1
|
Koop B. Fundamentals of System Design for Cardiac Pulsed Field Ablation: Optimization of Safety, Efficacy, and Usability. Pacing Clin Electrophysiol 2025. [PMID: 39913115 DOI: 10.1111/pace.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 02/07/2025]
Abstract
The goal of a cardiac pulsed field ablation (PFA) system is to provide safe, effective, and usable therapy for the treatment of cardiac arrhythmias. Achieving this goal is a complex exercise in system design, requiring optimization of catheter, waveform, and dosing. This optimization is often iterative, as myriad design factors are balanced to achieve the goal while making use of computational modeling, bench testing, preclinical animal studies, and human clinical studies to evaluate system performance. It is important for both engineers and clinicians to understand the fundamentals of cardiac PFA system design in order to partner to continuously improve performance of this expanding ablation modality.
Collapse
Affiliation(s)
- Brendan Koop
- Electrophysiology Research & Development, Boston Scientific Corporation, Marlborough, Massachusetts, USA
| |
Collapse
|
2
|
Milan HFM, Almazloum AA, Bassani RA, Bassani JWM. Membrane polarization at the excitation threshold induced by external electric fields in cardiomyocytes of rats at different developmental stages. Med Biol Eng Comput 2023; 61:2637-2647. [PMID: 37405671 DOI: 10.1007/s11517-023-02868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023]
Abstract
External electric fields (E), used for cardiac pacing and defibrillation/cardioversion, induce a spatially variable change in cardiomyocyte transmembrane potential (ΔVm) that depends on cell geometry and E orientation. This study investigates E-induced ΔVm in cardiomyocytes from rats at different ages, which show marked size/geometry variation. Using a tridimensional numerical electromagnetic model recently proposed (NM3D), it was possible: (a) to evaluate the suitability of the simpler, prolate spheroid analytical model (PSAM) to calculate amplitude and location of ΔVm maximum (ΔVmax) for E = 1 V.cm-1; and (b) to estimate the ΔVmax required for excitation (ΔVT) from experimentally determined threshold E values (ET). Ventricular myocytes were isolated from neonatal, weaning, adult, and aging Wistar rats. NM3D was constructed as the extruded 2D microscopy cell image, while measured minor and major cell dimensions were used for PSAM. Acceptable ΔVm estimates can be obtained with PSAM from paralelepidal cells for small θ. ET, but not ΔVT, was higher for neonate cells. ΔVT was significantly greater in the cell from older animals, which indicate lower responsiveness to E associated with aging, rather than with altered cell geometry/dimensions. ΔVT might be used as a non-invasive indicator of cell excitability as it is little affected by cell geometry/size.
Collapse
Affiliation(s)
- Hugo F M Milan
- Department of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Av. Albert Einstein 400, Campinas, SP, 13083-852, Brazil.
| | - Ahmad A Almazloum
- Department of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Av. Albert Einstein 400, Campinas, SP, 13083-852, Brazil
| | - Rosana A Bassani
- Department of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Av. Albert Einstein 400, Campinas, SP, 13083-852, Brazil
- LabNECC, Center for Biomedical Engineering (CEB), University of Campinas (UNICAMP), R. Alexander Fleming 163, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-881, Brazil
| | - José W M Bassani
- Department of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Av. Albert Einstein 400, Campinas, SP, 13083-852, Brazil
- LabNECC, Center for Biomedical Engineering (CEB), University of Campinas (UNICAMP), R. Alexander Fleming 163, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-881, Brazil
| |
Collapse
|
3
|
Scuderi M, Dermol-Černe J, Batista Napotnik T, Chaigne S, Bernus O, Benoist D, Sigg DC, Rems L, Miklavčič D. Characterization of Experimentally Observed Complex Interplay between Pulse Duration, Electrical Field Strength, and Cell Orientation on Electroporation Outcome Using a Time-Dependent Nonlinear Numerical Model. Biomolecules 2023; 13:727. [PMID: 37238597 PMCID: PMC10216437 DOI: 10.3390/biom13050727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Electroporation is a biophysical phenomenon involving an increase in cell membrane permeability to molecules after a high-pulsed electric field is applied to the tissue. Currently, electroporation is being developed for non-thermal ablation of cardiac tissue to treat arrhythmias. Cardiomyocytes have been shown to be more affected by electroporation when oriented with their long axis parallel to the applied electric field. However, recent studies demonstrate that the preferentially affected orientation depends on the pulse parameters. To gain better insight into the influence of cell orientation on electroporation with different pulse parameters, we developed a time-dependent nonlinear numerical model where we calculated the induced transmembrane voltage and pores creation in the membrane due to electroporation. The numerical results show that the onset of electroporation is observed at lower electric field strengths for cells oriented parallel to the electric field for pulse durations ≥10 µs, and cells oriented perpendicular for pulse durations ~100 ns. For pulses of ~1 µs duration, electroporation is not very sensitive to cell orientation. Interestingly, as the electric field strength increases beyond the onset of electroporation, perpendicular cells become more affected irrespective of pulse duration. The results obtained using the developed time-dependent nonlinear model are corroborated by in vitro experimental measurements. Our study will contribute to the process of further development and optimization of pulsed-field ablation and gene therapy in cardiac treatments.
