1
|
Li H, Wang Y, Chen W, Zhang Y, Guo X, Xu L, Bao Y, Zhou J, Sun H, Bi Y, Feng H, Wang W, Suo S, Tang J. Optical coherence tomography guided automatic robotic craniotomy surgery platform. BIOMEDICAL OPTICS EXPRESS 2025; 16:778-789. [PMID: 39958837 PMCID: PMC11828463 DOI: 10.1364/boe.549260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
A transparent craniotomy window is required for optical brain imaging; however, traditional surgical preparation requires well-trained surgeons, is time-consuming, and suffers from low success rates. To address this issue, we present an automatic craniotomy platform combining optical coherence tomography (OCT) with an automated drilling machine. The OCT provides 3D skull data to guide a homemade closed-loop high-precision drill for controlled craniotomies, achieving a 100% success rate in creating small, large, and thinned windows. A synthetic transparent window was installed after skull excision. This system enables high-quality OCT angiography, velocimetry, and ultrasound imaging, offering an efficient tool for brain research.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yongchao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanjun Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangsen Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Luke Xu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuerong Bao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junxiong Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Heng Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuntian Bi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huijuan Feng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenjin Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sen Suo
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianbo Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Wang Y, Lowerison MR, Huang Z, You Q, Lin BZ, Llano DA, Song P. Longitudinal Awake Imaging of Mouse Deep Brain Microvasculature with Super-resolution Ultrasound Localization Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.01.555789. [PMID: 37732191 PMCID: PMC10508721 DOI: 10.1101/2023.09.01.555789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Ultrasound localization microscopy (ULM) is an emerging imaging modality that resolves microvasculature in deep tissues with high spatial resolution. However, existing preclinical ULM applications are largely constrained to anesthetized animals, introducing confounding vascular effects such as vasodilation and altered hemodynamics. As such, ULM quantifications (e.g., vessel diameter, density, and flow velocity) may be confounded by the use of anesthesia, undermining the usefulness of ULM in practice. Here we introduce a method to address this limitation and achieve ULM imaging in awake mouse brain. Pupillary monitoring was used to support the presence of the awake state during ULM imaging. Vasodilation induced by isoflurane was observed by ULM. Upon recovery to the awake state, reductions in vessel density and flow velocity were observed across different brain regions. In the cortex, the effects induced by isoflurane are more pronounced on venous flow than on arterial flow. In addition, serial in vivo imaging of the same animal brain at weekly intervals demonstrated the highly robust longitudinal imaging capability of the proposed technique. The consistency was further verified through quantitative analysis on individual vessels, cortical regions of arteries and veins, and subcortical regions. This study demonstrates longitudinal ULM imaging in the awake mouse brain, which is crucial for many ULM brain applications that require awake and behaving animals.
Collapse
|
3
|
Tang X, Zhou J, Liang S, Zhang J, Xiong J, Ma L, Chen SL. All-fiber miniature non-contact photoacoustic probe based on photoacoustic remote sensing microscopy for vascular imaging in vivo. OPTICS LETTERS 2024; 49:5531-5534. [PMID: 39352999 DOI: 10.1364/ol.539208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024]
Abstract
Photoacoustic (PA) remote sensing (PARS) microscopy represents a significant advancement by eliminating the need for traditional acoustic coupling media in PA microscopy (PAM), thereby broadening its potential applications. However, current PARS microscopy setups predominantly rely on free-space optical components, which can be cumbersome to implement and limit the scope of imaging applications. In this study, we develop an all-fiber miniature non-contact PA probe based on PARS microscopy, utilizing a 532-nm excitation wavelength, and showcase its effectiveness in in vivo vascular imaging. Our approach integrates various fiber-optic components, including a wavelength division multiplexer, a mode field adaptor, a fiber lens, and an optical circulator, to streamline the implementation of the PARS microscopy system. Additionally, we have successfully developed a miniature PA probe with a diameter of 4 mm. The efficacy of our imaging setup is demonstrated through in vivo imaging of mouse brain vessels. By introducing this all-fiber miniature PA probe, our work may open up new opportunities for non-contact PAM applications.
