1
|
Lee SY, Hsiung NH, Chapman KB, Cheng YK, Huang CL, Chen KB, Chang CH, Wen YR. A pilot study of novel ultrahigh-frequency dorsal root ganglia stimulation for chronic lower limb pain: Focusing on safety and feasibility. Pain Pract 2025; 25:e13436. [PMID: 39560335 DOI: 10.1111/papr.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
OBJECTIVES This single-arm, open-label, single-center observational pilot study assessed the safety and efficacy of ultrahigh-frequency dorsal root ganglia (UHF-DRG) stimulation in patients with chronic leg pain with or without low back pain. Such high-frequency electrostimulation had not been conducted in the human central nervous system previously. MATERIALS AND METHODS The primary objective was to evaluate the safety of UHF-DRG stimulation (2 Hz pulses with 50 msec pulse-width and 500 kHz intrapulse sine waves, 5-min duration per stimulation) by identifying incident adverse events (AE) and severe adverse events (SAE) during the trial. The secondary objectives included assessment of pain reduction using a numerical rating score (NRS), presence of paraesthesia, and changes in four pain medications (weak opioids, anticonvulsants, antidepressants, and non-steroid-anti-inflammatory drugs). One DRG lead was implanted for one day then removed, and the patients received maximal three times of UHF stimulation in total. RESULTS The study focused on ten cases. Two of them did not complete the study due to difficulty of lead implantation. There was no SAE in this trial. Among the ten cases, AEs occurred in eight, three experienced injection-related local pain and one of them had a post-dural-puncture headache, others had symptoms un-related to implantation procedure or UHF stimulation. The average NRS was reduced from 6.4 ± 1.1 at baseline to 2.9 ± 1.1 on the second-day post-implantation, and it was striking that the NRS was maintained at 3.6 ± 2.8 until 2 days after lead removal. The results showed a trend of lower frequency in medication use for all types of analgesics. CONCLUSIONS In this first-in-human pilot study, we discovered that intermittent pulsed UHF-DRG stimulations ameliorated chronic lower limb pain for an extended period in humans. Our finding opens up a new neuromodulatory concept and may initiate a novel paradigm for treating intractable pain.
Collapse
Affiliation(s)
- Shang-Yi Lee
- Department of Anesthesiology, Taichung Veterans General Hospital Puli Branch, Nantou, Taiwan
| | - Nai-Huan Hsiung
- Department of Nursing and Graduate Institute of Nursing, Asia University, Taichung, Taiwan
| | - Kenneth B Chapman
- Department of Anesthesiology, New York University Langone Medical Center, New York City, New York, USA
- Department of Anesthesiology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Yu-Kai Cheng
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Liang Huang
- Department of Psychiatry, Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Kuen-Bao Chen
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | | | - Yeong-Ray Wen
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
- Gimer Medical Co. Ltd., Taipei, Taiwan
- Chun Chuan Orthopedic and Pain Specialty Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Pastene F, Westermeyer M, Verstraeten M, Debelle A, Acuña V, Nonclercq A, Aqueveque P. Load shift keying communication techniques in implantable devices. Phys Eng Sci Med 2024; 47:1557-1570. [PMID: 39158764 DOI: 10.1007/s13246-024-01470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/28/2024] [Indexed: 08/20/2024]
Abstract
Inductive links represent a highly promising avenue for both powering and communicating medical implants. Yet they encounter challenges such as constrained communication distance and limited data rate. In Load Shift Keying (LSK), a switch in the secondary side of the inductive link can be placed in parallel with the load (Short-Circuit Technique - SCT), in series with the load (Open-Circuit Technique - OCT), or both (Dual Technique - DLT), to vary the impedance of the secondary. Hence, the impedance reflected to the primary side changes and is used to transmit information externally from the implant. Among these, DLT is a novel LSK technique proposed in this work, which becomes independent from the load on the implant side. This study compares these three methods, confronting measurements to simulations. The evaluation focused on variations in coil distance and load. The proposal is illustrated in the case of an implantable gastric stimulator, with specific constraints in secondary coil size and power requirements. The newly developed DLT consistently outshone SCT and OCT in extending the operational range of communication, registering a maximum modulation index of 0.797 and a bit error rate below 10- 7 at an operating distance of 95 mm through the air. Its load-independent characteristic allowed DLT to surpass the performance of SCT and OCT, which were each advantageous under high and low loads, respectively. All these results are confirmed by a LTSpice simulation. Consequently, the communication techniques put forward in this work mark a significant progression in medical implant communications, enhancing coil-to-coil operational distance while adhering to a low carrier frequency.
