1
|
Khatmi A, Eskandarian Boroujeni M, Ezi S, Hamidreza Mirbehbahani S, Aghajanpour F, Soltani R, Hossein Meftahi G, Abdollahifar MA, Hassani Moghaddam M, Toreyhi H, Khodagholi F, Aliaghaei A. Combined molecular, structural and memory data unravel the destructive effect of tramadol on hippocampus. Neurosci Lett 2021; 771:136418. [PMID: 34954113 DOI: 10.1016/j.neulet.2021.136418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Tramadol is a synthetic analogue of codeine and stimulates neurodegeneration in several parts of the brain that leads to various behavioral impairments. Despite the leading role of hippocampus in learning and memory as well as decreased function of them under influence of tramadol, there are few studies analyzing the effect of tramadol administration on gene expression profiling and structural consequences in hippocampus region. Thus, we sought to determine the effect of tramadol on both PC12 cell line and hippocampal tissue, from gene expression changes to structural alterations. In this respect, we investigated genome-wide mRNA expression using high throughput RNA-seq technology and confirmatory quantitative real-time PCR, accompanied by stereological analysis of hippocampus and behavioral assessment following tramadol exposure. At the cellular level, PC12 cells were exposed to 600μM tramadol for 48 hrs, followed by the assessments of ROS amount and gene expression levels of neurotoxicity associated with neurodegenerative pathways such as apoptosis and autophagy. Moreover, the structural and functional alteration of the hippocampus under chronic exposure to tramadol was also evaluated. In this regard, rats were treated with tramadol at doses of 50 mg/kg for three consecutive weeks. In vitro data revealed that tramadol provoked ROS production and caused the increase in the expression of autophagic and apoptotic genes in PC12 cells. Furthermore, in-vivo results demonstrated that tramadol not only did induce hippocampal atrophy, but it also triggered microgliosis and microglial activation, causing upregulation of apoptotic and inflammatory markers as well as over-activation of neurodegeneration. Tramadol also interrupted spatial learning and memory function along with long-term potentiation (LTP). Taken all together, our data disclosed the neurotoxic effects of tramadol on both in vitro and in-vivo. Moreover, we proposed a potential correlation between disrupted biochemical cascades and memory deficit under tramadol administration.
Collapse
Affiliation(s)
- Aysan Khatmi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Eskandarian Boroujeni
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Samira Ezi
- Department of Anatomy, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | - Fakhroddin Aghajanpour
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Soltani
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Amin Abdollahifar
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Hossein Toreyhi
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ibrahim MA, Ibrahim HM, Mohamed AA, Tammam HG. Vitamin E supplementation ameliorates the hepatotoxicity induced by Tramadol: toxicological, histological and immunohistochemical study. Toxicol Mech Methods 2019; 30:177-188. [DOI: 10.1080/15376516.2019.1681043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mahrous A. Ibrahim
- Forensic Medicine and Clinical Toxicology, College of Medicine, Jouf University, Aljouf, KSA
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hussein M. Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Alaa A. Mohamed
- Department of Medical Biochemistry, College of Medicine, Jouf University, Aljouf, KSA
- Department of medical biochemistry, Faculty of Medicine, Beni- Suif University, Ben Suif, Egypt
| | - Hany G. Tammam
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Baghishani F, Mohammadipour A, Hosseinzadeh H, Hosseini M, Ebrahimzadeh-Bideskan A. The effects of tramadol administration on hippocampal cell apoptosis, learning and memory in adult rats and neuroprotective effects of crocin. Metab Brain Dis 2018; 33:907-916. [PMID: 29470767 PMCID: PMC5956046 DOI: 10.1007/s11011-018-0194-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
Tramadol, a frequently used pain reliever drug, present neurotoxic effects associated to cognitive dysfunction. Moreover, crocin has been reported to have neuroprotective effects. The aim of this study was to assess crocin's capacity to protect learning, and memory abilities on tramadol-treated rats. A total of 35 rats were divided into five groups: Control, Saline, tramadol (50 mg/kg), tramadol + crocin(30 mg/kg), crocin groups and treated orally for 28 consecutive days. Morris water maze (MWM) and passive avoidance (PA) tests were done, followed by dissection of the rat's brains for toluidine blue and TUNEL staining. In MWM test, tramadol group spent lower time and traveled shorter distance in the target quadrant (Q1) (P < 0.05). On the other side, the traveled distance in tramadol-crocin group was higher than tramadol (P < 0.05). In PA test, both the delay for entering the dark, and the total time spent in the light compartment decreased in tramadol comparing to the control group (P < 0.05), while it increased in tramadol-crocin compared with the tramadol group (P < 0.05). In tramadol-treated animals, the dark neurons (DNs) and apoptotic cells in CA1, CA3 and DG increased (P < 0.05), while concurrent intake of crocin decreased the number of DNs and apoptotic cells in these areas (P < 0.05). Crocin was able to improve learning and memory of tramadol-treated rats and also decreased DNs and apoptotic cells in the hippocampus. Considering these results, the potential capacity of crocin for decreasing side effects of tramadol on the nervous system is suggested.