Collapse
|
4
|
Li T, Gong X, Guo H, Xi L. Photoacoustic expansion microscopy of melanosomes. OPTICS LETTERS 2024; 49:798-801. [PMID: 38359185 DOI: 10.1364/ol.509831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/13/2024] [Indexed: 02/17/2024]
Abstract
Optical resolution photoacoustic microscopy (OR-PAM) is a hybrid imaging method for visualizing organelles due to the high spatial resolution and abundant optical contrast. Usually, OR-PAM employs high numerical aperture (NA) objectives and high-frequency ultrasonic detectors to resolve three-dimensional (3D) microstructures of cells. Expansion microscopy (ExM) provides a nanoscale resolution by isotropically enlarging cells instead of utilizing ultrahigh NA objectives. In this Letter, we report the development of photoacoustic expansion microscopy (PA-ExM) that combines the advantages of OR-PAM and ExM for 3D organelle imaging using near-infrared light. We evaluate the performance of PA-ExM using label-free melanoma cells, where the image quality of melanosome distributions in expanded cells using a 40× objective is comparable to that of unexpanded cells using an oil-immersed 100× objective. The results suggest that PA-ExM possesses the great potential to study organelles.
Collapse
|
5
|
Guo T, Xiong K, Yuan B, Zhang Z, Wang L, Zhang Y, Liang C, Liu Z. Homogeneous-resolution photoacoustic microscopy for ultrawide field-of-view neurovascular imaging in Alzheimer's disease. PHOTOACOUSTICS 2023; 31:100516. [PMID: 37313359 PMCID: PMC10258506 DOI: 10.1016/j.pacs.2023.100516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023]
Abstract
Neurovascular imaging is essential for investigating neurodegenerative diseases. However, the existing neurovascular imaging technology suffers from a trade-off between a field of view (FOV) and resolution in the whole brain, resulting in an inhomogeneous resolution and lack of information. Here, homogeneous-resolution arched-scanning photoacoustic microscopy (AS-PAM), which has an ultrawide FOV to cover the entire mouse cerebral cortex, was developed. Imaging of the neurovasculature was performed with a homogenous resolution of 6.9 µm from the superior sagittal sinus to the middle cerebral artery and caudal rhinal vein in an FOV of 12 × 12 mm2. Moreover, using AS-PAM, vascular features of the meninges and cortex were quantified in early Alzheimer's disease (AD) and wild-type (WT) mice. The results demonstrated high sensitivity to the pathological progression of AD on tortuosity and branch index. The high-fidelity imaging capability in large FOV enables AS-PAM to be a promising tool for precise brain neurovascular visualization and quantification.
Collapse
Affiliation(s)
- Ting Guo
- School of Medicine South China University of Technology, Guangzhou 510006, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Bo Yuan
- MOE Key Laboratory of Laser Life Science Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhenhui Zhang
- MOE Key Laboratory of Laser Life Science Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Lijuan Wang
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangzhou 510080, China
| | - Yuhu Zhang
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangzhou 510080, China
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
| |
Collapse
|
6
|
Zhang W, Luo X, Yang F, Tong Z, Liang J, Yuan B, Yang S, Wang Z. Photoacoustic (532 and 1064 nm) and ultrasonic coscanning microscopy for in vivo imaging on small animals: A productized strategy. JOURNAL OF BIOPHOTONICS 2023; 16:e202300007. [PMID: 36789474 DOI: 10.1002/jbio.202300007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/07/2023]
Abstract
Photoacoustic microscopy provides a new dimension of observation in microscopic life science. However, due to the high complexity of building a photoacoustic microscopy system, for many life science practitioners, it usually takes several years to build a stable photoacoustic microscopy system. For the above situation, in this article, a productized strategy of photoacoustic (532 and 1064 nm) and ultrasonic coscanning microscopy for in vivo imaging on small animals is presented. A 532 nm laser is applied to image blood vessels and pigments in label-free manner, whereas 1064 nm laser is applied to image pigments and some novel probes developed for NIR-II windows. Ultrasound is applied to assist photoacoustic imaging to accurately locate its imaging site in tissues. All 3D results are obtained with one single scan. The strategy presented here will help life science practitioners to build a stable photoacoustic microscopy platform.