Collapse
Affiliation(s)
- Francisco Pastene
- Department of Electrical Engineering, Universidad de Concepción, Concepción, Chile
| | - Martin Westermeyer
- Department of Electrical Engineering, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | - Pablo Aqueveque
- Department of Electrical Engineering, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
3
|
Busnatu ȘS, Niculescu AG, Bolocan A, Andronic O, Pantea Stoian AM, Scafa-Udriște A, Stănescu AMA, Păduraru DN, Nicolescu MI, Grumezescu AM, Jinga V. A Review of Digital Health and Biotelemetry: Modern Approaches towards Personalized Medicine and Remote Health Assessment. J Pers Med 2022; 12:1656. [PMID: 36294795 PMCID: PMC9604784 DOI: 10.3390/jpm12101656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
With the prevalence of digitalization in all aspects of modern society, health assessment is becoming digital too. Taking advantage of the most recent technological advances and approaching medicine from an interdisciplinary perspective has allowed for important progress in healthcare services. Digital health technologies and biotelemetry devices have been more extensively employed for preventing, detecting, diagnosing, monitoring, and predicting the evolution of various diseases, without requiring wires, invasive procedures, or face-to-face interaction with medical personnel. This paper aims to review the concepts correlated to digital health, classify and describe biotelemetry devices, and present the potential of digitalization for remote health assessment, the transition to personalized medicine, and the streamlining of clinical trials.
Collapse
Affiliation(s)
- Ștefan Sebastian Busnatu
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Bolocan
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Octavian Andronic
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | | | - Alexandru Scafa-Udriște
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | | | - Dan Nicolae Păduraru
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Mihnea Ioan Nicolescu
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Viorel Jinga
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
4
|
Yeh KY, Chiu HW, Tseng WT, Chen HC, Yen CT, Lu SS, Lin ML. A Dual-Mode Multifunctional Pulsed Radio-Frequency Stimulator for Trigeminal Neuralgia Relief and its Animal Model. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:719-730. [PMID: 34260358 DOI: 10.1109/tbcas.2021.3097058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work proposed a programmable pulsed radio-frequency (PRF) stimulator for trigeminal neuralgia (TN) relief on demand. The implantable stimulator is a miniaturized micro-system which integrates a wireless interface circuit, a sensor interface circuit, a PRF pattern generation circuit and a logic controller. The multifunctional stimulator capable of delivering current/voltage stimulation provides the choice of the biphasic sinusoidal, square and patterned waveform for PRF treatment researches. The external handheld device can wirelessly transmit the parameters of frequency, amplitude, pulse duration and repetition rate of the pulse train to the implanted stimulator. While stimulating, the temperature sensor can monitor the operating temperature. The feedback signal is transmitted in medical implanted communication system (MICS). The micro-system is fabricated in a 0.35 μm CMOS process with a chip size of 3.1 × 2.7 mm2. The fabricated chip was mounted on a 2.6 × 2.1 cm2 test board for studying the in vivo efficacy of pain relief by PRF. Animal studies of PRF stimulation and commonly-used medication for trigeminal neuralgia are also demonstrated and the presented results prove that PRF stimulation has greater effectiveness on trigeminal neuralgia relief comparing to the medication. The effectiveness period lasts at least 14 days. The results of neural recording show that the PRF stimulation of trigeminal ganglion (TG) attenuated neuron activities without being severely damaged. Pathology also revealed no lesion found on the stimulated area.
Collapse
|
5
|
Hsieh CC, Ker MD. Monopolar Biphasic Stimulator With Discharge Function and Negative Level Shifter for Neuromodulation SoC Integration in Low-Voltage CMOS Process. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:568-579. [PMID: 34097616 DOI: 10.1109/tbcas.2021.3087036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A 16-channel monopolar biphasic stimulator chip with discharge function for biomedical applications is proposed and designed. To provide monopolar biphasic stimulus currents, the positive (6V) and the negative (-6V) voltage sources are supported to generate the desired current pulses of ±3 mA. The monopolar biphasic stimulator chip was fabricated in a 0.18-μm 1.8-V/3.3-V CMOS process with the common grounded p-type substrate. The overstress and reliability issues on the low-voltage transistors in the stimulator circuits were fully overcome by circuit design. The silicon area of each single channel only occupies 0.08 mm2 and the output level of stimulus current is up to ±3 mA. By applying the discharge function, safety concern of unbalanced charge in neuro-stimulation can be dealt properly. The residual average dc current is less than 3.42 nA after discharge is activated. Moreover, this chip has also been verified with both in-vitro imitation measurement and in-vivo animal test.