Collapse
Affiliation(s)
- Maria Scuderi
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Janja Dermol-Černe
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Tina Batista Napotnik
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Sebastien Chaigne
- INSERM, CRCTB, U 1045, IHU Liryc, University of Bordeaux, F-33000 Bordeaux, France
| | - Olivier Bernus
- INSERM, CRCTB, U 1045, IHU Liryc, University of Bordeaux, F-33000 Bordeaux, France
| | - David Benoist
- INSERM, CRCTB, U 1045, IHU Liryc, University of Bordeaux, F-33000 Bordeaux, France
| | - Daniel C. Sigg
- Medtronic, Cardiac Ablation Solutions, Minneapolis, MN 55105, USA
| | - Lea Rems
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Gudvangen E, Mangalanathan U, Semenov I, Kiester AS, Keppler MA, Ibey BL, Bixler JN, Pakhomov AG. Pulsed Electric Field Ablation of Esophageal Malignancies and Mitigating Damage to Smooth Muscle: An In Vitro Study. Int J Mol Sci 2023; 24:ijms24032854. [PMID: 36769172 PMCID: PMC9917603 DOI: 10.3390/ijms24032854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cancer ablation therapies aim to be efficient while minimizing damage to healthy tissues. Nanosecond pulsed electric field (nsPEF) is a promising ablation modality because of its selectivity against certain cell types and reduced neuromuscular effects. We compared cell killing efficiency by PEF (100 pulses, 200 ns-10 µs duration, 10 Hz) in a panel of human esophageal cells (normal and pre-malignant epithelial and smooth muscle). Normal epithelial cells were less sensitive than the pre-malignant ones to unipolar PEF (15-20% higher LD50, p < 0.05). Smooth muscle cells (SMC) oriented randomly in the electric field were more sensitive, with 30-40% lower LD50 (p < 0.01). Trains of ten, 300-ns pulses at 10 kV/cm caused twofold weaker electroporative uptake of YO-PRO-1 dye in normal epithelial cells than in either pre-malignant cells or in SMC oriented perpendicularly to the field. Aligning SMC with the field reduced the dye uptake fourfold, along with a twofold reduction in Ca2+ transients. A 300-ns pulse induced a twofold smaller transmembrane potential in cells aligned with the field, making them less vulnerable to electroporation. We infer that damage to SMC from nsPEF ablation of esophageal malignancies can be minimized by applying the electric field parallel to the predominant SMC orientation.
Collapse
Affiliation(s)
- Emily Gudvangen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Uma Mangalanathan
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Allen S. Kiester
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| | | | - Bennett L. Ibey
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| | - Joel N. Bixler
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| | - Andrei G. Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
- Correspondence:
| |
Collapse
|
5
|
Sugrue A, Maor E, Del-Carpio Munoz F, Killu AM, Asirvatham SJ. Cardiac ablation with pulsed electric fields: principles and biophysics. Europace 2022; 24:1213-1222. [PMID: 35426908 DOI: 10.1093/europace/euac033] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/24/2022] [Indexed: 01/04/2023] Open
Abstract
Pulsed electric fields (PEFs) have emerged as an ideal cardiac ablation modality. At present numerous clinical trials in humans are exploring PEF as an ablation strategy for both atrial and ventricular arrhythmias, with early data showing significant promise. As this is a relatively new technology there is limited understanding of its principles and biophysics. Importantly, PEF biophysics and principles are starkly different to current energy modalities (radiofrequency and cryoballoon). Given the relatively novel nature of PEFs, this review aims to provide an understanding of the principles and biophysics of PEF ablation. The goal is to enhance academic research and ultimately enable optimization of ablation parameters to maximize procedure success and minimize risk.