Collapse
Affiliation(s)
- Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Photoacoustic Technology Co., Ltd, Foshan, China
| | - Xingzhi Luo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Photoacoustic Technology Co., Ltd, Foshan, China
| | - Fei Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhuangzhuang Tong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Photoacoustic Technology Co., Ltd, Foshan, China
| | - Jiaxi Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Bo Yuan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Wang Y, Tsai CH, Chu TS, Hung YT, Lee MY, Chen HH, Chen LT, Ger TR, Wang YH, Chiang NJ, Liao LD. Revisiting the cerebral hemodynamics of awake, freely moving rats with repeated ketamine self-administration using a miniature photoacoustic imaging system. NEUROPHOTONICS 2022; 9:045003. [PMID: 36338453 PMCID: PMC9623815 DOI: 10.1117/1.nph.9.4.045003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Revealing the dynamic associations between brain functions and behaviors is a significant challenge in neurotechnology, especially for awake subjects. Imaging cerebral hemodynamics in awake animal models is important because the collected data more realistically reflect human disease states. AIM We previously reported a miniature head-mounted scanning photoacoustic imaging (hmPAI) system. In the present study, we utilized this system to investigate the effects of ketamine on the cerebral hemodynamics of normal rats and rats subjected to prolonged ketamine self-administration. APPROACH The cortical superior sagittal sinus (SSS) was continuously monitored. The full-width at half-maximum (FWHM) of the photoacoustic (PA) A-line signal was used as an indicator of the SSS diameter, and the number of pixels in PA B-scan images was used to investigate changes in the cerebral blood volume (CBV). RESULTS We observed a significantly higher FWHM (blood vessel diameter) and CBV in normal rats injected with ketamine than in normal rats injected with saline. For rats subjected to prolonged ketamine self-administration, no significant changes in either the blood vessel diameter or CBV were observed. CONCLUSIONS The lack of significant change in prolonged ketamine-exposed rats was potentially due to an increased ketamine tolerance. Our device can reliably detect changes in the dilation of cortical blood vessels and the CBV. This study validates the utility of the developed hmPAI system in an awake, freely moving rat model for behavioral, cognitive, and preclinical cerebral disease studies.
Collapse
Affiliation(s)
- Yuhling Wang
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Hua Tsai
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| | - Tsung-Sheng Chu
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
- Chung Yuan Christian University, Department of Biomedical Engineering, Taoyuan City, Taiwan
| | - Yun-Ting Hung
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Yi Lee
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Hwei-Hsien Chen
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Li-Tzong Chen
- Kaohsiung Medical University, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
| | - Tzong-Rong Ger
- Chung Yuan Christian University, Department of Biomedical Engineering, Taoyuan City, Taiwan
| | - Yung-Hsuan Wang
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
| | - Nai-Jung Chiang
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
- Taipei Veterans General Hospital, Department of Oncology, Taipei City, Taiwan
| | - Lun-De Liao
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
8
|
Guo H, Chen Q, Li T, Sun D, Xi L. Photoacoustic-triggered nanomedicine delivery to internal organs using a dual-wavelength laparoscope. JOURNAL OF BIOPHOTONICS 2022; 15:e202200116. [PMID: 35661424 DOI: 10.1002/jbio.202200116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Precise drug delivery for internal organs is always an important clinical issue. In this study, we developed a dual-wavelength optical resolution photoacoustic laparoscope, and achieved precise and efficient delivery of nanomedicine to multiple abdominal organs. The laparoscope integrated 532 and 820 nm light to map the vascular network, and visually deliver the nanoparticles to the targeted area using photoacoustic radiation force, respectively. To achieve endoscopic use, we employed a micro-electro-mechanical-system (MEMS) scanner to realize internal two-dimensional raster scanning of the optical beams. Using phantom experiments, the lateral resolutions were measured as 3.75 μm for 532 nm, and 5.25 μm for 820 nm, respectively. Besides, we demonstrated the feasibility of targeted drug delivery using mouse-ear tumor model, normal organs, and colon tumor model. All the experimental results suggested that this strategy can serve as a promising precise drug delivery method for the effective treatment of internal organ diseases.
