1
|
Thomas KN, Basel A, Reitz H, Toler R, Thomas KR, Dotson LJ, Brown T, Pham AN, Rouzer SK, Miranda RC, Golding MC. Maternal, paternal, and dual-parental alcohol exposures result in both overlapping and distinct impacts on behavior in adolescent offspring. Alcohol 2025; 124:65-77. [PMID: 39855492 DOI: 10.1016/j.alcohol.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Emerging research reveals that alcohol use by fathers before conception can affect the growth and development of their offspring. Here, we used a C57BL/6J mouse model to study the effects of alcohol exposure on the behavior of the first-generation (F1) offspring, comparing the impacts of alcohol exposure by mothers, fathers, and both parents. Our goal was to determine how alcohol exposure by each parent or both parents influences the behavior of the offspring. We found that adolescent male offspring of alcohol-exposed fathers showed reduced anxiety-like behaviors as they spent more time in the center of the testing arena during the open field test. Both maternal and paternal alcohol exposure caused sex-specific increases in the nestlet shredding test while decreasing the number of buried marbles in the marble burying test. Interestingly, dual-parental alcohol exposure did not produce any significant changes in these same tests. However, during novel object recognition testing, we found that dual-parental male and female offspring exhibit an increased preference for novel objects, suggesting an increased risk preference. Finally, at sixteen weeks, male offspring of dual-exposed parents exhibited decreased voluntary physical activity on running wheels during the active phase, suggesting alterations in their circadian rhythms. Although differences in parental exposure histories between treatment groups make interpretation challenging, our findings suggest that exposure to alcohol by both parents may have unique effects on behavior and that studying both maternal and paternal alcohol use is essential for understanding the full range of factors influencing the penetrance and severity of alcohol-related phenotypes.
Collapse
Affiliation(s)
- Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Hayden Reitz
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Rachel Toler
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Kelly R Thomas
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Luke J Dotson
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Tyler Brown
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Alan Nguyen Pham
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Siara K Rouzer
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Owusu-Ansah K, Thomas KN, Cox K, Pham DL, Chen WL, Ko ML, Golding MC, Ko GYP. Preconception Paternal Alcohol Consumption Elicits Postnatal Changes in Neural Retinas of the Offspring. Invest Ophthalmol Vis Sci 2025; 66:16. [PMID: 39913164 PMCID: PMC11806431 DOI: 10.1167/iovs.66.2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025] Open
Abstract
Purpose This study aims to determine the impact of preconception paternal alcohol consumption (PPAC) on retinal function and morphology in PPAC-offspring. Fetal alcohol spectrum disorder (FASD)-related ocular defects caused by maternal alcohol exposure has been well investigated, but the influence of PPAC on offspring eyes remains unknown. Methods Adult C57BL/6J male mice were exposed to either 10% ethanol or water (control) for six weeks and bred to naïve females. Dark-adapted retinal light responses at two, four, and six months old were assessed using electroretinography (ERG) for the offspring born to PPAC and control males. The thicknesses of whole retinas and different retinal layers of the control and PPAC-offspring were analyzed at two and six months old. Results Some PPAC-offspring had only one developed eye. ERG a- and b-wave amplitudes were reduced in PPAC-offspring compared to controls, with a more pronounced effect in females. PPAC had significant effects on inner retinal function. At two months old, there was a significant thinning of the retinal inner nuclear and inner plexiform layers in PPAC-offspring. At six months old, the retinal thickness and ERG amplitudes were similar between both treatment groups. Conclusions This study provides pioneering evidence that PPAC contributes to FASD-related ocular defects including negative impacts on retinal light responses and retinal thinning in young adult offspring. Thus the adverse impact of paternal alcohol consumption prior to conception on their offspring (from childhood to early adulthood) should be considered as seriously as the maternal contribution to FASD.
Collapse
Affiliation(s)
- Kofi Owusu-Ansah
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States
| | - Kara N. Thomas
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Kelsey Cox
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Dylan L. Pham
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
- Department of Medical Physiology, School of Medicine, Texas A&M University, Bryan, Texas, United States
| | - Wei-Lin Chen
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
- Department of Physics, National Chung Hsing University, Taichung City, Taiwan
| | - Michael Lee Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
- Department of Biology, Division of Natural and Physical Sciences, Blinn College, Bryan, Texas, United States
| | - Michael C. Golding
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Gladys Yi-Ping Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
3
|
McDonald JF. Adaptive Significance of Non-coding RNAs: Insights from Cancer Biology. Mol Biol Evol 2025; 42:msae269. [PMID: 39761690 PMCID: PMC11725524 DOI: 10.1093/molbev/msae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025] Open
Abstract
The molecular basis of adaptive evolution and cancer progression are both complex processes that share many striking similarities. The potential adaptive significance of environmentally-induced epigenetic changes is currently an area of great interest in both evolutionary and cancer biology. In the field of cancer biology intense effort has been focused on the contribution of stress-induced non-coding RNAs (ncRNAs) in the activation of epigenetic changes associated with elevated mutation rates and the acquisition of environmentally adaptive traits. Examples of this process are presented and combined with more recent findings demonstrating that stress-induced ncRNAs are transferable from somatic to germline cells leading to cross-generational inheritance of acquired adaptive traits. The fact that ncRNAs have been implicated in the transient adaptive response of various plants and animals to environmental stress is consistent with findings in cancer biology. Based on these collective observations, a general model as well as specific and testable hypotheses are proposed on how transient ncRNA-mediated adaptive responses may facilitate the transition to long-term biological adaptation in both cancer and evolution.
Collapse
Affiliation(s)
- John F McDonald
- Professor Emeritus, School of Biological Sciences, Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
4
|
van der Windt M, Tobi EW, Chidi I, Schoenmakers S, van Rossem L, Steegers-Theunissen RPM, Rousian M. Periconceptional maternal and paternal alcohol consumption and embryonic and fetal development: the Rotterdam periconception cohort. Reprod Biomed Online 2024; 49:104351. [PMID: 39182451 DOI: 10.1016/j.rbmo.2024.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 08/27/2024]
Abstract
RESEARCH QUESTION What is the impact of maternal and paternal alcohol consumption in the periconception period on embryonic and fetal development assessed using three-dimensional ultrasound and virtual reality techniques? DESIGN This prospective observational study was embedded in the Rotterdam periconception cohort (Predict study). Participating women received longitudinal three-dimensional transvaginal ultrasound examinations from week 7 to week 12 of gestation to measure crown-rump length and embryonic volume. Mid-pregnancy fetal size parameters and birth weight were retrieved from medical files. Participants completed a periconception exposure questionnaire and a validated food frequency questionnaire. Linear mixed models were used to analyse the association between parental alcohol consumption, and embryonic and fetal developmental parameters. RESULTS In total, 1141 female and 987 male participants were included in the analyses. Moderate maternal alcohol consumption in the periconception period resulted in a smaller head circumference (β = -1.85, SE = 0.84, P = 0.03), abdominal circumference (β = -2.65, SE = 0.93, P = 0.004), femur length (β = -0.56, SE = 0.22, P = 0.01) and estimated fetal weight (β = -9.36, SE = 4.35, P = 0.03) at 20 weeks of gestation. Paternal alcohol consumption showed significant positive associations, mainly with fetal size parameters (abdominal circumference: β = 0.033, SE = 0.01, P = 0.008; estimated fetal weight: β = 0.131, SE = 0.06, P = 0.03). CONCLUSIONS Moderate maternal alcohol consumption is negatively associated with fetal growth parameters. Moreover, alcohol is proven to be a strong teratogen, and its consumption before and during pregnancy should be discouraged in both women and men as it affects several parameters of embryonic and fetal development.
Collapse
Affiliation(s)
- M van der Windt
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - E W Tobi
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - I Chidi
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - S Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - L van Rossem
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - R P M Steegers-Theunissen
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - M Rousian
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Lo JO, Hedges JC, Chou WH, Tager KR, Bachli ID, Hagen OL, Murphy SK, Hanna CB, Easley CA. Influence of substance use on male reproductive health and offspring outcomes. Nat Rev Urol 2024; 21:534-564. [PMID: 38664544 DOI: 10.1038/s41585-024-00868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/30/2024]
Abstract
The prevalence of substance use globally is rising and is highest among men of reproductive age. In Africa, and South and Central America, cannabis use disorder is most prevalent and in Eastern and South-Eastern Europe, Central America, Canada and the USA, opioid use disorder predominates. Substance use might be contributing to the ongoing global decline in male fertility, and emerging evidence has linked paternal substance use with short-term and long-term adverse effects on offspring development and outcomes. This trend is concerning given that substance use is increasing, including during the COVID-19 pandemic. Preclinical studies have shown that male preconception substance use can influence offspring brain development and neurobehaviour through epigenetic mechanisms. Additionally, human studies investigating paternal health behaviours during the prenatal period suggest that paternal tobacco, opioid, cannabis and alcohol use is associated with reduced offspring mental health, in particular hyperactivity and attention-deficit hyperactivity disorder. The potential effects of paternal substance use are areas in which to focus public health efforts and health-care provider counselling of couples or individuals interested in conceiving.
Collapse
Affiliation(s)
- Jamie O Lo
- Department of Urology, Oregon Heath & Science University, Portland, OR, USA.
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA.