Collapse
Affiliation(s)
- Alan Sugrue
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elad Maor
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Chaim Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Freddy Del-Carpio Munoz
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ammar M Killu
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samuel J Asirvatham
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Clementy N, Bodin A, Bisson A, Teixeira-Gomes AP, Roger S, Angoulvant D, Labas V, Babuty D. The Defibrillation Conundrum: New Insights into the Mechanisms of Shock-Related Myocardial Injury Sustained from a Life-Saving Therapy. Int J Mol Sci 2021; 22:5003. [PMID: 34066832 PMCID: PMC8125879 DOI: 10.3390/ijms22095003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Implantable cardiac defibrillators (ICDs) are recommended to prevent the risk of sudden cardiac death. However, shocks are associated with an increased mortality with a dose response effect, and a strategy of reducing electrical therapy burden improves the prognosis of implanted patients. We review the mechanisms of defibrillation and its consequences, including cell damage, metabolic remodeling, calcium metabolism anomalies, and inflammatory and pro-fibrotic remodeling. Electrical shocks do save lives, but also promote myocardial stunning, heart failure, and pro-arrhythmic effects as seen in electrical storms. Limiting unnecessary implantations and therapies and proposing new methods of defibrillation in the future are recommended.
Collapse
Affiliation(s)
- Nicolas Clementy
- Service de Cardiologie, Hôpital Trousseau, Université de Tours, 37044 Tours, France; (A.B.); (A.B.); (D.A.); (D.B.)
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France;
| | - Alexandre Bodin
- Service de Cardiologie, Hôpital Trousseau, Université de Tours, 37044 Tours, France; (A.B.); (A.B.); (D.A.); (D.B.)
| | - Arnaud Bisson
- Service de Cardiologie, Hôpital Trousseau, Université de Tours, 37044 Tours, France; (A.B.); (A.B.); (D.A.); (D.B.)
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France;
| | - Ana-Paula Teixeira-Gomes
- Plate-forme de Chirurgie et d’Imagerie pour la Recherche et l’Enseignement (CIRE), INRA, Université de Tours, CHU de Tours, 37380 Nouzilly, France; (A.-P.T.-G.); (V.L.)
| | - Sebastien Roger
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France;
| | - Denis Angoulvant
- Service de Cardiologie, Hôpital Trousseau, Université de Tours, 37044 Tours, France; (A.B.); (A.B.); (D.A.); (D.B.)
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France;
| | - Valérie Labas
- Plate-forme de Chirurgie et d’Imagerie pour la Recherche et l’Enseignement (CIRE), INRA, Université de Tours, CHU de Tours, 37380 Nouzilly, France; (A.-P.T.-G.); (V.L.)
| | - Dominique Babuty
- Service de Cardiologie, Hôpital Trousseau, Université de Tours, 37044 Tours, France; (A.B.); (A.B.); (D.A.); (D.B.)
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France;
| |
Collapse
|
7
|
Yadav V, Chong N, Ellis B, Ren X, Senapati S, Chang HC, Zorlutuna P. Constant-potential environment for activating and synchronizing cardiomyocyte colonies with on-chip ion-depleting perm-selective membranes. LAB ON A CHIP 2020; 20:4273-4284. [PMID: 33090162 DOI: 10.1039/d0lc00809e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, an ion depleted zone created by an ion-selective membrane was used to impose a high and uniform constant extracellular potential over an entire ∼1000 cell rat cardiomyocyte (rCM) colony on-a-chip to trigger synchronized voltage-gated ion channel activities while preserving cell viability, thus extending single-cell voltage-clamp ion channel studies to an entire normalized colony. Image analysis indicated that rCM beating was strengthened and accelerated (by a factor of ∼2) within minutes of ion depletion and the duration of contraction and relaxation phases was significantly reduced. After the initial synchronization, the entire colony responds collectively to external potential changes such that beating over the entire colony can be activated or deactivated within 0.1 s. These newly observed collective dynamic responses, due to simultaneous ion channel activation/deactivation by a uniform constant-potential extracellular environment, suggest that perm-selective membrane modules on cell culture chips can facilitate studies of extracellular cardiac cell electrical communication and how ion-channel related pathologies affect cardiac cell synchronization. The future applications of this new technology can lead to better drug screening platforms for cardiotoxicity as well as platforms that can facilitate synchronized maturation of pluripotent stem cells into colonies with high electrical connectivity.