Collapse
Affiliation(s)
- Heng Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qian Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Tingting Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Desheng Sun
- Department of Ultrasonic Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
- Guang Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
9
|
Kim JU, Park H, Ok J, Lee J, Jung W, Kim J, Kim J, Kim S, Kim YH, Suh M, Kim TI. Cerebrospinal Fluid-philic and Biocompatibility-Enhanced Soft Cranial Window for Long-Term In Vivo Brain Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15035-15046. [PMID: 35344336 DOI: 10.1021/acsami.2c01929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft, transparent poly(dimethyl siloxane) (PDMS)-based cranial windows in animal models have created many opportunities to investigate brain functions with multiple in vivo imaging modalities. However, due to the hydrophobic nature of PDMS, the wettability by cerebrospinal fluid (CSF) is poor, which may cause air bubble trapping beneath the window during implantation surgery, and favorable heterogeneous bubble nucleation at the interface between hydrophobic PDMS and CSF. This may result in excessive growth of the entrapped bubble under the soft cranial window. Herein, to yield biocompatibility-enhanced, trapped bubble-minimized, and soft cranial windows, this report introduces a CSF-philic PDMS window coated with hydroxyl-enriched poly(vinyl alcohol) (PVA) for long-term in vivo imaging. The PVA-coated PDMS (PVA/PDMS) film exhibits a low contact angle θACA (33.7 ± 1.9°) with artificial CSF solution and maintains sustained CSF-philicity. The presence of the PVA layer achieves air bubble-free implantation of the soft cranial window, as well as induces the formation of a thin wetting film that shows anti-biofouling performance through abundant water molecules on the surface, leading to long-term optical clarity. In vivo studies on the mice cortex verify that the soft and CSF-philic features of the PVA/PDMS film provide minimal damage to neuronal tissues and attenuate immune response. These advantages of the PVA/PDMS window are strongly correlated with the enhancement of cortical hemodynamic changes and the local field potential recorded through the PVA/PDMS film, respectively. This collection of results demonstrates the potential for future microfluidic platforms for minimally invasive CSF extraction utilizing a CSF-philic fluidic passage.
Collapse
Affiliation(s)
- Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hyejin Park
- IMNEWRUN Inc., N Center Bldg. A 5F, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Juheon Lee
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jiwon Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaehyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Suhyeon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yong Ho Kim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Minah Suh
- IMNEWRUN Inc., N Center Bldg. A 5F, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Wang Y, Zhang R, Chen Q, Guo H, Liang X, Li T, Qi W, Xi L. Visualization of blood-brain barrier disruption with dual-wavelength high-resolution photoacoustic microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:1537-1550. [PMID: 35415000 PMCID: PMC8973185 DOI: 10.1364/boe.449017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The blood-brain barrier (BBB) strictly regulates the substance exchange between the vascular network and the central nervous system, and plays a critical role in maintaining normal brain homeostasis. Impaired BBB is often accompanied with the emergence of cerebral diseases and probably further leads to severe neuroinflammation or even neurological degeneration. Hence, there is an urgent need to precisely monitor the impaired BBB to understand its pathogenesis and better guide the enactment of therapeutic strategies. However, there is a lack of high-resolution imaging techniques to visualize and evaluate the large-scale BBB disruption in pre-clinical and clinical aspects. In this study, we propose a dual-wavelength photoacoustic imaging (PAI) methodology that simultaneously reveals the abnormal microvasculature and impaired BBB within the cerebral cortex. In in vivo studies, BBB disruption in both mice and rats were induced by local hot-water stimulation and unilateral carotid arterial perfusion of hyperosmolar mannitol, respectively. Subsequently, the exogenous contrast agent (CA) was injected into the microcirculation via the tail vein, and photoacoustic (PA) images of the microvasculature and leaked CA within the cerebral cortex were obtained by dual-wavelength photoacoustic microscopy to evaluate the BBB disruption. Besides, analysis of distribution and concentration of leaked CA in lesion region was further conducted to quantitatively reveal the dynamic changes of BBB permeability. Furthermore, we exploited this approach to investigate the reversibility of BBB disruption within the two distinct models. Based on the experimental results, this new proposed approach presents excellent performance in visualizing microvasculature and leaked CA, and enabling it possesses great potential in evaluating the abnormal microvasculature and impaired BBB result from cerebrovascular diseases.