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA.
| | - Jason C Hedges
- Department of Urology, Oregon Heath & Science University, Portland, OR, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Wesley H Chou
- Department of Urology, Oregon Heath & Science University, Portland, OR, USA
| | - Kylie R Tager
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, USA
| | - Ian D Bachli
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, USA
| | - Olivia L Hagen
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Carol B Hanna
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Charles A Easley
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, USA
| |
Collapse
|
6
|
Sennsfelder L, Guilly S, Henkous S, Lebon C, Leruste S, Beuvain P, Ferroul F, Benard S, Payet F, Nekaa M, Bagard M, Lauret M, Hoareau V, Caillier A, Robin S, Lanneaux J, Etchebarren L, Spodenkiewicz M, Alessandri JL, Morel G, Roy-Doray B. First Description of a Large Clinical Series of Fetal Alcohol Spectrum Disorders Children and Adolescents in Reunion Island, France. CHILDREN (BASEL, SWITZERLAND) 2024; 11:955. [PMID: 39201890 PMCID: PMC11352436 DOI: 10.3390/children11080955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024]
Abstract
BACKGROUND Despite several diagnostic guidelines, Fetal Alcohol Spectrum Disorders (FASDs) remain underdiagnosed or misdiagnosed, delaying the care of these patients and support for families. OBJECTIVE This study aims to help professionals caring for these children and their families to suspect this diagnosis earlier and to provide the most appropriate follow-up. METHODS A retrospective chart review with monocentric recruitment was performed at the Genetics Unit of the University Hospital of Reunion Island. A total of 147 children and adolescents with FASDs were included. RESULTS Prenatal alcohol exposure was associated with paternal alcohol consumption in 42.9%, and a high rate of prematurity (33.3%) was observed. Sixty percent of children or adolescents were placed in foster families. Learning difficulties without cognitive deficits were found in 65.8% of cases (50/76). Postural control and fine motor skills disabilities were described, respectively, in 54.7% (35/64) and 72.5% (50/69) of cases. A systematic genetic assessment was carried out, identifying in these FASD patients an associated Copy Number Variation (CNVs) in 22.6% of cases. CONCLUSION Children with FASDs combine significant vulnerabilities, associating exposure to alcohol during the preconception and/or the prenatal period, prematurity, complex familial and sociocultural living conditions, and a genetic anomaly in almost a quarter of cases.
Collapse
Affiliation(s)
- Laëtitia Sennsfelder
- Laboratoire EPI (Etudes Pharmaco-Immunologiques), UFR Santé, Université de La Réunion, CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France;
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
| | - Susie Guilly
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
| | - Sonia Henkous
- Centre Ressources TSAF (Troubles du Spectre de l’Alcoolisation Fœtale), Fondation Père Favron, CHU (Centre Hospitalier Universitaire) de La Réunion, 97546 Saint-Pierre, France
| | - Christophe Lebon
- CIC 1410 (Centre d’Investigation Clinique), CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France; (C.L.); (S.L.); (M.S.)
| | - Sébastien Leruste
- CIC 1410 (Centre d’Investigation Clinique), CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France; (C.L.); (S.L.); (M.S.)
- UFR Santé, Université de La Réunion, 97410 Saint-Pierre, France
| | - Pauline Beuvain
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
| | - Fanny Ferroul
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
| | - Stéphanie Benard
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
| | - Frédérique Payet
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
| | - Meissa Nekaa
- Centre Ressources TSAF (Troubles du Spectre de l’Alcoolisation Fœtale), Fondation Père Favron, CHU (Centre Hospitalier Universitaire) de La Réunion, 97546 Saint-Pierre, France
| | - Maité Bagard
- Centre Ressources TSAF (Troubles du Spectre de l’Alcoolisation Fœtale), Fondation Père Favron, CHU (Centre Hospitalier Universitaire) de La Réunion, 97546 Saint-Pierre, France
| | - Magaly Lauret
- Centre Ressources TSAF (Troubles du Spectre de l’Alcoolisation Fœtale), Fondation Père Favron, CHU (Centre Hospitalier Universitaire) de La Réunion, 97546 Saint-Pierre, France
| | - Virginie Hoareau
- Centre Ressources TSAF (Troubles du Spectre de l’Alcoolisation Fœtale), Fondation Père Favron, CHU (Centre Hospitalier Universitaire) de La Réunion, 97546 Saint-Pierre, France
| | - Aurélie Caillier
- Centre Ressources TSAF (Troubles du Spectre de l’Alcoolisation Fœtale), Fondation Père Favron, CHU (Centre Hospitalier Universitaire) de La Réunion, 97546 Saint-Pierre, France
| | - Stéphanie Robin
- Centre Diagnostic TSAF (Troubles du Spectre de l’Alcoolisation Fœtale), CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France
| | - Justine Lanneaux
- Centre Diagnostic TSAF (Troubles du Spectre de l’Alcoolisation Fœtale), CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France
| | - Léa Etchebarren
- Centre Diagnostic TSAF (Troubles du Spectre de l’Alcoolisation Fœtale), CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France
| | - Michel Spodenkiewicz
- CIC 1410 (Centre d’Investigation Clinique), CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France; (C.L.); (S.L.); (M.S.)
- Pôle de Santé Mentale, CHU (Centre Hospitalier Universitaire) de La Réunion, 97448 Saint-Pierre, France
| | - Jean-Luc Alessandri
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest Occitanie Réunion, Site Constitutif de La Réunion, 97400 Saint-Denis, France
| | - Godelieve Morel
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest Occitanie Réunion, Site Constitutif de La Réunion, 97400 Saint-Denis, France
| | - Bérénice Roy-Doray
- Laboratoire EPI (Etudes Pharmaco-Immunologiques), UFR Santé, Université de La Réunion, CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France;
- Service de Génétique, CHU (Centre Hospitalier Universitaire) de La Réunion, La Réunion, 97400 Saint-Denis, France
- Centre Ressources TSAF (Troubles du Spectre de l’Alcoolisation Fœtale), Fondation Père Favron, CHU (Centre Hospitalier Universitaire) de La Réunion, 97546 Saint-Pierre, France
- CIC 1410 (Centre d’Investigation Clinique), CHU (Centre Hospitalier Universitaire) de La Réunion, 97400 Saint-Denis, France; (C.L.); (S.L.); (M.S.)
- UFR Santé, Université de La Réunion, 97410 Saint-Pierre, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest Occitanie Réunion, Site Constitutif de La Réunion, 97400 Saint-Denis, France
| |
Collapse
|
7
|
Karatayev O, Collier AD, Targoff SR, Leibowitz SF. Neurological Disorders Induced by Drug Use: Effects of Adolescent and Embryonic Drug Exposure on Behavioral Neurodevelopment. Int J Mol Sci 2024; 25:8341. [PMID: 39125913 PMCID: PMC11313660 DOI: 10.3390/ijms25158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Clinical studies demonstrate that the risk of developing neurological disorders is increased by overconsumption of the commonly used drugs, alcohol, nicotine and cannabis. These drug-induced neurological disorders, which include substance use disorder (SUD) and its co-occurring emotional conditions such as anxiety and depression, are observed not only in adults but also with drug use during adolescence and after prenatal exposure to these drugs, and they are accompanied by long-lasting disturbances in brain development. This report provides overviews of clinical and preclinical studies, which confirm these adverse effects in adolescents and the offspring prenatally exposed to the drugs and include a more in-depth description of specific neuronal systems, their neurocircuitry and molecular mechanisms, affected by drug exposure and of specific techniques used to determine if these effects in the brain are causally related to the behavioral disturbances. With analysis of further studies, this review then addresses four specific questions that are important for fully understanding the impact that drug use in young individuals can have on future pregnancies and their offspring. Evidence demonstrates that the adverse effects on their brain and behavior can occur: (1) at low doses with short periods of drug exposure during pregnancy; (2) after pre-conception drug use by both females and males; (3) in subsequent generations following the initial drug exposure; and (4) in a sex-dependent manner, with drug use producing a greater risk in females than males of developing SUDs with emotional conditions and female offspring after prenatal drug exposure responding more adversely than male offspring. With the recent rise in drug use by adolescents and pregnant women that has occurred in association with the legalization of cannabis and increased availability of vaping tools, these conclusions from the clinical and preclinical literature are particularly alarming and underscore the urgent need to educate young women and men about the possible harmful effects of early drug use and to seek novel therapeutic strategies that might help to limit drug use in young individuals.
Collapse
Affiliation(s)
| | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA; (O.K.); (S.R.T.)
| |
Collapse
|
8
|
Basel A, Bhadsavle SS, Scaturro KZ, Parkey GK, Gaytan MN, Patel JJ, Thomas KN, Golding MC. Parental Alcohol Exposures Associate with Lasting Mitochondrial Dysfunction and Accelerated Aging in a Mouse Model. Aging Dis 2024:AD.2024.0722. [PMID: 39122451 DOI: 10.14336/ad.2024.0722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Although detrimental changes in mitochondrial morphology and function are widely described symptoms of fetal alcohol exposure, no studies have followed these mitochondrial deficits into adult life or determined if they predispose individuals with fetal alcohol spectrum disorders (FASDs) to accelerated biological aging. Here, we used a multiplex preclinical mouse model to compare markers of cellular senescence and age-related outcomes induced by maternal, paternal, and dual-parental alcohol exposures. We find that even in middle life (postnatal day 300), the adult offspring of alcohol-exposed parents exhibited significant increases in markers of stress-induced premature cellular senescence in the brain and liver, including an upregulation of cell cycle inhibitory proteins and increased senescence-associated β-galactosidase activity. Strikingly, in the male offspring, we observe an interaction between maternal and paternal alcohol use, with histological indicators of accelerated age-related liver disease in the dual-parental offspring exceeding those induced by either maternal or paternal alcohol use alone. Our studies indicate that chronic parental alcohol use causes enduring mitochondrial dysfunction in offspring, resulting in a reduced NAD+/NAHD ratio and altered expression of the NAD+-dependent deacetylases SIRT1 and SIRT3. These observations suggest that some aspects of FASDs may be linked to accelerated aging due to programmed changes in the regulation of mitochondrial function and cellular bioenergetics.