Collapse
|
6
|
Huang RY, Poree L, Ho KY, Tsai SY, Liu YC, Tan PH, Wen YR. Behavioral Survey of Effects of Pulsed Radiofrequency on Neuropathic and Nociceptive Pain in Rats: Treatment Profile and Device Implantation. Neuromodulation 2020; 24:1458-1466. [PMID: 32558126 DOI: 10.1111/ner.13169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Pulsed radiofrequency (PRF) stimulation is widely used for intractable pain; however, there is no consensus on treatment protocols and appropriate types of pain. We compared effectiveness of bipolar and unipolar PRF on neuropathic or inflammatory pains, and of targets at the dorsal root ganglion (DRG) and sciatic nerve (SN). We also examined efficacy of repetitive PRF stimulations. This preclinical study could serve as an extensive survey before human trials. MATERIALS Spare nerve injury (SNI)-induced neuropathic pain and complete Freund's adjuvant (CFA) injection-induced inflammatory pain were used. Behavioral responses were measured using von Frey test, acetone test, and Hargreave's test at preinjury and postinjury time points. In both models, we evaluated results of DRG stimulation with unipolar PRF (45 V) versus bipolar PRF (5 V), stimulation at DRG vs. SN, and repetitive stimulations. RESULTS Both unipolar and bipolar PRFs reduced SNI- or CFA-induced pain for a similar duration. In the SNI model, PRF-DRG had a stronger effect on tactile pain than PRF-SN but lower effect on cold allodynia, whereas in the CFA model PRF-DRG and PRF-SN showed similar effects. Repetitive PRF stimulation, by open technique or implantation method, produced analogous effect by each stimulus, and no evident analgesic tolerance or neurological deficit was shown. CONCLUSIONS PRF temporarily attenuates neuropathic and inflammatory pain. Bipolar PRF generates significant analgesia with a much lower electrical power than unipolar PRF. Meanwhile, the minor variant effects between PRF-DRG and PRF-SN may indicate distinct mechanisms. The sustained-analgesia by repetitive treatments suggests implantation technique could be a promising choice.
Collapse
Affiliation(s)
- Ren-Yu Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Lawrence Poree
- Department of Anesthesia, University of California at San Francisco, San Francisco, CA, USA
| | - Kok-Yuen Ho
- Raffles Pain Management Centre, Raffles Hospital, Singapore, Singapore
| | - Shih-Ying Tsai
- Department of Anesthesiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chen Liu
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Ping-Heng Tan
- Department of Biomedical Engineering, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Yeong-Ray Wen
- Department of Anesthesiology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan.,Department of Anesthesiology, Pain Management and Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Lee SY, Wang CP, Chu YS. Low-Voltage OTA-C Filter With an Area- and Power-Efficient OTA for Biosignal Sensor Applications. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:56-67. [PMID: 30475730 DOI: 10.1109/tbcas.2018.2882521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper presents a systematic method for decreasing the amount of transconductors used by an operational transconductance amplifier-capacitor (OTA-C) filter to decrease the power consumption and the active area. An OTA with a local-feedback linearized technique and a transconductance booster is proposed based on the presented method. The proposed OTA combines current division with source degeneration to enhance linearity and implement low transconductance. This topology enables the proposed OTA to drive multiple integration capacitors without an additional output stage. The OTA-based circuit realizes low power consumption by operating under a weak inversion at a supply voltage of 1 V. Thus, a fifth-order ladder-type low-pass Butterworth OTA-C filter is implemented for the acquisition of electrocardiograph signals. The proposed method is validated using a prototype fabricated through a 1P6M 0.18-μm CMOS process. Results show that in ECG signal acquisition, the proposed filter has a signal bandwidth located within 250 Hz, a dynamic range of 61.2 dB, and a power consumption of 41 nW to achieve a figure-of-merit of 5.4 × 10-13. The active area of the filter is 0.24 mm2.