Collapse
Affiliation(s)
- Yongchao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- These authors contributed equally to this study
| | - Ruoxi Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- These authors contributed equally to this study
| | - Qian Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Heng Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiao Liang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Tingting Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
11
|
Yang N, Liu F, Zhang X, Chen C, Xia Z, Fu S, Wang J, Xu J, Cui S, Zhang Y, Yi M, Wan Y, Li Q, Xu S. A Hybrid Titanium-Softmaterial, High-Strength, Transparent Cranial Window for Transcranial Injection and Neuroimaging. BIOSENSORS 2022; 12:bios12020129. [PMID: 35200389 PMCID: PMC8870569 DOI: 10.3390/bios12020129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 05/04/2023]
Abstract
A transparent and penetrable cranial window is essential for neuroimaging, transcranial injection and comprehensive understanding of cortical functions. For these applications, cranial windows made from glass coverslip, polydimethylsiloxane (PDMS), polymethylmethacrylate, crystal and silicone hydrogel have offered remarkable convenience. However, there is a lack of high-strength, high-transparency, penetrable cranial window with clinical application potential. We engineer high-strength hybrid Titanium-PDMS (Ti-PDMS) cranial windows, which allow large transparent area for in vivo two-photon imaging, and provide a soft window for transcranial injection. Laser scanning and 3D printing techniques are used to match the hybrid cranial window to different skull morphology. A multi-cycle degassing pouring process ensures a good combination of PDMS and Ti frame. Ti-PDMS cranial windows have a high fracture strength matching human skull bone, excellent light transmittance up to 94.4%, and refractive index close to biological tissue. Ti-PDMS cranial windows show excellent bio-compatibility during 21-week implantation in mice. Dye injection shows that the PDMS window has a "self-sealing" to keep liquid from leaking out. Two-photon imaging for brain tissues could be achieved up to 450 µm in z-depth. As a novel brain-computer-interface, this Ti-PDMS device offers an alternative choice for in vivo drug delivery, optical experiments, ultrasonic treatment and electrophysiology recording.
Collapse
Affiliation(s)
- Nana Yang
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
| | - Fengyu Liu
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
- Correspondence: (F.L.); (S.X.)
| | - Xinyue Zhang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (X.Z.); (Q.L.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Chenni Chen
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Zhiyuan Xia
- Department of Material Science and Engineering, College of Engineering, Peking University, Beijing 100871, China;
| | - Su Fu
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Jiaxin Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Jingjing Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
- School of Microelectronics, Shandong University, Jinan 250100, China
| | - Shuang Cui
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Yong Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Ming Yi
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - You Wan
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Qing Li
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (X.Z.); (Q.L.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Shengyong Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
- Correspondence: (F.L.); (S.X.)
| |
Collapse
|
12
|
Sciortino VM, Tran A, Sun N, Cao R, Sun T, Sun YY, Yan P, Zhong F, Zhou Y, Kuan CY, Lee JM, Hu S. Longitudinal cortex-wide monitoring of cerebral hemodynamics and oxygen metabolism in awake mice using multi-parametric photoacoustic microscopy. J Cereb Blood Flow Metab 2021; 41:3187-3199. [PMID: 34304622 PMCID: PMC8669277 DOI: 10.1177/0271678x211034096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multi-parametric photoacoustic microscopy (PAM) has emerged as a promising new technique for high-resolution quantification of hemodynamics and oxygen metabolism in the mouse brain. In this work, we have extended the scope of multi-parametric PAM to longitudinal, cortex-wide, awake-brain imaging with the use of a long-lifetime (24 weeks), wide-field (5 × 7 mm2), light-weight (2 g), dual-transparency (i.e., light and ultrasound) cranial window. Cerebrovascular responses to the window installation were examined in vivo, showing a complete recovery in 18 days. In the 22-week monitoring after the recovery, no dura thickening, skull regrowth, or changes in cerebrovascular structure and function were observed. The promise of this technique was demonstrated by monitoring vascular and metabolic responses of the awake mouse brain to ischemic stroke throughout the acute, subacute, and chronic stages. Side-by-side comparison of the responses in the ipsilateral (injury) and contralateral (control) cortices shows that despite an early recovery of cerebral blood flow and an increase in microvessel density, a long-lasting deficit in cerebral oxygen metabolism was observed throughout the chronic stage in the injured cortex, part of which proceeded to infarction. This longitudinal, functional-metabolic imaging technique opens new opportunities to study the chronic progression and therapeutic responses of neurovascular diseases.