Collapse
|
9
|
Roach AN, Bhadsavle SS, Higgins SL, Derrico DD, Basel A, Thomas KN, Golding MC. Alterations in sperm RNAs persist after alcohol cessation and correlate with epididymal mitochondrial dysfunction. Andrology 2024; 12:1012-1023. [PMID: 38044754 PMCID: PMC11144833 DOI: 10.1111/andr.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Chronic preconception paternal alcohol use adversely modifies the sperm epigenome, inducing fetoplacental and craniofacial growth defects in the offspring of exposed males. A crucial outstanding question in the field of paternal epigenetic inheritance concerns the resilience of the male germline and its capacity to recover and correct sperm-inherited epigenetic errors after stressor withdrawal. OBJECTIVES We set out to determine if measures of the sperm-inherited epigenetic program revert to match the control treatment 1 month after withdrawing the daily alcohol treatments. MATERIALS AND METHODS Using a voluntary access model, we exposed C57BL/6J males to 6% or 10% alcohol for 10 weeks, withdrew the alcohol treatments for 4 weeks, and used RNA sequencing to examine gene expression patterns in the caput section of the epididymis. We then compared the abundance of sperm small RNA species between treatments. RESULTS In the caput section of the epididymis, chronic alcohol exposure induced changes in the transcriptional control of genetic pathways related to the mitochondrial function, oxidative phosphorylation, and the generalized stress response (EIF2 signaling). Subsequent analysis identified region-specific, alcohol-induced changes in mitochondrial DNA copy number across the epididymis, which correlated with increases in the mitochondrial DNA content of alcohol-exposed sperm. Notably, in the corpus section of the epididymis, increases in mitochondrial DNA copy number persisted 1 month after alcohol cessation. Analysis of sperm noncoding RNAs between control and alcohol-exposed males 1 month after alcohol withdrawal revealed a ∼100-fold increase in mir-196a, a microRNA induced as part of the nuclear factor erythroid 2-related factor 2 (Nrf2)-driven cellular antioxidant response. DISCUSSION AND CONCLUSION Our data reveal that alcohol-induced epididymal mitochondrial dysfunction and differences in sperm noncoding RNA content persist after alcohol withdrawal. Further, differences in mir-196a and sperm mitochondrial DNA copy number may serve as viable biomarkers of adverse alterations in the sperm-inherited epigenetic program.
Collapse
Affiliation(s)
- Alexis N. Roach
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Sanat S. Bhadsavle
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Samantha L. Higgins
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Destani D. Derrico
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Kara N. Thomas
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Michael C. Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| |
Collapse
|
10
|
Bhadsavle SS, Scaturro KZ, Golding MC. Maternal 129S1/SvImJ background attenuates the placental phenotypes induced by chronic paternal alcohol exposure. Reprod Toxicol 2024; 126:108605. [PMID: 38735594 DOI: 10.1016/j.reprotox.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Paternal alcohol use is emerging as a plausible driver of alcohol-related growth and patterning defects. Studies from our lab using an inbred C57Bl/6 J mouse model suggest that these paternally-inherited phenotypes result from paternally programmed deficits in the formation and function of the placenta. The 129S1/SvImJ genetic background is typically more susceptible to fetoplacental growth defects due to strain-specific differences in placental morphology. We hypothesized that these placental differences would sensitize 129S1/SvImJ-C57Bl/6 J hybrid offspring to paternally-inherited fetoplacental growth phenotypes induced by paternal alcohol exposure. Using a limited access model, we exposed C57Bl/6 J males to alcohol and bred them to naïve 129S1/SvImJ dams. We then assayed F1 hybrid offspring for alterations in fetoplacental growth and used micro-CT imaging to contrast placental histological patterning between the preconception treatments. F1 hybrid placentae exhibit larger placental weights than pure C57Bl/6 J offspring but display a proportionally smaller junctional zone with increased glycogen content. The male F1 hybrid offspring of alcohol-exposed sires exhibit modest placental hyperplasia but, unlike pure C57Bl/6 J offspring, do not display observable changes in placental histology, glycogen content, or measurable impacts on fetal growth. Although F1 hybrid female offspring do not exhibit any measurable alterations in fetoplacental growth, RT-qPCR analysis of placental gene expression reveals increased expression of genes participating in the antioxidant response. The reduced placental junctional zone but increased glycogen stores of 129S1/SvImJ-C57Bl/6 J F1 hybrid placentae ostensibly attenuate the previously observed placental patterning defects and fetal growth restriction induced by paternal alcohol use in the C57Bl/6 J strain.
Collapse
Affiliation(s)
- Sanat S Bhadsavle
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Katherine Z Scaturro
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
11
|
Rice RC, Gil DV, Baratta AM, Frawley RR, Hill SY, Farris SP, Homanics GE. Inter- and transgenerational heritability of preconception chronic stress or alcohol exposure: Translational outcomes in brain and behavior. Neurobiol Stress 2024; 29:100603. [PMID: 38234394 PMCID: PMC10792982 DOI: 10.1016/j.ynstr.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Chronic stress and alcohol (ethanol) use are highly interrelated and can change an individual's behavior through molecular adaptations that do not change the DNA sequence, but instead change gene expression. A recent wealth of research has found that these nongenomic changes can be transmitted across generations, which could partially account for the "missing heritability" observed in genome-wide association studies of alcohol use disorder and other stress-related neuropsychiatric disorders. In this review, we summarize the molecular and behavioral outcomes of nongenomic inheritance of chronic stress and ethanol exposure and the germline mechanisms that could give rise to this heritability. In doing so, we outline the need for further research to: (1) Investigate individual germline mechanisms of paternal, maternal, and biparental nongenomic chronic stress- and ethanol-related inheritance; (2) Synthesize and dissect cross-generational chronic stress and ethanol exposure; (3) Determine cross-generational molecular outcomes of preconception ethanol exposure that contribute to alcohol-related disease risk, using cancer as an example. A detailed understanding of the cross-generational nongenomic effects of stress and/or ethanol will yield novel insight into the impact of ancestral perturbations on disease risk across generations and uncover actionable targets to improve human health.
Collapse
Affiliation(s)
- Rachel C. Rice
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela V. Gil
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Annalisa M. Baratta
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Remy R. Frawley
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shirley Y. Hill
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sean P. Farris
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregg E. Homanics
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Capobianco E, Pirrone I. Paternal programming of fetoplacental and offspring metabolic disorders. Placenta 2023; 141:71-77. [PMID: 37355440 DOI: 10.1016/j.placenta.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
The alarming increase in the prevalence of metabolic pathologies is of worldwide concern and has been linked not only to genetic factors but also to a large number of non-genetic factors. In recent years, there has been increasing interest in the study of the programming of metabolic diseases, such as type 2 diabetes mellitus (T2DM) and obesity, by paternal exposure, a paradigm termed "Paternal Origins of Health and Disease" (POHaD). This term derives from the better known "Developmental Origins of Health and Disease" (DOHaD), which focuses on the involvement of the maternal intrauterine environment and complications during pregnancy associated with the health and disease of the offspring. Studies on paternal programming have documented environmentally induced epigenetic modifications in the male germline and in seminal plasma, which lead to intergenerational and transgenerational phenotypes, evident already during fetoplacental development. Studies with animal models at both ends of the nutritional spectrum (undernutrition or overnutrition) have been performed to understand the possible mechanisms and signaling pathways leading to the programming of metabolic disorders by exploring epigenetic changes throughout the life of the offspring. The aim of this review was to address the evidence of the programming of fetoplacental developmental alterations and metabolic pathologies in the offspring of males with metabolic disorders and unhealthy exposures, highlighting the mechanisms involved in such programming and looking for paternal interventions to reduce negative health outcomes in the offspring.
Collapse
Affiliation(s)
- Evangelina Capobianco
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina.
| | - Irune Pirrone
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| |
Collapse
|
13
|
Khemiri L, Kuja-Halkola R, Larsson H, Butwicka A, Tideman M, D'Onofrio BM, Latvala A, Lichtenstein P. Parental substance use disorder and risk of intellectual disability in offspring in Sweden: a national register study. EClinicalMedicine 2023; 63:102170. [PMID: 37680949 PMCID: PMC10480548 DOI: 10.1016/j.eclinm.2023.102170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Background Intellectual disability (ID) is a disorder with unknown aetiology in many cases. Maternal alcohol use is a known risk factor for ID, but less is known about the importance of maternal and paternal substance use disorder (SUD) and risk of ID in offspring. Methods Data from multiple nationwide registers were used to create a cohort of children born from January 01, 1978 to December 31, 2002. All participants were born in Sweden, had available parental identification information and did not emigrate or die before age 12 (n = 1,940,820). Logistic regression modelling was performed with exposure defined as having a parent who received any SUD diagnosis, including alcohol use disorder (AUD) and drug use disorder (DUD). The outcome was registration of diagnosis of any form of ID. First, we analysed the risk of ID if parental SUD was registered prior to childbirth with stepwise adjustment of multiple covariates. Second, the effect of timing of SUD diagnosis in relation to childbirth was analysed. Findings Of 37,410 offspring with parental SUD registered prior to birth, 3.0% (n = 1110) had any form of ID compared to 1.2% (n = 23,168) of those 1,903,410 individuals without parental SUD prior birth. Parental SUD prior birth was associated with an increased risk of any form of ID (Odds Ratio [OR]: 2.3 [2.2-2.5]), with ORs similar for maternal (OR: 2.3 [2.1-2.5]) and paternal SUD (OR: 2.3 [2.1-2.5]). These ORs were reduced but remained statistically significant after adjusting for parental education, migration, psychiatric comorbidity, and co-parent SUD (OR parental SUD: 1.6 [1.5-1.8]; OR maternal SUD: 1.4 [1.2-1.5]; OR paternal SUD: 1.6 [1.5-1.7]). Parental SUD was associated with increased risk of ID in offspring irrespective of timing of diagnosis, but if mothers or fathers were diagnosed with AUD during pregnancy (OR maternal AUD: 5.0 [3.1-8.2]; OR paternal AUD: 2.8 [2.2-3.6]), the risk was significantly greater than if the AUD diagnosis was first registered after childbirth (OR maternal AUD: 1.9 [1.8-2.0]; OR paternal AUD: 1.6 [1.6-1.7]). Interpretation Both paternal and maternal SUD were associated with an increased risk of ID in offspring, with greatest risk observed when AUD was diagnosed during pregnancy. Possible mechanisms may involve shared genetic and environmental factors, including toxic effects from alcohol intake. These findings have clinical implications in suggesting that parental SUD in either parent represents a possibly modifiable risk factor to consider when developing prevention, diagnostics and treatment programs for children with ID. Funding Stockholm County Council, the Research Council of the Swedish Alcohol Retailing Monopoly, Fredrik and Ingrid Thurings stiftelse, Academy of Finland, the Swedish Research Council and the Swedish Research Council for Health, Working Life and Welfare, Nordforsk by the Nordic Council of Ministers and the Polish Medical Research Agency.
