinical studies have shown that miRNAs are closely related to human health. The study of potential associations between miRNAs and diseases will contribute to a profound understanding of the mechanism of disease development, as well as human disease prevention and treatment. MiRNA-disease associations predicted by computational methods are the best complement to biological experiments. RESULTS In this research, a federated computational model KATZNCP was proposed on the basis of the KATZ algorithm and network consistency projection to infer the potential miRNA-disease associations. In KATZNCP, a heterogeneous network was initially constructed by integrating the known miRNA-disease association, integrated miRNA similarities, and integrated disease similarities; then, the KATZ algorithm was implemented in the heterogeneous network to obtain the estimated miRNA-disease prediction scores. Finally, the precise scores were obtained by the network consistency projection method as the final prediction results. KATZNCP achieved the reliable predictive performance in leave-one-out cross-validation (LOOCV) with an AUC value of 0.9325, which was better than the state-of-the-art comparable algorithms. Furthermore, case studies of lung neoplasms and esophageal neoplasms demonstrated the excellent predictive performance of KATZNCP. CONCLUSION A new computational model KATZNCP was proposed for predicting potential miRNA-drug associations based on KATZ and network consistency projections, which can effectively predict the potential miRNA-disease interactions. Therefore, KATZNCP can be used to provide guidance for future experiments.
Collapse
Affiliation(s)
- Min Chen
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China
| | - Yingwei Deng
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China.
| | - Zejun Li
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China
| | - Yifan Ye
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China
| | - Ziyi He
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China
| |
Collapse
|
7
|
Shakyawar S, Southekal S, Guda C. mintRULS: Prediction of miRNA–mRNA Target Site Interactions Using Regularized Least Square Method. Genes (Basel) 2022; 13:genes13091528. [PMID: 36140696 PMCID: PMC9498445 DOI: 10.3390/genes13091528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Identification of miRNA–mRNA interactions is critical to understand the new paradigms in gene regulation. Existing methods show suboptimal performance owing to inappropriate feature selection and limited integration of intuitive biological features of both miRNAs and mRNAs. The present regularized least square-based method, mintRULS, employs features of miRNAs and their target sites using pairwise similarity metrics based on free energy, sequence and repeat identities, and target site accessibility to predict miRNA-target site interactions. We hypothesized that miRNAs sharing similar structural and functional features are more likely to target the same mRNA, and conversely, mRNAs with similar features can be targeted by the same miRNA. Our prediction model achieved an impressive AUC of 0.93 and 0.92 in LOOCV and LmiTOCV settings, respectively. In comparison, other popular tools such as miRDB, TargetScan, MBSTAR, RPmirDIP, and STarMir scored AUCs at 0.73, 0.77, 0.55, 0.84, and 0.67, respectively, in LOOCV setting. Similarly, mintRULS outperformed other methods using metrics such as accuracy, sensitivity, specificity, and MCC. Our method also demonstrated high accuracy when validated against experimentally derived data from condition- and cell-specific studies and expression studies of miRNAs and target genes, both in human and mouse.
Collapse
Affiliation(s)
- Sushil Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation (CBIRI), University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence:
| |
Collapse
|