Collapse
|
8
|
Chang CH, Lu KH, Lin WT, Chen SC, Shih WP, Lin CW. Reversible Spasticity Suppression and Locomotion Change After Pulsed Radiofrequency on the Dorsal Root Ganglia of Rats With Spinal Cord Injury. Neuromodulation 2018; 22:53-60. [PMID: 30253013 DOI: 10.1111/ner.12853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/04/2018] [Accepted: 07/15/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Radiofrequency has been used to suppress spasticity affecting motion in patients with cerebral palsy and spinal cord injury. This study tested spasticity suppression and locomotion change after pulsed radiofrequency (PRF) at the dorsal root ganglion of rats with spasticity. MATERIALS AND METHODS Twenty-four rats that survived for 28 days after thoracic spinal cord injury and showed spasticity in the right hind limb were separated randomly to a PRF group or Sham operation group. PRF consisted of 2 Hz biphasic 25 msec trains of PRF (500 kHz, 5 V intensity) applied on the right L5 dorsal root ganglion for 300 sec. Muscle tension of the right triceps surae was measured at 450 deg/sec of passive ankle dorsiflexion on the day before and 3, 7, and 14 days after PRF or sham operation. Locomotive function was evaluated by obtaining Basso, Beattie, and Bresnahan (BBB) scores. RESULTS Muscle tension of the triceps surae decreased significantly three days after PRF, and gradually returned to baseline 14 days later. In the sham operation group, muscle tension increased significantly more than 14 days. The BBB scores declined from 10 to 8 after PRF and returned to pre-PRF levels 14 days later, while scores remained constant after sham operation. CONCLUSIONS PRF produced significant and reversible suppression in spasticity, but this was accompanied by deterioration in locomotive function. Thus, caution should be exercised in considering the benefits and costs in suppressing spasticity in ambulatory patients, and implanted devices that apply titratable doses of PRF may be best to optimize patients' needs.
Collapse
Affiliation(s)
- Chia-Hsieh Chang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Pediatric Orthopedics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Hsiang Lu
- Department of Pediatric Orthopedics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Tso Lin
- Institute of Bioelectronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Shih-Ching Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wen-Pin Shih
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chii-Wann Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Institute of Bioelectronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Kuo WC, Huang CW. Technology for 3D System Integration for Flexible Wireless Biomedical Applications. MICROMACHINES 2018; 9:mi9050213. [PMID: 30424146 PMCID: PMC6187830 DOI: 10.3390/mi9050213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 11/18/2022]
Abstract
This paper presents a new 3D bottom-up packing technology for integrating a chip, an induction coil, and interconnections for flexible wireless biomedical applications. Parylene was used as a flexible substrate for the bottom-up embedding of the chip, insulation layer, interconnection, and inductors to form a flexible wireless biomedical microsystem. The system can be implanted on or inside the human body. A 50-μm gold foil deposited through laser micromachining by using a picosecond laser was used as an inductor to yield a higher quality factor than that yielded by thickness-increasing methods such as the fold-and-bond method or thick-metal electroplating method at the operation frequency of 1 MHz. For system integration, parylene was used as a flexible substrate, and the contact pads and connections between the coil and chip were generated using gold deposition. The advantage of the proposed process can integrate the chip and coil vertically to generate a single biocompatible system in order to reduce required area. The proposed system entails the use of 3D integrated circuit packaging concepts to integrate the chip and coil. The results validated the feasibility of this technology.
Collapse
Affiliation(s)
- Wen-Cheng Kuo
- Department of Mechanical and Automation Engineering, National Kaohsiung University of Science and Technology, 2 Jhuoyue Rd., Nanzih, Kaohsiung 811, Taiwan.
| | - Chih-Wei Huang
- Department of Mechanical and Automation Engineering, National Kaohsiung University of Science and Technology, 2 Jhuoyue Rd., Nanzih, Kaohsiung 811, Taiwan.
| |
Collapse
|
10
|
Opportunities and Challenges for Near-Field Wireless Power Transfer: A Review. ENERGIES 2017. [DOI: 10.3390/en10071022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Kiourti A, Nikita KS. A Review of In-Body Biotelemetry Devices: Implantables, Ingestibles, and Injectables. IEEE Trans Biomed Eng 2017; 64:1422-1430. [DOI: 10.1109/tbme.2017.2668612] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Reconfigurable RF Energy Harvester with Customized Differential PCB Antenna. JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS 2015. [DOI: 10.3390/jlpea5040257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Hsieh JY, Kuo PH, Huang YC, Huang YJ, Tsai RD, Wang T, Chiu HW, Wang YH, Lu SS. A remotely-controlled locomotive IC driven by electrolytic bubbles and wireless powering. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2014; 8:787-798. [PMID: 25576574 DOI: 10.1109/tbcas.2014.2382341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A batteryless remotely-controlled locomotive IC utilizing electrolytic bubbles as propelling force is realized in 0.35 μm CMOS technology. Without any external components, such as magnets and on-board coils, the bare IC is wirelessly powered and controlled by a 10 MHz ASK modulated signal with RS232 control commands to execute movement in four moving directions and with two speeds. The receiving coil and electrolysis electrodes are all integrated on the locomotive chip. The experiment successfully demonstrated that the bare IC moved on the surface of an electrolyte with a speed up to 0.3 mm/s and change moving directions according to the commands. The total power consumptions of the chip are 207.4 μW and 180 μ W while the output electrolysis voltages are 2 V and 1.3 V, respectively.