Collapse
Affiliation(s)
- Vivek Yadav
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nicholas Chong
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley Ellis
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xiang Ren
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556, USA and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556, USA and Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Pinar Zorlutuna
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
8
|
Dermol-Černe J, Batista Napotnik T, Reberšek M, Miklavčič D. Short microsecond pulses achieve homogeneous electroporation of elongated biological cells irrespective of their orientation in electric field. Sci Rep 2020; 10:9149. [PMID: 32499601 PMCID: PMC7272635 DOI: 10.1038/s41598-020-65830-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
In gene electrotransfer and cardiac ablation with irreversible electroporation, treated muscle cells are typically of elongated shape and their orientation may vary. Orientation of cells in electric field has been reported to affect electroporation, and hence electrodes placement and pulse parameters choice in treatments for achieving homogeneous effect in tissue is important. We investigated how cell orientation influences electroporation with respect to different pulse durations (ns to ms range), both experimentally and numerically. Experimentally detected electroporation (evaluated separately for cells parallel and perpendicular to electric field) via Ca2+ uptake in H9c2 and AC16 cardiomyocytes was numerically modeled using the asymptotic pore equation. Results showed that cell orientation affects electroporation extent: using short, nanosecond pulses, cells perpendicular to electric field are significantly more electroporated than parallel (up to 100-times more pores formed), and with long, millisecond pulses, cells parallel to electric field are more electroporated than perpendicular (up to 1000-times more pores formed). In the range of a few microseconds, cells of both orientations were electroporated to the same extent. Using pulses of a few microseconds lends itself as a new possible strategy in achieving homogeneous electroporation in tissue with elongated cells of different orientation (e.g. electroporation-based cardiac ablation).
Collapse
Affiliation(s)
- Janja Dermol-Černe
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Matej Reberšek
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Bradley CJ, Haines DE. Pulsed field ablation for pulmonary vein isolation in the treatment of atrial fibrillation. J Cardiovasc Electrophysiol 2020; 31:2136-2147. [DOI: 10.1111/jce.14414] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Christopher J. Bradley
- Department of Cardiovascular Medicine, Beaumont HospitalOakland University William Beaumont School of Medicine Royal Oak Michigan
| | - David E. Haines
- Department of Cardiovascular Medicine, Beaumont HospitalOakland University William Beaumont School of Medicine Royal Oak Michigan
| |
Collapse
|
10
|
Accuracy of electromagnetic models to estimate cardiomyocyte membrane polarization. Med Biol Eng Comput 2019; 57:2617-2627. [PMID: 31667705 DOI: 10.1007/s11517-019-02054-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
External electric fields (E) induce a spatially heterogeneous variation in the membrane potential (ΔVm) of cardiomyocytes that, if sufficiently large, results in an action potential and contraction. Insights into the phenomenon of ΔVm induction by E have been classically gained with electromagnetic models due to the lack of adequate experimental approaches. However, it is not clear yet how reliable these models are. To assess the accuracy of commonly used models, a reference 3D numerical model for cardiomyocytes (NMReal) was developed, consisting of the cell membrane shell reconstructed from rendered confocal microscopy images of freshly isolated ventricular myocytes. NMReal was used to estimate the E-induced maximum ΔVm values (ΔVmax), which were compared with estimates from seven other electromagnetic models. Accurate ΔVmax estimates (average error < 2%) were obtained with a less complex 3D model (NM3D) based on the extruded 2D image of the cell longitudinal section. Acceptable ΔVmax estimates (average error < 5%) were obtained with the prolate spheroid analytical model (PSAM) when the angle of E incidence and the cell major axis was < 30°. In this case, PSAM, a much simpler model requiring only the measurement of the longitudinal and transversal cell dimensions, can be a suitable alternative for ΔVmax calculation. Graphical abstract (A) Confocal images of the cell were used to reconstruct the realistic geometry of cardiomyocytes (NMReal). (B) NMReal was used to estimate the maximum variation in the transmembrane potential (ΔVmax) induced by an external electric field (E) applied at different angles with respect to the cell major axis. Plus (anode) and minus (cathode) signs indicate electrode position (E direction is from minus to plus). (C) Relative error (vs. NMReal) of ΔVmax estimation with simplified electromagnetic models, presented in descending order of accuracy (left-to-right, top-to-bottom). NM2D: 2D numerical model based on the longitudinal cell image; NM3D: numerical model based on the z extrusion of NM2D; EAM, PSAM, and CAM: ellipsoidal, prolate spheroidal, and cylindrical analytical models, respectively; PNM and CNM: parallelepipedal and cylindrical numerical models, respectively.