Collapse
Affiliation(s)
- Lotfi Khemiri
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Agnieszka Butwicka
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health Services, Akershus University Hospital, Lørenskog, Norway
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Magnus Tideman
- Department of Social Sciences, Marie Cederschiöld University, Stockholm, Sweden
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Brian M. D'Onofrio
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Antti Latvala
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Criminology and Legal Policy, University of Helsinki, Helsinki, Finland
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Jones SK, McCarthy DM, Stanwood GD, Schatschneider C, Bhide PG. Learning and memory deficits produced by aspartame are heritable via the paternal lineage. Sci Rep 2023; 13:14326. [PMID: 37652922 PMCID: PMC10471780 DOI: 10.1038/s41598-023-41213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Environmental exposures produce heritable traits that can linger in the population for one or two generations. Millions of individuals consume substances such as artificial sweeteners daily that are declared safe by regulatory agencies without evaluation of their potential heritable effects. We show that consumption of aspartame, an FDA-approved artificial sweetener, daily for up to 16-weeks at doses equivalent to only 7-15% of the FDA recommended maximum daily intake value (equivalent to 2-4 small, 8 oz diet soda drinks per day) produces significant spatial learning and memory deficits in mice. Moreover, the cognitive deficits are transmitted to male and female descendants along the paternal lineage suggesting that aspartame's adverse cognitive effects are heritable, and that they are more pervasive than current estimates, which consider effects in the directly exposed individuals only. Traditionally, deleterious environmental exposures of pregnant and nursing women are viewed as risk factors for the health of future generations. Environmental exposures of men are not considered to pose similar risks. Our findings suggest that environmental exposures of men can produce adverse impact on cognitive function in future generations and demonstrate the need for considering heritable effects via the paternal lineage as part of the regulatory evaluations of artificial sweeteners.
Collapse
Affiliation(s)
- Sara K Jones
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
| | - Deirdre M McCarthy
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Gregg D Stanwood
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Christopher Schatschneider
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
- Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Pradeep G Bhide
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA.
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA.
| |
Collapse
|
15
|
Nieto SJ, Kosten TA. Paternal alcohol exposure attenuates maintenance and reinstated operant responding for alcohol in the offspring of rats. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1494-1504. [PMID: 37353981 DOI: 10.1111/acer.15136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/10/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND The heritability of alcohol use disorder is close to 50%, yet common genetic variants account for less than 5% of risk. The missing heritability may reflect environmental exposure in the parents prior to conception. Indeed, paternal alcohol exposure has many behavioral and biological consequences for rodent offspring. We recently found that paternal alcohol exposure attenuated the acquisition of operant alcohol self-administration in offspring of rats of both sexes. Here we test whether this effect extends to other phases of operant self-administration thought to model motivation, craving, and relapse. METHODS Wistar male rats exposed to alcohol vapors or air for 6 weeks were mated with alcohol-naïve females 8 weeks later. The adult offspring were trained to lever press for alcohol and tested under several conditions: (1) maintenance responding under a progressive ratio schedule, (2) extinction responding due to removal of the alcohol delivery contingency, (3) reinstatement of extinguished responding in the presence of alcohol-associated cues, and (4) reinitiation of lever press responding for alcohol delivery under fixed and progressive ratio schedules. RESULTS Alcohol-sired offspring showed reduced responding under the progressive ratio schedule and blunted cue-induced reinstatement of extinguished responding. Alcohol-sired offspring also emitted fewer responses during extinction sessions and did not reinitiate responding to the same extent as control-sired rats after alcohol delivery was restored. CONCLUSIONS Across all conditions, paternal alcohol exposure led to a reduction in the reinforcing effects of alcohol in offspring. These results are consistent with studies conducted with paternal cocaine exposure except that here we find effects in rats of both sexes.
Collapse
Affiliation(s)
- Steven J Nieto
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Therese A Kosten
- Department of Psychology, University of Houston, Houston, Texas, USA
| |
Collapse
|
16
|
Lo JO, D’Mello RJ, Watch L, Schust DJ, Murphy SK. An epigenetic synopsis of parental substance use. Epigenomics 2023; 15:453-473. [PMID: 37282544 PMCID: PMC10308258 DOI: 10.2217/epi-2023-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
The rate of substance use is rising, especially among reproductive-age individuals. Emerging evidence suggests that paternal pre-conception and maternal prenatal substance use may alter offspring epigenetic regulation (changes to gene expression without modifying DNA) and outcomes later in life, including neurodevelopment and mental health. However, relatively little is known due to the complexities and limitations of existing studies, making causal interpretations challenging. This review examines the contributions and influence of parental substance use on the gametes and potential transmissibility to the offspring's epigenome as possible areas to target public health warnings and healthcare provider counseling of individuals or couples in the pre-conception and prenatal periods to ultimately mitigate short- and long-term offspring morbidity and mortality.
Collapse
Affiliation(s)
- Jamie O Lo
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rahul J D’Mello
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lester Watch
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Danny J Schust
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan K Murphy
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27701, USA; Division of Environmental Sciences & Policy, Duke Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
17
|
Domi E, Barchiesi R, Barbier E. Epigenetic Dysregulation in Alcohol-Associated Behaviors: Preclinical and Clinical Evidence. Curr Top Behav Neurosci 2023. [PMID: 36717533 DOI: 10.1007/7854_2022_410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alcohol use disorder (AUD) is characterized by loss of control over intake and drinking despite harmful consequences. At a molecular level, AUD is associated with long-term neuroadaptations in key brain regions that are involved in reward processing and decision-making. Over the last decades, a great effort has been made to understand the neurobiological basis underlying AUD. Epigenetic mechanisms have emerged as an important mechanism in the regulation of long-term alcohol-induced gene expression changes. Here, we review the literature supporting a role for epigenetic processes in AUD. We particularly focused on the three most studied epigenetic mechanisms: DNA methylation, Histone modification and non-coding RNAs. Clinical studies indicate an association between AUD and DNA methylation both at the gene and global levels. Using behavioral paradigms that mimic some of the characteristics of AUD, preclinical studies demonstrate that changes in epigenetic mechanisms can functionally impact alcohol-associated behaviors. While many studies support a therapeutic potential for targeting epigenetic enzymes, more research is needed to fully understand their role in AUD. Identification of brain circuits underlying alcohol-associated behaviors has made major advances in recent years. However, there are very few studies that investigate how epigenetic mechanisms can affect these circuits or impact the neuronal ensembles that promote alcohol-associated behaviors. Studies that focus on the role of circuit-specific and cell-specific epigenetic changes for clinically relevant alcohol behaviors may provide new insights on the functional role of epigenetic processes in AUD.
Collapse
Affiliation(s)
- Esi Domi
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Riccardo Barchiesi
- Department of Neuroscience, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Estelle Barbier
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
| |
Collapse
|
18
|
DeGarmo DS, Gewirtz AH, Li L, Tavalire HF, Cicchetti D. The ADAPT Parenting Intervention Benefits Combat Exposed Fathers Genetically Susceptible to Problem Drinking. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2023; 24:150-160. [PMID: 36057024 DOI: 10.1007/s11121-022-01424-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 02/03/2023]
Abstract
Testing a vantage sensitivity model from differential susceptibility theory (DST), we examined a G × E × I hypothesis; that is, whether a military parenting intervention program (I) might buffer a G × E susceptibility for military deployed fathers exposed to deployment combat stress and trauma. We hypothesized that combat stress (E, referring to the natural environmental factor) would lead to increases in problem drinking, and that the effect of problem drinking would be amplified by genetic predisposition (G) for drinking reward systems, substance use, and addictive behaviors (i.e., differential vulnerability). Providing a preventive intervention designed to improve post-deployment family environments (I, vantage sensitivity) is hypothesized to buffer the negative impacts of combat exposure and genetic susceptibility. The sample included 185 post-deployed military fathers who consented to genotyping, from a larger sample of 294 fathers enrolled in a randomized effectiveness trial of the After Deployment Adaptive Parenting Tools (ADAPT) intervention. Trauma-exposed military fathers at genetic susceptibility for problem drinking assigned to the ADAPT intervention reported significantly more reductions in risky drinking compared with fathers at genetic susceptibility assigned to the control group, with a small effect size for the G × E × I interaction (d = .2). Trial Registration. The ADAPT trial is registered at the US National Institutes of Health ( ClinicalTrials.gov ) # NCT03522610.