Collapse
Affiliation(s)
- Vincent M Sciortino
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Angela Tran
- Department of Biology, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Naidi Sun
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Rui Cao
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Tao Sun
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yu-Yo Sun
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Ping Yan
- Department of Neuroscience, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Fenghe Zhong
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yifeng Zhou
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Chia-Yi Kuan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jin-Moo Lee
- Department of Neuroscience, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Song Hu
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
13
|
Zhang C, Feng W. Assessment of tissue-specific changes in structure and function induced by in vivo skin/skull optical clearing techniques. Lasers Surg Med 2021; 54:447-458. [PMID: 34750826 DOI: 10.1002/lsm.23489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND OBJECTIVES Newly developed in vivo skin and skull optical clearing techniques can greatly improve the optical imaging performance, showing great advantages and clinical prospects. However, there is a poor understanding of in vivo optical clearing-induced changes in the skin and skull. MATERIALS AND METHODS Here, we employed in vivo skin/skull optical clearing techniques to improve the optical coherence tomography (OCT) imaging quality. And we also used polarization-sensitive OCT to monitor the dynamic changes in the polarization characteristics of the skin and skull during in vivo optical clearing processes. Two-photon imaging was used to evaluate changes in tissue barrier function and structure. Additionally, Raman spectra were employed for assessing the changes of each component in the skin and skull before and after optical clearing treatment. RESULTS The results indicated that the polarization states of the skin and skull were altered with the usages of optical clearing agents. And the barrier permeability and collagen fiber distribution of them became disordered. Furthermore, the Raman spectra of tissue demonstrated that the applications of in vivo tissue optical clearing methods could lead to the reduction of proteins, lipids, and inorganic salts in these two organs. Interestingly, after recovery treatment, the structure and function of the skin and skull could almost recover to the initial states. CONCLUSION In vivo tissue optical clearing can lead to changes in the structure and function of tissue, which was reversible to some extent. This study plays an important role in revealing the underlying mechanisms of tissue optical clearing techniques; moreover, it is conducive to the development and optimization of a novel in vivo tissue optical clearing approaches in future.
Collapse
Affiliation(s)
- Chao Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong, Zhanjiang, China.,Zhanjiang Central Hospital, Guangdong Medical University, Guangdong, Zhanjiang, China
| | - Wei Feng
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong, Zhanjiang, China.,Zhanjiang Central Hospital, Guangdong Medical University, Guangdong, Zhanjiang, China
| |
Collapse
|
14
|
Chen Q, Jin T, Qi W, Xi L. Dual-model wearable photoacoustic microscopy and electroencephalograph: study of neurovascular coupling in anesthetized and freely moving rats. BIOMEDICAL OPTICS EXPRESS 2021; 12:6614-6628. [PMID: 34745760 PMCID: PMC8547996 DOI: 10.1364/boe.438596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 05/29/2023]
Abstract
Observing microscale neurovascular dynamics under different physiological conditions is of great importance to understanding brain functions and disorders. Here, we report a dual-model wearable device and an auxiliary data processing algorithm to derive neurovascular dynamics. The device integrates high-resolution photoacoustic microscopy and electroencephalography (EEG), which allows observing capillary-level hemodynamics and neural activities in anesthesia and freely moving rats. By using the developed algorithm, multiple photoacoustic/EEG parameters extracted and correlated enables investigation of the interplay between neural and vascular activities. We employed this platform to study the neurovascular coupling during different types of seizures in rats under various physiological conditions. We observed cerebral vascular vasodilation/constriction corresponding well to the seizure on/off in rats under regular anesthesia conditions, showing a strong neurovascular coupling coefficient. In rats under weak anesthesia and freely moving conditions, more intense cerebral hemodynamics and neural activities occurred with a weaker neurovascular coupling coefficient. The comprehensively quantitative analyses suggest that anesthesia has a dominant impact on the seizure onset and affect the neurovascular coupling correlation in the current drug-induced localized seizure model. Our study reveals that the designed platform has the potential to support studies on brain functions and disorders in diseased rodent models in various physiological states.