Collapse
|
11
|
Antoneli PC, Goulart JT, Bonilha I, de Carvalho DD, de Oliveira PX. Heart defibrillation: relationship between pacing threshold and defibrillation probability. Biomed Eng Online 2019; 18:96. [PMID: 31519192 PMCID: PMC6743100 DOI: 10.1186/s12938-019-0715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/03/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Considering the clinical importance of the ventricular fibrillation and that the most used therapy to reverse it has a critical side effect on the cardiac tissue, it is desirable to optimize defibrillation parameters to increase its efficiency. In this study, we investigated the influence of stimuli duration on the relationship between pacing threshold and defibrillation probability. RESULTS We found out that 0.5-ms-long pulses had a lower ratio of defibrillation probability to the pacing threshold, although the higher the pulse duration the lower is the electric field intensity required to defibrillate the hearts. CONCLUSION The appropriate choice of defibrillatory shock parameters is able to increase the efficiency of the defibrillation improving the survival chances after the occurrence of a severe arrhythmia. The relationship between pulse duration and the probability of reversal of fibrillation shows that this parameter cannot be underestimated in defibrillator design since different pulse durations have different levels of safety.
Collapse
Affiliation(s)
- Priscila C Antoneli
- Department of Biomedical Engineering, School of Electrical and Computer Engineering-FEEC, University of Campinas-UNICAMP, Rua Alexander Fleming 163, Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13083-881, Brazil
| | - Jair T Goulart
- Department of Physiological Sciences, Institute of Biology, University of Brasilia-UnB, Campus Universitário Darcy Ribeiro-Asa Norte, Brasília, DF, CEP 70910-900, Brazil
| | - Isabella Bonilha
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, University of Campinas-UNICAMP, Rua Cinco de Junho, 350, Bloco 1, Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13083-877, Brazil
| | - Daniela D de Carvalho
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, University of Campinas-UNICAMP, Rua Cinco de Junho, 350, Bloco 1, Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13083-877, Brazil
| | - Pedro X de Oliveira
- Department of Biomedical Engineering, School of Electrical and Computer Engineering-FEEC, University of Campinas-UNICAMP, Rua Alexander Fleming 163, Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13083-881, Brazil. .,Center for Biomedical Engineering, University of Campinas-UNICAMP, Rua Alexander Fleming 163, Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13083-881, Brazil.
| |
Collapse
|
12
|
de Freitas JANLF, Dos Santos Costa Leomil F, Zoccoler M, Antoneli PC, de Oliveira PX. Cardiomyocyte lethality by multidirectional stimuli. Med Biol Eng Comput 2018; 56:2177-2184. [PMID: 29845489 DOI: 10.1007/s11517-018-1848-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
Multidirectional defibrillation protocols have shown better efficiency than monodirectional; still, no testing was performed to assess cell lethality. We investigated lethality of multidirectional defibrillator-like shocks on isolated cardiomyocytes. Cells were isolated from adult male Wistar rats and plated into a perfusion chamber. Electrical field stimulation threshold (ET) was obtained, and cells were paced with suprathreshold bipolar electrical field (E) pulses. Either one monodirectional high-intensity electrical field (HEF) pulse aligned at 0° (group Mono0) or 60° (group Mono60) to cell major axis or a multidirectional sequence of three HEF pulses aligned at 0°, 60°, and 120° each was applied. If cell recovered from shock, pacing was resumed, and a higher amplitude HEF, proportional to ET, was applied. The sequence was repeated until cell death. Lethality curves were built by means of survival analysis from sub-lethal and lethal E. Non-linear fit was performed, and E values corresponding to 50% probability of lethality (E50) were compared. Multidirectional groups presented lethality curves similar to Mono0. Mono60 displayed the highest E50. The novel data endorse the idea of multidirectional stimuli being safer because their effects on lethality of individual cells were equal to a single monodirectional stimulus, while their defibrillatory threshold is lower. Graphical abstract Monodirectional and multidirectional lethality protocol comparison on isolated rat cardiomyocytes. The heart image is a derivative of "3D Heart in zBrush" ( https://vimeo.com/65568770 ) by Laloxl, used under CC BY 3.0 ( https://creativecommons.org/licenses/by/3.0/legalcode )/image extracted from original video.
Collapse
Affiliation(s)
| | | | - Marcelo Zoccoler
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, São Paulo, Brazil.