Collapse
Affiliation(s)
- David S DeGarmo
- Prevention Science Institute, University of Oregon, Eugene, USA
| | - Abigail H Gewirtz
- Department of Psychology, REACH Institute, Arizona State University, Tempe, USA.
| | - Lijun Li
- Department of Family Social Science, University of Minnesota-Twin Cities, Minneapolis, USA
| | | | - Dante Cicchetti
- Institute of Child Development, University of Minnesota-Twin Cities, Minneapolis, USA
| |
Collapse
|
19
|
Nieto SJ, Harding MJ, Nielsen DA, Kosten TA. Paternal alcohol exposure has task- and sex-dependent behavioral effect in offspring. Alcohol Clin Exp Res 2022; 46:2191-2202. [PMID: 36281832 DOI: 10.1111/acer.14964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Endophenotypes for alcohol use disorder are well known and may reflect paternal exposure effects passed down to offspring via epigenetic mechanisms. Previously, we showed that paternal alcohol exposure prior to conception attenuates the acquisition of operant alcohol self-administration. We now test whether paternal alcohol exposure alters their offsprings' behavioral responses to alcohol (endophenotypes) and global DNA methylation levels in reward-related brain regions. METHODS Adult male rats were exposed to alcohol vapors or air for 6 weeks and mated with alcohol-naïve females 8 weeks later. Adult male and female offspring of the alcohol- and control-sired litters were tested on three behaviors 30 m after gavage with water or alcohol (1.5 g/kg): open field, elevated plus maze, and accelerating rotarod. Global DNA methylation levels in sperm, nucleus accumbens, and prefrontal cortex were examined in male sires and in another group of offspring. RESULTS Alcohol-sired males showed less anxiety-like behavior in the elevated plus maze that was not affected by alcohol administration. By contrast, alcohol had anxiolytic effects in the open field in male offspring only with no paternal alcohol effect. Neither paternal alcohol exposure nor alcohol administration altered locomotor activity in either sex. Sex-specific effects of paternal alcohol exposure were seen in the rotarod test. Alcohol-sired male offspring showed blunted sensitivity to the alcohol's motor-impairing effects, whereas alcohol-sired female offspring showed enhanced sensitivity. Global DNA methylation was altered in the sperm of alcohol-exposed males, but no changes were seen in their offspring. CONCLUSIONS Paternal alcohol exposure prior to conception has sex- and task-dependent effects on unconditioned behaviors in their offspring.
Collapse
Affiliation(s)
- Steven J Nieto
- Department of Psychology, University of Houston, Houston, Texas, USA
| | | | | | - Therese A Kosten
- Department of Psychology, University of Houston, Houston, Texas, USA
| |
Collapse
|
20
|
Thomas KN, Zimmel KN, Basel A, Roach AN, Mehta NA, Thomas KR, Dotson LJ, Bedi YS, Golding MC. Paternal alcohol exposures program intergenerational hormetic effects on offspring fetoplacental growth. Front Cell Dev Biol 2022; 10:930375. [PMID: 36036017 PMCID: PMC9405020 DOI: 10.3389/fcell.2022.930375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Hormesis refers to graded adaptive responses to harmful environmental stimuli where low-level toxicant exposures stimulate tissue growth and responsiveness while, in contrast, higher-level exposures induce toxicity. Although the intergenerational inheritance of programmed hormetic growth responses is described in plants and insects, researchers have yet to observe this phenomenon in mammals. Using a physiologically relevant mouse model, we demonstrate that chronic preconception paternal alcohol exposures program nonlinear, dose-dependent changes in offspring fetoplacental growth. Our studies identify an inverse j-shaped curve with a threshold of 2.4 g/Kg per day; below this threshold, paternal ethanol exposures induce programmed increases in placental growth, while doses exceeding this point yield comparative decreases in placental growth. In male offspring, higher paternal exposures induce dose-dependent increases in the placental labyrinth layer but do not impact fetal growth. In contrast, the placental hypertrophy induced by low-level paternal ethanol exposures associate with increased offspring crown-rump length, particularly in male offspring. Finally, alterations in placental physiology correlate with disruptions in both mitochondrial-encoded and imprinted gene expression. Understanding the influence of ethanol on the paternally-inherited epigenetic program and downstream hormetic responses in offspring growth may help explain the enormous variation observed in fetal alcohol spectrum disorder (FASD) phenotypes and incidence.
Collapse
|
21
|
Bedi YS, Wang H, Thomas KN, Basel A, Prunier J, Robert C, Golding MC. Alcohol induced increases in sperm Histone H3 lysine 4 trimethylation correlate with increased placental CTCF occupancy and altered developmental programming. Sci Rep 2022; 12:8839. [PMID: 35614060 PMCID: PMC9130987 DOI: 10.1038/s41598-022-12188-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Using a mouse model, studies by our group reveal that paternal preconception alcohol intake affects offspring fetal-placental growth, with long-lasting consequences on adult metabolism. Here, we tested the hypothesis that chronic preconception male alcohol exposure impacts histone enrichment in sperm and that these changes are associated with altered developmental programming in the placenta. Using chromatin immunoprecipitation, we find alcohol-induced increases in sperm histone H3 lysine 4 trimethylation (H3K4me3) that map to promoters and presumptive enhancer regions enriched in genes driving neurogenesis and craniofacial development. Given the colocalization of H3K4me3 with the chromatin binding factor CTCF across both sperm and embryos, we next examined CTCF localization in the placenta. We find global changes in CTCF binding within placentae derived from the male offspring of alcohol-exposed sires. Furthermore, altered CTCF localization correlates with dysregulated gene expression across multiple gene clusters; however, these transcriptional changes only occur in male offspring. Finally, we identified a correlation between genomic regions exhibiting alcohol-induced increases in sperm H3K4me3 and increased CTCF binding in male placentae. Collectively, our analysis demonstrates that the chromatin landscape of sperm is sensitive to chronic alcohol exposure and that a subset of these affected regions exhibits increased placental CTCF enrichment.
Collapse
Affiliation(s)
- Yudhishtar S Bedi
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Haiqing Wang
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Julien Prunier
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec, QC, Canada
| | - Claude Robert
- Département des Sciences Animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
22
|
Terracina S, Ferraguti G, Tarani L, Messina MP, Lucarelli M, Vitali M, De Persis S, Greco A, Minni A, Polimeni A, Ceccanti M, Petrella C, Fiore M. Transgenerational Abnormalities Induced by Paternal Preconceptual Alcohol Drinking: Findings from Humans and Animal Models. Curr Neuropharmacol 2022; 20:1158-1173. [PMID: 34720083 PMCID: PMC9886817 DOI: 10.2174/1570159x19666211101111430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Alcohol consumption during pregnancy and lactation is a widespread preventable cause of neurodevelopmental impairment in newborns. While the harmful effects of gestational alcohol use have been well documented, only recently, the role of paternal preconceptual alcohol consumption (PPAC) prior to copulating has drawn specific epigenetic considerations. Data from human and animal models have demonstrated that PPAC may affect sperm function, eliciting oxidative stress. In newborns, PPAC may induce changes in behavior, cognitive functions, and emotional responses. Furthermore, PPAC may elicit neurobiological disruptions, visuospatial impairments, hyperactivity disorders, motor skill disruptions, hearing loss, endocrine, and immune alterations, reduced physical growth, placental disruptions, and metabolic alterations. Neurobiological studies on PPAC have also disclosed changes in brain function and structure by disrupting the growth factors pathways. In particular, as shown in animal model studies, PPAC alters brain nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) synthesis and release. This review shows that the crucial topic of lifelong disabilities induced by PPAC and/or gestational alcohol drinking is quite challenging at the individual, societal, and familial levels. Since a nontoxic drinking behavior before pregnancy (for both men and women), during pregnancy, and lactation cannot be established, the only suggestion for couples planning pregnancies is to completely avoid the consumption of alcoholic beverages.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Luigi Tarani
- Department of Pediatrics, Medical Faculty, “Sapienza” University of Rome, Rome, Italy
| | | | - Marco Lucarelli
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | | | | | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy,Address correspondence to this author at the Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy; E-mail:
| |
Collapse
|
23
|
Nieto SJ, Haile CN, Quave CB, Harding MJ, Nielsen DA, Meisch RA, Kosten TA. Paternal alcohol exposure reduces acquisition of operant alcohol self-administration and affects Bdnf DNA methylation in male and female offspring. Addict Biol 2022; 27:e13078. [PMID: 34363290 PMCID: PMC8720057 DOI: 10.1111/adb.13078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023]
Abstract
Familial transmission of alcohol use disorder reflects genetic and environmental factors. Paternal alcohol exposure may affect rodent offspring via epigenetic modifications transmitted through the male germ line. While such exposure alters alcohol sensitivity in mouse offspring, no studies examined if it impacts the development of operant alcohol self-administration in rats. We exposed male (sires) Wistar rats to chronic intermittent ethanol in vapour chambers (16 h/day; 5 days/week) or to air for 6 weeks. Eight weeks later, rats were mated with alcohol-naive females. Adult alcohol- and control-sired F1 offspring were assessed in acquisition of alcohol self-administration in which increasing alcohol concentrations (2.5%, 5% and 10%, v/v) were delivered after one lever press (fixed ratio 1 or FR1). Prior to alcohol sessions, rats were trained to lever press for food delivery under an FR1 schedule of reinforcement. DNA methylation levels of the brain derived neurotrophic factor (Bdnf) gene were measured in sperm, nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) in sires and in offspring. Alcohol-exposed sires had lower Bdnf DNA methylation levels in NAc and greater methylation levels in mPFC. Although this pattern was not recapitulated in offspring, alcohol-sired offspring of both sexes did show aberrant Bdnf DNA methylation patterns compared to control-sired offspring. Alcohol-sired offspring self-administered less alcohol (5% and 10%) with no group differences in food responding. Results indicate that paternal alcohol exposure prior to conception protects against alcohol's initial reinforcing effects but the pattern of dysregulated Bdnf methylation in reward-related circuitry did not mimic changes seen in sires.
Collapse
Affiliation(s)
- Steven J Nieto
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| | - Colin N Haile
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| | - Cana B Quave
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| | - Mark J Harding
- The Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - David A Nielsen
- The Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A Meisch
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| | - Therese A Kosten
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| |
Collapse
|
24
|
Finelli R, Mottola F, Agarwal A. Impact of Alcohol Consumption on Male Fertility Potential: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010328. [PMID: 35010587 PMCID: PMC8751073 DOI: 10.3390/ijerph19010328] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Alcohol abuse disorder is a serious condition, implicating more than 15 million people aged 12 years and older in 2019 in the United States. Ethanol (or ethyl alcohol) is mainly oxidized in the liver, resulting in the synthesis of acetaldehyde and acetate, which are toxic and carcinogenic metabolites, as well as in the generation of a reductive cellular environment. Moreover, ethanol can interact with lipids, generating fatty acid ethyl esters and phosphatidylethanol, which interfere with physiological cellular pathways. This narrative review summarizes the impact of excessive alcohol consumption on male fertility by describing its metabolism and how ethanol consumption may induce cellular damage. Furthermore, the impact of alcohol consumption on hormonal regulation, semen quality, and genetic and epigenetic regulations is discussed based on evidence from animal and human studies, focusing on the consequences on the offspring. Finally, the limitations of the current evidence are discussed. Our review highlights the association between chronic alcohol consumption and poor semen quality, mainly due to the development of oxidative stress, as well as its genotoxic impact on hormonal regulation and DNA integrity, affecting the offspring’s health. New landscapes of investigation are proposed for the identification of molecular markers for alcohol-associated infertility, with a focus on advanced OMICS-based approaches applied to the analysis of semen samples.