Collapse
|
14
|
Lin P, Ding L, Lin CW, Gu F. Nonfouling property of zwitterionic cysteine surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6497-6507. [PMID: 24841849 DOI: 10.1021/la500243s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Applications of implantable bioelectronics for analytical and curative purposes are currently limited by their poor long-term biofunctionality in physiological media and nonspecific interactions with biomolecules. In an attempt to prolong in vivo functionality, recent advances in surface modifications have demonstrated that zwitterionic coatings can rival the performance of conventional poly(ethylene glycol) polymers in reducing nonspecific protein fouling. Herein, we report the fabrication of a very thin layer of nonfouling zwitterionic cysteine surface capable of protecting implantable bioelectronics from nonspecific adsorption of plasma proteins. This work is the first of its kind to fabricate, through solution chemistry, a cysteine surface exhibiting zwitterionic state as high as 88% and to demonstrate antibiofouling under the exposure of bovine serum albumin (BSA) and human serum. The fabricated surface utilized a minimal amount of gold substrate, approximately 10 nm, and an extremely thin antifouling layer at 1.14 nm verified by ellipsometry. X-ray photoelectron spectroscopy assessment of the nitrogen (N1s) and carbon (C1s) spectra conclude that 87.8% of the fabricated cysteine surface is zwitterionic, 2.5% is positively charged, and 9.6% is noncharged. Antibiofouling performance of the cysteine surface is quantitatively determined by bicinchoninic acid (BCA) protein assay as well as qualitatively confirmed using scanning electron spectroscopy. Cysteine surfaces demonstrated a BSA fouling of 3.9 ± 4.84% μg/cm(2), which is 93.6% and 98.5% lower than stainless steel and gold surfaces, respectively. Surface plasmon resonance imaging analysis returned similar results and suggest that a thinner cysteine coating will enhance performance. Scanning electron microscopy confirmed the results of BCA assay and suggested that the cysteine surface demonstrated a 69% reduction to serum fouling. The results reported in this paper demonstrate that it is possible to achieve a highly zwitterionic surface through solution chemistry on a macroscopic level that is capable of improving biocompatibility of long-term implantable bioelectronics.
Collapse
Affiliation(s)
- Peter Lin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | | | | | | |
Collapse
|
15
|
Lin ML, Lin WT, Huang RY, Chen TC, Huang SH, Chang CH, Tsai SY, Chiu HW, Yeh GC, Lin CW, Wen YR. Pulsed radiofrequency inhibited activation of spinal mitogen-activated protein kinases and ameliorated early neuropathic pain in rats. Eur J Pain 2013; 18:659-70. [DOI: 10.1002/j.1532-2149.2013.00419.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- M.-L. Lin
- Institute of Biomedical Engineering; National Taiwan University; Taipei Taiwan
- Pain Center; Zhongxing Branch of Taipei City Hospital; Taipei Taiwan
| | - W.-T. Lin
- Institute of Biomedical Electronics and Bioinformatics; National Taiwan University; Taipei Taiwan
| | - R.-Y. Huang
- Graduate Institute of Clinical Medical Science; China Medical University; Taichung Taiwan
| | - T.-C. Chen
- Institute of Biomedical Engineering; National Taiwan University; Taipei Taiwan
| | - S.-H. Huang
- Department of Anesthesiology; Shin-Kong Wu-Ho-Su Memorial Hospital; Taipei Taiwan
| | - C.-H. Chang
- Institute of Biomedical Engineering; National Taiwan University; Taipei Taiwan
| | - S.-Y. Tsai
- Department of Anesthesiology; School of Medicine; China Medical University; Taichung Taiwan
| | - H.-W. Chiu
- Graduate Institute of Computer and Communication Engineering; National Taipei University of Technology; Taiwan
| | - G.-C. Yeh
- Department of Pediatrics; School of Medicine; Taipei Medical University; Taiwan
| | - C.-W. Lin
- Institute of Biomedical Engineering; National Taiwan University; Taipei Taiwan
- Institute of Biomedical Electronics and Bioinformatics; National Taiwan University; Taipei Taiwan
| | - Y.-R. Wen
- Department of Anesthesiology; School of Medicine; China Medical University; Taichung Taiwan
- Department of Anesthesiology; China Medical University Hospital; Taichung Taiwan
- Center for Pain Management and Research; China Medical University Hospital; Taichung Taiwan
- Graduate Institute of Acupuncture Science; College of Chinese Medicine; China Medical University; Taichung Taiwan
| |
Collapse
|
16
|
Ha S, Khraiche ML, Silva GA, Cauwenberghs G. Direct inductive stimulation for energy-efficient wireless neural interfaces. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:883-6. [PMID: 23366034 DOI: 10.1109/embc.2012.6346073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Advanced neural stimulator designs consume power and produce unwanted thermal effects that risk damage to surrounding tissue. In this work, we present a simplified architecture for wireless neural stimulators that relies on a few circuit components including an inductor, capacitor and a diode to elicit an action potential in neurons. The feasibility of the design is supported with analytical models of the inductive link, electrode, electrolyte, membrane and channels of neurons. Finally, a flexible implantable prototype of the design is fabricated and tested in vitro on neural tissue.