| | - Priscila Correia Antoneli
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, São Paulo, Brazil
| | - Pedro Xavier de Oliveira
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, São Paulo, Brazil.,Center for Biomedical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Semenov I, Grigoryev S, Neuber JU, Zemlin CW, Pakhomova ON, Casciola M, Pakhomov AG. Excitation and injury of adult ventricular cardiomyocytes by nano- to millisecond electric shocks. Sci Rep 2018; 8:8233. [PMID: 29844431 PMCID: PMC5974370 DOI: 10.1038/s41598-018-26521-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Intense electric shocks of nanosecond (ns) duration can become a new modality for more efficient but safer defibrillation. We extended strength-duration curves for excitation of cardiomyocytes down to 200 ns, and compared electroporative damage by proportionally more intense shocks of different duration. Enzymatically isolated murine, rabbit, and swine adult ventricular cardiomyocytes (VCM) were loaded with a Ca2+ indicator Fluo-4 or Fluo-5N and subjected to shocks of increasing amplitude until a Ca2+ transient was optically detected. Then, the voltage was increased 5-fold, and the electric cell injury was quantified by the uptake of a membrane permeability marker dye, propidium iodide. We established that: (1) Stimuli down to 200-ns duration can elicit Ca2+ transients, although repeated ns shocks often evoke abnormal responses, (2) Stimulation thresholds expectedly increase as the shock duration decreases, similarly for VCMs from different species, (3) Stimulation threshold energy is minimal for the shortest shocks, (4) VCM orientation with respect to the electric field does not affect the threshold for ns shocks, and (5) The shortest shocks cause the least electroporation injury. These findings support further exploration of ns defibrillation, although abnormal response patterns to repetitive ns stimuli are of a concern and require mechanistic analysis.
Collapse
Affiliation(s)
- Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Sergey Grigoryev
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Johanna U Neuber
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23508, USA
| | - Christian W Zemlin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Maura Casciola
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA.
| |
Collapse
|
14
|
The second phase of bipolar, nanosecond-range electric pulses determines the electroporation efficiency. Bioelectrochemistry 2018; 122:123-133. [PMID: 29627664 DOI: 10.1016/j.bioelechem.2018.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022]
Abstract
Bipolar cancellation refers to a phenomenon when applying a second electric pulse reduces ("cancels") cell membrane damage by a preceding electric pulse of the opposite polarity. Bipolar cancellation is a reason why bipolar nanosecond electric pulses (nsEP) cause weaker electroporation than just a single unipolar phase of the same pulse. This study was undertaken to explore the dependence of bipolar cancellation on nsEP parameters, with emphasis on the amplitude ratio of two opposite polarity phases of a bipolar pulse. Individual cells (CHO, U937, or adult mouse ventricular cardiomyocytes (VCM)) were exposed to either uni- or bipolar trapezoidal nsEP, or to nanosecond electric field oscillations (NEFO). The membrane injury was evaluated by time-lapse confocal imaging of the uptake of propidium (Pr) or YO-PRO-1 (YP) dyes and by phosphatidylserine (PS) externalization. Within studied limits, bipolar cancellation showed little or no dependence on the electric field intensity, pulse repetition rate, chosen endpoint, or cell type. However, cancellation could increase for larger pulse numbers and/or for longer pulses. The sole most critical parameter which determines bipolar cancellation was the phase ratio: maximum cancellation was observed with the 2nd phase of about 50% of the first one, whereas a larger 2nd phase could add a damaging effect of its own. "Swapping" the two phases, i.e., delivering the smaller phase before the larger one, reduced or eliminated cancellation. These findings are discussed in the context of hypothetical mechanisms of bipolar cancellation and electroporation by nsEP.
Collapse
|
15
|
Camara H, da Silva Junior ED, Garcia AG, Jurkiewicz A, Rodrigues JQD. Cardiac arrest induced by muscarinic or adenosine receptors agonists is reversed by DPCPX through double mechanism. Eur J Pharmacol 2018; 819:9-15. [PMID: 28974348 DOI: 10.1016/j.ejphar.2017.09.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
Abstract
In the right atrium (RA), adenosine and acetylcholine inhibit the pacemaker function of the sinoatrial node and induce cardiac arrest. Pre-incubation of receptor antagonists is known to inhibit the cardiac arrest induced by these agonists; however, the effect of antagonist administration after established cardiac arrest has not been described. Therefore, we assessed whether specific receptor antagonists could revert cardiac arrest induced by adenosine and muscarinic receptors activation. RA isolated from adults Wistar rats were mounted in an organ bath containing Krebs solution. Cardiac arrest was induced by adenosine or ATP (1mM), the A1 adenosine receptor agonist CPA (0.1-1µM), and muscarinic receptor agonists, carbachol (0.3-1µM) and acetylcholine (1mM). After establishing the cardiac arrest, the A1 adenosine receptor antagonist DPCPX (0.3-30µM), the muscarinic receptor antagonist atropine (10nM to 100µM) or the phosphodiesterase inhibitor IBMX (10-300µM) were incubated in order to check for the return of spontaneous contractions. DPCPX reversed the cardiac arrest induced by adenosine, ATP and CPA. In addition, atropine reversed the cardiac arrest induced by carbachol. Unexpectedly, DPCPX also reversed the cardiac arrest induced by carbachol. Similarly to DPCPX, the phosphodiesterase inhibitor IBMX reversed the cardiac arrest induced by adenosine, CPA and carbachol. The antagonism of adenosine and acetylcholine receptors activation, as well as phosphodiesterase inhibition, are able to revert cardiac arrest. DPCPX restore spontaneous contractions via the selective antagonism of A1 adenosine receptor and through a secondary mechanism likely related to phosphodiesterase inhibition.
