1
|
Sipprell SE, Krueger QA, Mills EL, Marriott I, Johnson MB. Substance P Augments Chemokine Production by Staphylococcus aureus Infected Murine Osteoclasts. Inflammation 2025:10.1007/s10753-025-02280-x. [PMID: 40056352 DOI: 10.1007/s10753-025-02280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Staphylococcal osteomyelitis is a serious infection of the bone and joints characterized by progressive inflammatory tissue damage and leukocyte recruitment leading to net bone loss. Resident bone cells are capable of recognizing Staphylococcus aureus and initiating an inflammatory immune response that recruits leukocytes and alters bone homeostasis. Importantly, bone tissue is richly innervated with substance P containing nerve fibers and we have previously shown that this neuropeptide can augment the inflammatory responses of both osteoblasts and osteoclasts to S. aureus infection via neurokinin-1 receptors (NK-1R). Here, we have extended these studies by demonstrating that pharmacological inhibition of NK-1R ameliorates disease severity in a mouse model of staphylococcal osteomyelitis. This effect was associated with a significant reduction in leukocyte-attracting chemokine production following infection and reduced local levels of osteoclast and neutrophil activity. We then assessed the effect of S. aureus infection on bone-marrow derived osteoclast gene expression in the absence or presence of substance P. We determined that infection upregulates osteoclast expression of mRNAs encoding inflammatory mediators that include the neutrophil-attracting chemokines identified in vivo. Importantly, we found that, while substance P has no effect on chemokine mRNA expression in infected cells, this neuropeptide significantly increases the release of these chemokines by S. aureus challenged osteoclasts but not osteoblasts. Together, these data further support the ability of substance P to exacerbate inflammatory damage in staphylococcal osteomyelitis and indicate that this effect may be due, in part, to an augmentation of osteoclast immune responses that promote leukocyte recruitment.
Collapse
Affiliation(s)
- Sophie E Sipprell
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Quinton A Krueger
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Computational Intelligence for Predicting Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Erin L Mills
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
2
|
Krampert L, Bauer K, Ebner S, Neubert P, Ossner T, Weigert A, Schatz V, Toelge M, Schröder A, Herrmann M, Schnare M, Dorhoi A, Jantsch J. High Na + Environments Impair Phagocyte Oxidase-Dependent Antibacterial Activity of Neutrophils. Front Immunol 2021; 12:712948. [PMID: 34566968 PMCID: PMC8461097 DOI: 10.3389/fimmu.2021.712948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/04/2021] [Indexed: 01/21/2023] Open
Abstract
Infection and inflammation can augment local Na+ abundance. These increases in local Na+ levels boost proinflammatory and antimicrobial macrophage activity and can favor polarization of T cells towards a proinflammatory Th17 phenotype. Although neutrophils play an important role in fighting intruding invaders, the impact of increased Na+ on the antimicrobial activity of neutrophils remains elusive. Here we show that, in neutrophils, increases in Na+ (high salt, HS) impair the ability of human and murine neutrophils to eliminate Escherichia coli and Staphylococcus aureus. High salt caused reduced spontaneous movement, degranulation and impaired production of reactive oxygen species (ROS) while leaving neutrophil viability unchanged. High salt enhanced the activity of the p38 mitogen-activated protein kinase (p38/MAPK) and increased the interleukin (IL)-8 release in a p38/MAPK-dependent manner. Whereas inhibition of p38/MAPK did not result in improved neutrophil defense, pharmacological blockade of the phagocyte oxidase (PHOX) or its genetic ablation mimicked the impaired antimicrobial activity detected under high salt conditions. Stimulation of neutrophils with phorbol-12-myristate-13-acetate (PMA) overcame high salt-induced impairment in ROS production and restored antimicrobial activity of neutrophils. Hence, we conclude that high salt-impaired PHOX activity results in diminished antimicrobial activity. Our findings suggest that increases in local Na+ represent an ionic checkpoint that prevents excessive ROS production of neutrophils, which decreases their antimicrobial potential and could potentially curtail ROS-mediated tissue damage.
Collapse
Affiliation(s)
- Luka Krampert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Katharina Bauer
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Stefan Ebner
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany.,Max Planck Institute (MPI) of Biochemistry, Martinsried, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Thomas Ossner
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Anna Weigert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Agnes Schröder
- Institute of Orthodontics, University Hospital of Regensburg, Regensburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Markus Schnare
- Department of Immunology, Philipps University Marburg, Marburg, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler Institut, Greifswald, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| |
Collapse
|