Collapse
Affiliation(s)
- Farideh Baghishani
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq., Vakilabad Blvd, P.O. Box 91779-48564, Mashhad, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq., Vakilabad Blvd, P.O. Box 91779-48564, Mashhad, Iran
- Microanatomy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossain Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq., Vakilabad Blvd, P.O. Box 91779-48564, Mashhad, Iran.
- Microanatomy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Effect of Tramadol on Rabbit Uterine Contractile Activity Induced in Late Pregnancy. Bull Exp Biol Med 2017; 162:349-352. [PMID: 28091908 DOI: 10.1007/s10517-017-3613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 10/20/2022]
Abstract
Effect of Tramadol infusion (5 mg/ml) on oxytocin-induced uterine contractile activity was studied in chronic experiment on female rabbits with different degrees of biological readiness for parturition. In case of sufficient biological readiness for parturition, Tramadol did not change the number of uterine contractions, but increased the amplitude and duration of each contraction against the background of increased creatine phosphate consumption by the myometrium. At the same time, Tramadol infusion to females without biological readiness for partirition suppressed induced uterine contractile activity by reducing the amplitude of each uterine contraction.
Collapse
|
5
|
Winston AB, Vazhudhi K, Sen S, Thomas E, Benjamin S, Peedicayil J. Inhibition by sildenafil of contractility of isolated non-pregnant human myometrium. J Pharmacol Pharmacother 2015; 6:136-41. [PMID: 26311996 PMCID: PMC4544134 DOI: 10.4103/0976-500x.162020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/02/2015] [Accepted: 02/14/2015] [Indexed: 12/31/2022] Open
Abstract
Objective: To investigate the ability of sildenafil to inhibit the contractility of isolated non pregnant human myometrium. Materials and Methods: The inhibitory effect of three concentrations (3, 10, and 30 µM) of sildenafil on 55 mM KCl-induced contractility of isolated non-pregnant human myometrium was studied. The ability of the guanylyl cyclase inhibitor ODQ (10 µM), the adenylyl cyclase inhibitor MDL-12,330A (10 µM), the non-specific potassium channel blocker TEA (2 mM), and the calcium-sensitive potassium (BKCa) channel blocker iberiotoxin (100 nM) to reverse the inhibition of 10 µM sildenafil on KCl-induced myometrial contractility was also studied. Results: Sildenafil produced a concentration-dependent inhibition of KCl-induced myometrial contractility that was statistically significant at all three concentrations of sildenafil used. The inhibition by 10 µM sildenafil of KCl-induced myometrial contractility was not reversed by the concurrent administration of ODQ or MDL-12,330A. The inhibition of 10 µM sildenafil of myometrial contractility was partially reversed by concurrent administration of TEA and totally and significantly reversed by the concurrent administration of iberiotoxin. Conclusions: These results suggest that sildenafil inhibits the contractility of isolated non-pregnant human myometrium. The results suggest that sildenafil does so by opening BKCa channels.
Collapse
Affiliation(s)
- Aruldhas Blessed Winston
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Kaysina Vazhudhi
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sumalya Sen
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Elsy Thomas
- Department of Obstetrics and Gynaecology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Santhosh Benjamin
- Department of Obstetrics and Gynaecology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
6
|
Vazzana M, Andreani T, Fangueiro J, Faggio C, Silva C, Santini A, Garcia M, Silva A, Souto E. Tramadol hydrochloride: Pharmacokinetics, pharmacodynamics, adverse side effects, co-administration of drugs and new drug delivery systems. Biomed Pharmacother 2015; 70:234-8. [DOI: 10.1016/j.biopha.2015.01.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 01/23/2015] [Indexed: 12/25/2022] Open
|
7
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|