Collapse
Affiliation(s)
- Henrique Camara
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Antônio G Garcia
- Instituto Teófilo Hernando, Universidad Autonoma de Madrid, Madrid, Spain
| | - Aron Jurkiewicz
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.
| | | |
Collapse
|
16
|
Goulart JT, Bassani RA, Bassani JWM. Application based on the Canny edge detection algorithm for recording contractions of isolated cardiac myocytes. Comput Biol Med 2017; 81:106-110. [DOI: 10.1016/j.compbiomed.2016.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 12/11/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
|
17
|
Milan HFM, Bassani RA, Bassani JWM. Testing electrode suitability for field stimulation of high-threshold biological preparations. ACTA ACUST UNITED AC 2015. [DOI: 10.1590/2446-4740.0718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Viana MA, Bassani RA, Petrucci O, Marques DA, Bassani JWM. Rapidly switching multidirectional defibrillation: Reversal of ventricular fibrillation with lower energy shocks. J Thorac Cardiovasc Surg 2014; 148:3213-8. [DOI: 10.1016/j.jtcvs.2014.07.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/25/2014] [Accepted: 07/07/2014] [Indexed: 11/26/2022]
|
19
|
Pakhomov AG, Semenov I, Xiao S, Pakhomova ON, Gregory B, Schoenbach KH, Ullery JC, Beier HT, Rajulapati SR, Ibey BL. Cancellation of cellular responses to nanoelectroporation by reversing the stimulus polarity. Cell Mol Life Sci 2014; 71:4431-41. [PMID: 24748074 DOI: 10.1007/s00018-014-1626-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/26/2022]
Abstract
Nanoelectroporation of biomembranes is an effect of high-voltage, nanosecond-duration electric pulses (nsEP). It occurs both in the plasma membrane and inside the cell, and nanoporated membranes are distinguished by ion-selective and potential-sensitive permeability. Here we report a novel phenomenon of bioeffects cancellation that puts nsEP cardinally apart from the conventional electroporation and electrostimulation by milli- and microsecond pulses. We compared the effects of 60- and 300-ns monopolar, nearly rectangular nsEP on intracellular Ca(2+) mobilization and cell survival with those of bipolar 60 + 60 and 300 + 300 ns pulses. For diverse endpoints, exposure conditions, pulse numbers (1-60), and amplitudes (15-60 kV/cm), the addition of the second phase cancelled the effects of the first phase. The overall effect of bipolar pulses was profoundly reduced, despite delivering twofold more energy. Cancellation also took place when two phases were separated into two independent nsEP of opposite polarities; it gradually tapered out as the interval between two nsEP increased, but was still present even at a 10-µs interval. The phenomenon of cancellation is unique for nsEP and has not been predicted by the equivalent circuit, transport lattice, and molecular dynamics models of electroporation. The existing paradigms of membrane permeabilization by nsEP will need to be modified. Here we discuss the possible involvement of the assisted membrane discharge, two-step oxidation of membrane phospholipids, and reverse transmembrane ion transport mechanisms. Cancellation impacts nsEP applications in cancer therapy, electrostimulation, and biotechnology, and provides new insights into effects of more complex waveforms, including pulsed electromagnetic emissions.