Collapse
Affiliation(s)
- Qian Chen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Tian Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
15
|
Wang Z, Yang F, Ma H, Cheng Z, Zhang W, Xiong K, Shen T, Yang S. Bifocal 532/1064 nm alternately illuminated photoacoustic microscopy for capturing deep vascular morphology in human skin. J Eur Acad Dermatol Venereol 2021; 36:51-59. [PMID: 34547120 DOI: 10.1111/jdv.17677] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND As a promising technology, photoacoustic microscopy (PAM) plays a critical role in diagnosis and assessment of dermatological conditions by providing subtle vascular networks non-invasively. However, the established PAMs are insufficient for clinical dermatology when faced with complex structures of human skin instead of animal models owing to high melanin content and superimposed vasculature for Asians, which cannot balance the spatial resolution and the imaging depth. OBJECTIVES To evaluate the ability of bifocal 532/1064-nm alternately illuminated photoacoustic microscopy (BF-PAM) to non-invasively reveal the morphological structure of human skin for improving the diagnosis and therapeutic efficacy of skin diseases. METHODS A BF-PAM was developed to capture biopsy-like information of human skin from epidermis to hypodermis. The optical foci of the two excitation beams are staggered in the axial direction to form an extended depth-of-field, which can maintain the lateral resolution and the contrast of PA image. RESULTS The imaging capability of the BF-PAM was demonstrated by depicting the vascular morphology of multilayered skin with imaging depth of ˜3 mm. Furtherly, vascular malformations in port-wine stains skin were quantitatively assessed without the need for any contrast agent, and the distribution, depth and diameter of the ectatic vessels can determine an optimal treatment protocol for port-wine stains lesions. CONCLUSIONS The quantitative vascular morphology in the dermis can be used to accurately assess vascular characteristics, in which case it enables clinicians to determine optimum treatment parameters in individual patients. As a non-invasive imaging technique, BF-PAM holds great potential to provide objective assessment to enhance the therapeutic efficacy. ETHICAL STATEMENT The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). The study was approved by the Chinese Ethics Committee of Registering Clinical Trials (ChiECRCT20200184) and registered with Chinese Clinical Trial Registry (ChiCTR2000034400). Before skin imaging, written informed consent was taken from all individual participants.
Collapse
Affiliation(s)
- Z Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - F Yang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - H Ma
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Z Cheng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - W Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - K Xiong
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - T Shen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - S Yang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
16
|
Wang Y, Xi L. Chronic cranial window for photoacoustic imaging: a mini review. Vis Comput Ind Biomed Art 2021; 4:15. [PMID: 34037873 PMCID: PMC8155166 DOI: 10.1186/s42492-021-00081-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/27/2021] [Indexed: 12/31/2022] Open
Abstract
Photoacoustic (PA) microscopy is being increasingly used to visualize the microcirculation of the brain cortex at the micron level in living rodents. By combining it with long-term cranial window techniques, vasculature can be monitored over a period of days extending to months through a field of view. To fulfill the requirements of long-term in vivo PA imaging, the cranial window must involve a simple and rapid surgical procedure, biological compatibility, and sufficient optical-acoustic transparency, which are major challenges. Recently, several cranial window techniques have been reported for longitudinal PA imaging. Here, the development of chronic cranial windows for PA imaging is reviewed and its technical details are discussed, including window installation, imaging quality, and longitudinal stability.
Collapse
Affiliation(s)
- Yongchao Wang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|