Collapse
Affiliation(s)
- Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44106, USA;
- Correspondence: ; Tel.: +1-(214)-444-9485
| |
Collapse
|
25
|
Cardenas SI, Morris AR, Marshall N, Aviv EC, Martínez García M, Sellery P, Saxbe DE. Fathers matter from the start: The role of expectant fathers in child development. CHILD DEVELOPMENT PERSPECTIVES 2021. [DOI: 10.1111/cdep.12436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sofia I. Cardenas
- Department of Psychology University of Southern California Los Angeles California USA
| | - Alyssa R. Morris
- Department of Psychology University of Southern California Los Angeles California USA
| | - Narcis Marshall
- Department of Psychology University of Southern California Los Angeles California USA
| | - Elizabeth C. Aviv
- Department of Psychology University of Southern California Los Angeles California USA
| | - Magdalena Martínez García
- Group of Neuroimaging Instituto de Investigación Sanitaria Gregorio Marañón Madrid Spain
- CIBERSAM Madrid Spain
| | - Pia Sellery
- Department of Psychology University of Southern California Los Angeles California USA
| | - Darby E. Saxbe
- Department of Psychology University of Southern California Los Angeles California USA
| |
Collapse
|
26
|
Thomas KN, Zimmel KN, Roach AN, Basel A, Mehta NA, Bedi YS, Golding MC. Maternal background alters the penetrance of growth phenotypes and sex-specific placental adaptation of offspring sired by alcohol-exposed males. FASEB J 2021; 35:e22035. [PMID: 34748230 PMCID: PMC8713293 DOI: 10.1096/fj.202101131r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/05/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022]
Abstract
Epigenetic mechanisms of paternal inheritance are an emerging area of interest in our efforts to understand fetal alcohol spectrum disorders. In rodent models examining maternal alcohol exposures, different maternal genetic backgrounds protect or sensitize offspring to alcohol‐induced teratogenesis. However, whether maternal background can mitigate sperm‐inherited alterations in developmental programming and modify the penetrance of growth defects induced by preconception paternal alcohol exposures remains unaddressed. In our previous studies examining pure C57Bl/6J crosses, the offspring of alcohol‐exposed sires exhibited fetal growth restriction, enlarged placentas, and decreased placental efficiency. Here, we find that in contrast to our previous studies, the F1 offspring of alcohol‐exposed C57Bl/6J sires and CD‐1 dams do not exhibit fetal growth restriction, with male fetuses developing smaller placentas and increased placental efficiencies. However, in these hybrid offspring, preconception paternal alcohol exposure induces sex‐specific changes in placental morphology. Specifically, the female offspring of alcohol‐exposed sires displayed structural changes in the junctional and labyrinth zones, along with increased placental glycogen content. These changes in placental organization are accompanied by female‐specific alterations in the expression of imprinted genes Cdkn1c and H19. Although male placentae do not display overt changes in placental histology, using RNA‐sequencing, we identified programmed alterations in genes regulating oxidative phosphorylation, mitochondrial function, and Sirtuin signaling. Collectively, our data reveal that preconception paternal alcohol exposure transmits a stressor to developing offspring, that males and females exhibit distinct patterns of placental adaptation, and that maternal genetic background can modulate the effects of paternal alcohol exposure.
Collapse
Affiliation(s)
- Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Katherine N Zimmel
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alexis N Roach
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Nicole A Mehta
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Yudhishtar S Bedi
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
27
|
Hime GR, Stonehouse SLA, Pang TY. Alternative models for transgenerational epigenetic inheritance: Molecular psychiatry beyond mice and man. World J Psychiatry 2021; 11:711-735. [PMID: 34733638 PMCID: PMC8546770 DOI: 10.5498/wjp.v11.i10.711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mental illness remains the greatest chronic health burden globally with few in-roads having been made despite significant advances in genomic knowledge in recent decades. The field of psychiatry is constantly challenged to bring new approaches and tools to address and treat the needs of vulnerable individuals and subpopulations, and that has to be supported by a continuous growth in knowledge. The majority of neuropsychiatric symptoms reflect complex gene-environment interactions, with epigenetics bridging the gap between genetic susceptibility and environmental stressors that trigger disease onset and drive the advancement of symptoms. It has more recently been demonstrated in preclinical models that epigenetics underpins the transgenerational inheritance of stress-related behavioural phenotypes in both paternal and maternal lineages, providing further supporting evidence for heritability in humans. However, unbiased prospective studies of this nature are practically impossible to conduct in humans so preclinical models remain our best option for researching the molecular pathophysiologies underlying many neuropsychiatric conditions. While rodents will remain the dominant model system for preclinical studies (especially for addressing complex behavioural phenotypes), there is scope to expand current research of the molecular and epigenetic pathologies by using invertebrate models. Here, we will discuss the utility and advantages of two alternative model organisms-Caenorhabditis elegans and Drosophila melanogaster-and summarise the compelling insights of the epigenetic regulation of transgenerational inheritance that are potentially relevant to human psychiatry.
Collapse
Affiliation(s)
- Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Sophie LA Stonehouse
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| | - Terence Y Pang
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| |
Collapse
|
28
|
The Influence of Cross-Fostering on Alcohol Consumption and Depressive-Like Behaviors in HA and LA Mice: The Role of the Endogenous Opioid System. Brain Sci 2021; 11:brainsci11050622. [PMID: 34067974 PMCID: PMC8152237 DOI: 10.3390/brainsci11050622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022] Open
Abstract
The development of alcohol dependence and depression is determined by various genetic and environmental factors. In the presented study, we used high analgesia (HA) and low analgesia (LA) mouse lines, characterized by different endogenous opioid system activity and divergent blood–brain barrier permeability, to determine the influence of cross-fostering of these lines raised by surrogate mothers on ethanol consumption and development of depressive-like behaviors. We also investigated ethanol drinking by biological parents or surrogate mothers. Furthermore, we investigated whether these parental changes would alter the effect of naloxone on ethanol intake and depressive-like behaviors in offspring. Our results reveal that cross-fostering of HA and LA raised by surrogate mothers has a greater impact on depressive-like behaviors than ethanol consumption. Ethanol intake by biological parents substantially affected depressive-like behaviors and ethanol consumption in offspring. Moreover, ethanol intake by biological parents or an adoptive mother modified the effect of naloxone on ethanol consumption and preference and depressive-like behaviors in the HA offspring only. Together, these results indicate that cross-fostering differentially affects the effect of naloxone on alcohol consumption and the development of depression.
Collapse
|
29
|
Barreto SG, Pandol SJ. Young-Onset Carcinogenesis - The Potential Impact of Perinatal and Early Life Metabolic Influences on the Epigenome. Front Oncol 2021; 11:653289. [PMID: 33996575 PMCID: PMC8116793 DOI: 10.3389/fonc.2021.653289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
The last decade has witnessed a significant rise in cancers in young adults. This spectrum of solid organ cancers occurring in individuals under the age of 40 years (some reports extending the age-group to <50 years) in whom aetiology of cancer cannot be traced back to pre-existing familial cancer syndromes, is referred to as termed young-, or early- onset cancers. The underlying causes for young-onset carcinogenesis have remained speculative. We recently proposed a hypothesis to explain the causation of this entity. We propose that the risk for young-onset cancer begins in the perinatal period as a result of the exposure of the foetus to stressors, including maternal malnutrition, smoking or alcohol, with the consequent epigenomic events triggered to help the foetus cope/adapt. Exposure to the same stressors, early in the life of that individual, facilitates a re-activation of these 'responses designed to be protective' but ultimately resulting in a loss of regulation at a metabolic and/or genetic level culminating in the evolution of the neoplastic process. In this manuscript, we will provide a rationale for this hypothesis and present evidence to further support it by clarifying the pathways involved, including elucidating a role for Acetyl-CoA and its effect on the epigenome. We present strategies and experimental models that can be used to test the hypothesis. We believe that a concerted effort by experts in different, but complementary fields, such as epidemiology, genetics, and epigenetics united towards the common goal of deciphering the underlying cause for young-onset cancers is the urgent need. Such efforts might serve to prove, or disprove, the presented hypothesis. However, the more important aim is to develop strategies to reverse the disturbing trend of the rise in young-onset cancers.
Collapse
Affiliation(s)
- Savio George Barreto
- Division of Surgery and Perioperative Medicine, Flinders Medical Center, Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders University, Los Angeles, SA, Australia
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
30
|
Bishop L, Almquist YB. Friends' childhood adversity and long-term implications for substance misuse: a prospective Swedish cohort study. Addiction 2021; 116:632-640. [PMID: 32592226 DOI: 10.1111/add.15174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/30/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Although an individual's childhood adversity is predictive of later substance misuse, the effect of adversity within an individual's friendship network has not been established. The current study aims to estimate the strength of the association between exposure to childhood adversity among individuals' friends at the onset of adolescence, relative to individuals' own exposure to childhood adversity, and hospitalization for substance misuse between young adulthood and retirement. DESIGN Prospective cohort study. SETTING Stockholm, Sweden. PARTICIPANTS Individuals born in 1953, living in Stockholm in 1963, and who nominated three best friends in the 6th grade school class (n = 7180; females = 3709, males = 3471), followed to 2016. MEASUREMENTS The outcome was hospitalization with a main or secondary diagnosis attributed to substance misuse, reflected in Swedish inpatient records (ages 19-63 years). Five indicators of childhood adversity (ages 0-12 years) were operationalized into composite measures for individuals and their friends, respectively. Friendships were identified using sociometric data collected in the school class setting (age 13 years). FINDINGS Individuals' own childhood adversity does not predict childhood adversity among friends (P > 0.05). Childhood adversity among friends is independently associated with an increased risk of an individual's later substance misuse [hazard ratio (HR) = 1.17, 95% confidence interval (CI) = 1.09-1.24], independently of an individual's own childhood adversity (HR = 1.47, 95% CI = 1.34-1.61). However, childhood adversity among friends does not moderate the association between individuals' own childhood adversity and later substance misuse. CONCLUSIONS Within a birth cohort of individuals born in 1950s Stockholm, Sweden, childhood adversity among an individual's friends appears to predict the individual's substance misuse in later life independently of an individual's own exposure to childhood adversity.