Collapse
Affiliation(s)
- Sohmyung Ha
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | | |
Collapse
|
17
|
Chiu HW, Chuang JM, Lu CC, Lin WT, Lin CW, Lin ML. In situ measurement of tissue impedance using an inductive coupling interface circuit. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2013; 7:225-235. [PMID: 23853322 DOI: 10.1109/tbcas.2012.2199488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this work, a method of an inductive coupling impedance measurement (ICIM) is proposed for measuring the nerve impedance of a dorsal root ganglion (DRG) under PRF stimulation. ICIM provides a contactless interface for measuring the reflected impedance by an impedance analyzer with a low excitation voltage of 7 mV. The paper develops a calibration procedure involving a 50-Ω reference resistor to calibrate the reflected resistance for measuring resistance of the nerve in the test. A de-embedding technique to build the equivalent transformer circuit model for the ICIM circuit is also presented. A batteryless PRF stimulator with ICIM circuit demonstrated good accuracy for the acute measurement of DRG impedance both in situ and in vivo. Besides, an in vivo animal experiment was conducted to show that the effectiveness of pulsed radiofrequency (PRF) stimulation in relieving pain gradually declined as the impedance of the stimulated nerve increased. The experiment also revealed that the excitation voltage for measuring impedance below 25 mV can prevent the excitation of a nonlinear response of DRG.
Collapse
Affiliation(s)
- Hung-Wei Chiu
- Department of Electronic Engineering and Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | | | | | | | | | | |
Collapse
|
18
|
Chiu HW, Lu CC, Chuang JM, Lin WT, Lin CW, Kao MC, Lin ML. A dual-mode highly efficient class-E stimulator controlled by a low-Q class-E power amplifier through duty cycle. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2013; 7:243-255. [PMID: 23853324 DOI: 10.1109/tbcas.2012.2205245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper presents the design flow of two high-efficiency class-E amplifiers for the implantable electrical stimulation system. The implantable stimulator is a high-Q class-E driver that delivers a sine-wave pulsed radiofrequency (PRF) stimulation, which was verified to have a superior efficacy in pain relief to a square wave. The proposed duty-cycle-controlled class-E PRF driver designed with a high-Q factor has two operational modes that are able to achieve 100% DC-AC conversion, and involves only one switched series inductor and an unchanged parallel capacitor. The measured output amplitude under low-voltage (LV) mode using a 22% duty cycle was 0.98 V with 91% efficiency, and under high-voltage (HV) mode using a 47% duty cycle was 2.95 V with 92% efficiency. These modes were inductively controlled by a duty-cycle detector, which can detect the duty-cycle modulated signal generated from the external complementary low-Q class-E power amplifier (PA). The design methodology of the low-Q inductive interface for a non-50% duty cycle is presented. The experimental results exhibits that the 1.5-V PA that consumes DC power of 14.21 mW was able to deliver a 2.9-V sine wave to a 500 Ω load. The optimal 60% drain efficiency of the system from the PA to the load was obtained at a 10-mm coupling distance.
Collapse
Affiliation(s)
- Hung-Wei Chiu
- Department of Electronic Engineering and Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | | | | | | | | | | | | |
Collapse
|