Collapse
Affiliation(s)
- Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fonseca AVS, Bassani RA, Oliveira PX, Bassani JWM. Greater Cardiac Cell Excitation Efficiency With Rapidly Switching Multidirectional Electrical Stimulation. IEEE Trans Biomed Eng 2013; 60:28-34. [DOI: 10.1109/tbme.2012.2220766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Wang YT, Efimov IR, Cheng Y. Electroporation induced by internal defibrillation shock with and without recovery in intact rabbit hearts. Am J Physiol Heart Circ Physiol 2012; 303:H439-49. [PMID: 22730387 DOI: 10.1152/ajpheart.01121.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Defibrillation shocks from implantable cardioverter defibrillators can be lifesaving but can also damage cardiac tissues via electroporation. This study characterizes the spatial distribution and extent of defibrillation shock-induced electroporation with and without a 45-min postshock period for cell membranes to recover. Langendorff-perfused rabbit hearts (n = 31) with and without a chronic left ventricular (LV) myocardial infarction (MI) were studied. Mean defibrillation threshold (DFT) was determined to be 161.4 ± 17.1 V and 1.65 ± 0.44 J in MI hearts for internally delivered 8-ms monophasic truncated exponential (MTE) shocks during sustained ventricular fibrillation (>20 s, SVF). A single 300-V MTE shock (twice determined DFT voltage) was used to terminate SVF. Shock-induced electroporation was assessed by propidium iodide (PI) uptake. Ventricular PI staining was quantified by fluorescent imaging. Histological analysis was performed using Masson's Trichrome staining. Results showed PI staining concentrated near the shock electrode in all hearts. Without recovery, PI staining was similar between normal and MI groups around the shock electrode and over the whole ventricles. However, MI hearts had greater total PI uptake in anterior (P < 0.01) and posterior (P < 0.01) LV epicardial regions. Postrecovery, PI staining was reduced substantially, but residual staining remained significant with similar spacial distributions. PI staining under SVF was similar to previously studied paced hearts. In conclusion, electroporation was spatially correlated with the active region of the shock electrode. Additional electroporation occurred in the LV epicardium of MI hearts, in the infarct border zone. Recovery of membrane integrity postelectroporation is likely a prolonged process. Short periods of SVF did not affect electroporation injury.
Collapse
Affiliation(s)
- Yves T Wang
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
22
|
The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling. Med Biol Eng Comput 2010; 48:637-48. [PMID: 20424926 PMCID: PMC2886894 DOI: 10.1007/s11517-010-0614-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 04/11/2010] [Indexed: 11/30/2022]
Abstract
The aim of this study was to theoretically and experimentally investigate electroporation of mouse tibialis cranialis and to determine the reversible electroporation threshold values needed for parallel and perpendicular orientation of the applied electric field with respect to the muscle fibers. Our study was based on local electric field calculated with three-dimensional realistic numerical models, that we built, and in vivo visualization of electroporated muscle tissue. We established that electroporation of muscle cells in tissue depends on the orientation of the applied electric field; the local electric field threshold values were determined (pulse parameters: 8 × 100 μs, 1 Hz) to be 80 V/cm and 200 V/cm for parallel and perpendicular orientation, respectively. Our results could be useful electric field parameters in the control of skeletal muscle electroporation, which can be used in treatment planning of electroporation based therapies such as gene therapy, genetic vaccination, and electrochemotherapy.
Collapse
|
23
|
Klauke N, Smith G, Cooper JM. Regional electroporation of single cardiac myocytes in a focused electric field. Anal Chem 2010; 82:585-92. [PMID: 20020746 DOI: 10.1021/ac901886j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is now a significant interest in being able to locate single cells within geometrically defined regions of a microfluidic chip and to gain intracellular access through the local electroporation of the cell membrane. This paper describes the microfabrication of electroporation devices which can enable the regional electroporation of adult ventricular myocytes, in order to lower the local electrical resistance of the cell membrane. Initially three different devices, designed to suit the characteristic geometry of the cardiomyocyte, were investigated (all three designs serve to focus the electric field to selected regions of the cell). We demonstrate that one of these three devices revealed the sequence of cellular responses to field strengths of increasing magnitudes, namely, cell contraction, hypercontraction, and lysis. This same device required a reduced threshold voltage for each of these events, including in particular membrane breakdown. We were not only able to show the gradual regional increase in the electric conductivity of the cell membrane but were also able to avoid changes in the local intra- and extracellular pH (by preventing the local generation of protons at the electrode surface, as a consequence of the reduced threshold voltage). The paper provides evidence for new strategies for achieving robust and reproducible regional electroporation, a technique which, in future, may be used for the insertion of large molecular weight molecules (including genes) as well as for on-chip voltage clamping of the primary adult cardiomyocyte.
Collapse
|
24
|
Optimizing the shape of defibrillation shocks. Crit Care Med 2009; 37:2482-3. [PMID: 19609123 DOI: 10.1097/ccm.0b013e3181aee586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Gehlot NS. Recent developments in biomedical engineering education and research in Brazil. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2009:5862-5865. [PMID: 19964875 DOI: 10.1109/iembs.2009.5334542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The purpose of this paper is to present recent developments in Biomedical Engineering (BME) education & research in Brazil. The state-of-the-art in research in BME around the world is mentioned to highlight emerging technologies. A review of BME undergraduate, graduate & research programs in Brazil is presented. A roadmap of developing BME education in Brazil is outlined. Some critical implementation issues are mentioned.
Collapse
Affiliation(s)
- Narpat S Gehlot
- Faculdade de Ciencias e Tecnologia-Facitech, Campina Grande, PB 58410-858, Brazil.
| |
Collapse
|