Collapse
Affiliation(s)
- Lauren Bishop
- Department of Public Health Sciences, Stockholm University, Stockholm, Sweden
| | - Ylva B Almquist
- Department of Public Health Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
31
|
Salmanzadeh H, Ahmadi-Soleimani SM, Azadi M, Halliwell RF, Azizi H. Adolescent Substance Abuse, Transgenerational Consequences and Epigenetics. Curr Neuropharmacol 2021; 19:1560-1569. [PMID: 33655865 PMCID: PMC8762180 DOI: 10.2174/1570159x19666210303121519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
Adolescence is the transitional period between childhood and adulthood and a critical period in brain development. Adolescence in humans is also associated with increased expression of risk-taking behaviors. Epidemiological and clinical studies, for example, show a surge of drug abuse and raise the hypothesis that the adolescent brain undergoes critical changes resulting in diminished control. Determining how substance abuse during this critical period might cause longterm neurobiological changes in cognition and behavior is therefore critically important. The present work aims to provide an evaluation of the transgenerational and multi-generational phenotypes derived from parent animals exposed to drugs of abuse only during their adolescence. Specifically, we will consider changes found following the administration of cannabinoids, nicotine, alcohol and opiates. In addition, epigenetic modifications of the genome following drug exposure will be discussed as emerging evidence of the underlying adverse transgenerational effects. Notwithstanding, much of the new data discussed here is from animal models, indicating that future clinical studies are much needed to better understand the neurobiological consequences and mechanisms of drug actions on the human brains' development and maturation.
Collapse
Affiliation(s)
| | | | | | - Robert F. Halliwell
- Address correspondence to this author at the TJ Long School of Pharmacy, University of the Pacific, Stockton, California, USA; Tel: +1 (209) 946 2074; E-mail: and Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Tel: +98-21-82884587; Fax: +98-21-82884528; E-mail:
| | - Hossein Azizi
- Address correspondence to this author at the TJ Long School of Pharmacy, University of the Pacific, Stockton, California, USA; Tel: +1 (209) 946 2074; E-mail: and Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Tel: +98-21-82884587; Fax: +98-21-82884528; E-mail:
| |
Collapse
|
32
|
Baratta AM, Rathod RS, Plasil SL, Seth A, Homanics GE. Exposure to drugs of abuse induce effects that persist across generations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:217-277. [PMID: 33461664 PMCID: PMC8167819 DOI: 10.1016/bs.irn.2020.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Substance use disorders are highly prevalent and continue to be one of the leading causes of disability in the world. Notably, not all people who use addictive drugs develop a substance use disorder. Although substance use disorders are highly heritable, patterns of inheritance cannot be explained purely by Mendelian genetic mechanisms. Vulnerability to developing drug addiction depends on the interplay between genetics and environment. Additionally, evidence from the past decade has pointed to the role of epigenetic inheritance in drug addiction. This emerging field focuses on how environmental perturbations, including exposure to addictive drugs, induce epigenetic modifications that are transmitted to the embryo at fertilization and modify developmental gene expression programs to ultimately impact subsequent generations. This chapter highlights intergenerational and transgenerational phenotypes in offspring following a history of parental drug exposure. Special attention is paid to parental preconception exposure studies of five drugs of abuse (alcohol, cocaine, nicotine, cannabinoids, and opiates) and associated behavioral and physiological outcomes in offspring. The highlighted studies demonstrate that parental exposure to drugs of abuse has enduring effects that persist into subsequent generations. Understanding the contribution of epigenetic inheritance in drug addiction may provide clues for better treatments and therapies for substance use disorders.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Richa S Rathod
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sonja L Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amit Seth
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
33
|
Mierzejewski P, Zakrzewska A, Kuczyńska J, Wyszogrodzka E, Dominiak M. Intergenerational implications of alcohol intake: metabolic disorders in alcohol-naïve rat offspring. PeerJ 2020; 8:e9886. [PMID: 32974100 PMCID: PMC7489241 DOI: 10.7717/peerj.9886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol drinking may be associated with an increased risk of various metabolic diseases. Rat lines selectively bred for alcohol preference and alcohol avoidance constitute an interesting model to study inherited factors related to alcohol drinking and metabolic disorders. The aim of the present study was to compare the levels of selected laboratory biomarkers of metabolic disorders in blood samples from naïve offspring of Warsaw alcohol high-preferring (WHP), Warsaw alcohol low-preferring (WLP), and wild Wistar rats. Blood samples were collected from 3-month old (300–350 g) alcohol-naïve, male offspring of WHP (n = 8) and WLP rats (n = 8), as well as alcohol-naïve, male, wild Wistar rats. Markers of metabolic, hepatic, and pancreatic disorders were analysed (levels of homocysteine, glucose, total cholesterol, triglycerides and γ-glutamyl transferase (GGT), aspartate (AST), alanine aminotransferase (ALT), and amylase serum activities). Alcohol-naïve offspring of WHP, WLP, and wild Wistar rats differed significantly in the levels of triglycerides, total cholesterol, homocysteine, as well as in the activity of GGT, ALT, AST, and amylase enzymes. Most markers in the alcohol-naïve offspring of WHP rats were altered even thought they were never exposed to alcohol pre- or postnatally. This may suggest that parental alcohol abuse can have a detrimental influence on offspring vulnerability to metabolic disorders.
Collapse
Affiliation(s)
- Pawel Mierzejewski
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Alicja Zakrzewska
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Julita Kuczyńska
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Edyta Wyszogrodzka
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Monika Dominiak
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
34
|
Rathod RS, Ferguson C, Seth A, Baratta AM, Plasil SL, Homanics GE. Effects of Paternal Preconception Vapor Alcohol Exposure Paradigms on Behavioral Responses in Offspring. Brain Sci 2020; 10:E658. [PMID: 32971974 PMCID: PMC7564629 DOI: 10.3390/brainsci10090658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
We and others previously reported that paternal preconception chronic ethanol exposure leads to molecular, physiological, and behavioral changes in offspring including reduced ethanol consumption and preference relative to controls. The goal of the present study was to further explore the impact of paternal ethanol exposure on a wide variety of basal and drug-induced behavioral responses in first generation offspring. Adult male mice were exposed to chronic intermittent vapor ethanol or control conditions for 5-6 weeks before being mated with ethanol-naïve females to produce ethanol (E)- and control (C)-sired offspring. E-sired male offspring showed stress hyporesponsivity in a stress-induced hyperthermia assay and E-sired female offspring had reduced binge-like ethanol consumption in a drinking in the dark assay compared to C-sired offspring. E-sired offspring also showed altered sensitivity to a sedative/hypnotic dose of the GABAergic drug midazolam, but not ketamine or ethanol, in a loss of the righting response assay. E-sired offspring did not differ from controls in marble burying, novel object location, novel object recognition, social interaction, bottle-brush, novelty suppressed feeding, prepulse inhibition, every-other-day ethanol drinking, or home cage activity assays. This study adds to a growing body of literature suggesting that like in utero alcohol exposure, paternal preconception alcohol exposure can also have effects that persist and impact behavior of offspring.
Collapse
Affiliation(s)
- Richa S. Rathod
- Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (R.S.R.); (C.F.); (A.S.)
| | - Carolyn Ferguson
- Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (R.S.R.); (C.F.); (A.S.)
| | - Amit Seth
- Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (R.S.R.); (C.F.); (A.S.)
| | - Annalisa M. Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Sonja L. Plasil
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Gregg E. Homanics
- Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (R.S.R.); (C.F.); (A.S.)
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
35
|
Rompala GR, Ferguson C, Homanics GE. Coincubation of sperm with epididymal extracellular vesicle preparations from chronic intermittent ethanol-treated mice is sufficient to impart anxiety-like and ethanol-induced behaviors to adult progeny. Alcohol 2020; 87:111-120. [PMID: 32445808 PMCID: PMC7484209 DOI: 10.1016/j.alcohol.2020.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
We previously reported that paternal preconception chronic ethanol exposure in mice imparts adult male offspring with reduced ethanol drinking preference and consumption, increased ethanol sensitivity, and attenuated stress responsivity. That same chronic ethanol exposure paradigm was later revealed to affect the sperm epigenome by altering the abundance of several small noncoding RNAs, a mechanism that mediates the intergenerational effects of numerous paternal environmental exposures. Although recent studies have revealed that the unique RNA signature of sperm is shaped during maturation in the epididymis via extracellular vesicles (EVs), formal demonstration that EVs mediate the effects of paternal preconception perturbations is lacking. Therefore, in the current study we tested the hypothesis that epididymal EV preparations are sufficient to induce intergenerational effects of paternal preconception ethanol exposure on offspring. To test this hypothesis, sperm from ethanol-naïve donors were incubated with epididymal EV preparations from chronic ethanol (Ethanol EV-donor) or control-treated (Control EV-donor) mice prior to in vitro fertilization (IVF) and embryo transfer. Progeny were examined for ethanol- and stress-related behaviors in adulthood. Ethanol EV-donors imparted reduced body weight at weaning and imparted modestly increased limited access ethanol intake to male offspring. Ethanol-EV donors also imparted increased basal anxiety-like behavior and reduced sensitivity to ethanol-induced anxiolysis to female offspring. Although Ethanol EV-donor treatment did not recapitulate the ethanol- or stress-related intergenerational effects of paternal ethanol following natural mating, these results demonstrate that coincubation of sperm with epididymal EV preparations is sufficient to impart intergenerational effects of ethanol through the male germline. This mechanism may generalize to the intergenerational effects of a wide variety of paternal preconception perturbations.
Collapse
|
36
|
Dulman RS, Wandling GM, Pandey SC. Epigenetic mechanisms underlying pathobiology of alcohol use disorder. CURRENT PATHOBIOLOGY REPORTS 2020; 8:61-73. [PMID: 33747641 DOI: 10.1007/s40139-020-00210-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose of review Chronic alcohol use is a worldwide problem with multifaceted consequences including multiplying medical costs and sequelae, societal effects like drunk driving and assault, and lost economic productivity. These large-scale outcomes are driven by the consumption of ethanol, a small permeable molecule that has myriad effects in the human body, particularly in the liver and brain. In this review, we have summarized effects of acute and chronic alcohol consumption on epigenetic mechanisms that may drive pathobiology of Alcohol Use Disorder (AUD) while identifying areas of need for future research. Recent findings Epigenetics has emerged as an interesting field of biology at the intersection of genetics and the environment, and ethanol in particular has been identified as a potent modulator of the epigenome with various effects on DNA methylation, histone modifications, and non-coding RNAs. These changes alter chromatin dynamics and regulate gene expression that contribute to behavioral and physiological changes leading to the development of AUD psychopathology and cancer pathology. Summary Evidence and discussion presented here from preclinical results and available translational studies have increased our knowledge of the epigenetic effects of alcohol consumption. These studies have identified targets that can be used to develop better therapies to reduce chronic alcohol abuse and mitigate its societal burden and pathophysiology.
Collapse
Affiliation(s)
- Russell S Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gabriela M Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
37
|
Martynyuk AE, Ju LS, Morey TE, Zhang JQ. Neuroendocrine, epigenetic, and intergenerational effects of general anesthetics. World J Psychiatry 2020; 10:81-94. [PMID: 32477904 PMCID: PMC7243620 DOI: 10.5498/wjp.v10.i5.81] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 02/05/2023] Open
Abstract
The progress of modern medicine would be impossible without the use of general anesthetics (GAs). Despite advancements in refining anesthesia approaches, the effects of GAs are not fully reversible upon GA withdrawal. Neurocognitive deficiencies attributed to GA exposure may persist in neonates or endure for weeks to years in the elderly. Human studies on the mechanisms of the long-term adverse effects of GAs are needed to improve the safety of general anesthesia but they are hampered not only by ethical limitations specific to human research, but also by a lack of specific biological markers that can be used in human studies to safely and objectively study such effects. The latter can primarily be attributed to an insufficient understanding of the full range of the biological effects induced by GAs and the molecular mechanisms mediating such effects even in rodents, which are far more extensively studied than any other species. Our most recent experimental findings in rodents suggest that GAs may adversely affect many more people than is currently anticipated. Specifically, we have shown that anesthesia with the commonly used GA sevoflurane induces in exposed animals not only neuroendocrine abnormalities (somatic effects), but also epigenetic reprogramming of germ cells (germ cell effects). The latter may pass the neurobehavioral effects of parental sevoflurane exposure to the offspring, who may be affected even at levels of anesthesia that are not harmful to the exposed parents. The large number of patients who require general anesthesia, the even larger number of their future unexposed offspring whose health may be affected, and a growing number of neurodevelopmental disorders of unknown etiology underscore the translational importance of investigating the intergenerational effects of GAs. In this mini review, we discuss emerging experimental findings on neuroendocrine, epigenetic, and intergenerational effects of GAs.
Collapse
Affiliation(s)
- Anatoly E Martynyuk
- Department of Anesthesiology and the McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Jia-Qiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| |
Collapse
|
38
|
Almquist YB, Bishop L, Gustafsson NK, Berg L. Intergenerational transmission of alcohol misuse: mediation and interaction by school performance in a Swedish birth cohort. J Epidemiol Community Health 2020; 74:598-604. [PMID: 32332116 PMCID: PMC7320796 DOI: 10.1136/jech-2019-213523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Children whose parents misuse alcohol have increased risks of own alcohol misuse in adulthood. Though most attain lower school marks, some still perform well in school, which could be an indicator of resilience with protective potential against negative health outcomes. Accordingly, the aim of this study was to examine the processes of mediation and interaction by school performance regarding the intergenerational transmission of alcohol misuse. METHODS Data were drawn from a prospective Swedish cohort study of children born in 1953 (n=14 608). Associations between parental alcohol misuse (ages 0-19) and participants' own alcohol misuse in adulthood (ages 20-63) were examined by means of Cox regression analysis. Four-way decomposition was used to explore mediation and interaction by school performance in grade 6 (age 13), grade 9 (age 16) and grade 12 (age 19). RESULTS Mediation and/or interaction by school performance accounted for a substantial proportion of the association between parental alcohol misuse and own alcohol misuse in adulthood (58% for performance in grade 6, 27% for grade 9 and 30% for grade 12). Moreover, interaction effects appeared to be more important for the outcome than mediation. CONCLUSION Above-average school performance among children whose parents misused alcohol seems to reflect processes of resilience with the potential to break the intergenerational transmission of alcohol misuse. Four-way decomposition offers a viable approach to disentangle processes of interaction from mediation, representing a promising avenue for future longitudinal research.
Collapse
Affiliation(s)
- Ylva B Almquist
- Department of Public Health Sciences, Stockholm University, Faculty of Social Sciences, Stockholm, Sweden
| | - Lauren Bishop
- Department of Public Health Sciences, Stockholm University, Faculty of Social Sciences, Stockholm, Sweden
| | - Nina-Katri Gustafsson
- Department of Public Health Sciences, Stockholm University, Faculty of Social Sciences, Stockholm, Sweden
| | - Lisa Berg
- Department of Public Health Sciences, Stockholm University, Faculty of Social Sciences, Stockholm, Sweden
| |
Collapse
|
39
|
Oxidative Stress in Male Infertility: Causes, Effects in Assisted Reproductive Techniques, and Protective Support of Antioxidants. BIOLOGY 2020; 9:biology9040077. [PMID: 32290152 PMCID: PMC7235998 DOI: 10.3390/biology9040077] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
The spermatozoon is a highly specialized cell, whose main function is the transport of the intact male genetic material into the oocyte. During its formation and transit throughout male and female reproductive tracts, sperm cells are internally and externally surrounded by reactive oxygen species (ROS), which are produced from both endogenous and exogenous sources. While low amounts of ROS are known to be necessary for crucial physiological sperm processes, such as acrosome reaction and sperm-oocyte interaction, high levels of those species underlie misbalanced antioxidant-oxidant molecules, generating oxidative stress (OS), which is one of the most damaging factors that affect sperm function and lower male fertility potential. The present work starts by reviewing the different sources of oxidative stress that affect sperm cells, continues by summarizing the detrimental effects of OS on the male germline, and discusses previous studies addressing the consequences of these detrimental effects on natural pregnancy and assisted reproductive techniques effectiveness. The last section is focused on how antioxidants can counteract the effects of ROS and how sperm fertilizing ability may benefit from these agents.
Collapse
|
40
|
Mustapha TA, Chang RC, Garcia-Rhodes D, Pendleton D, Johnson NM, Golding MC. Gestational exposure to particulate air pollution exacerbates the growth phenotypes induced by preconception paternal alcohol use: a multiplex model of exposure. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa011. [PMID: 33214907 PMCID: PMC7660119 DOI: 10.1093/eep/dvaa011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/30/2020] [Accepted: 06/09/2020] [Indexed: 05/11/2023]
Abstract
It is now clear that parental histories of drug use, toxicant exposure, and social stress all have a significant influence on the health and development of the next generation. However, the ability of epigenetic parental life memories to interact with subsequent gestational exposures and cumulatively modify the developmental trajectory of the offspring remains an unexplored perspective in toxicology. Studies from our laboratory have identified male-specific postnatal growth restriction in a mouse model of chronic, preconception paternal alcohol exposure. The goal of the current study was to determine if paternal alcohol use, before conception, could modify the susceptibility of the offspring to a completely separate exposure encountered by the mother during pregnancy. In independent experiments, we previously identified altered developmental programming and increased markers of severe asthma induced by gestational exposure to particulate air pollution. In this study, male mice were exposed to either the control or alcohol preconception treatments, then mated to naive females, which we subsequently exposed to an ultrafine mixture of particulate matter via inhalation. Individually, neither preconception paternal drinking nor gestational exposures to particulate air pollution impacted the postnatal growth of female offspring. However, when both exposures were combined, females displayed a 30% reduction in weight gain. Unexpectedly, this exposure paradigm resulted in a dramatic postnatal increase in litter loss due to maternal cannibalism, which prevented additional measures of offspring health. These preliminary studies provide evidence of a complex interplay between preconception life history and intrauterine environmental factors in the control of postnatal growth.
Collapse
Affiliation(s)
- Toriq A Mustapha
- Environmental and Occupational Health, Texas A&M School of Public Health, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843-1266, USA
| | - Richard C Chang
- Department of Veterinary Physiology & Pharmacology College of Veterinary Medicine and Biomedical Sciences Texas A&M University 588 Raymond Stotzer Pw, 4466 TAMU, College Station Texas, 77843, USA
| | - Dennis Garcia-Rhodes
- Environmental and Occupational Health, Texas A&M School of Public Health, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843-1266, USA
| | - Drew Pendleton
- Environmental and Occupational Health, Texas A&M School of Public Health, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843-1266, USA
| | - Natalie M Johnson
- Environmental and Occupational Health, Texas A&M School of Public Health, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843-1266, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology College of Veterinary Medicine and Biomedical Sciences Texas A&M University 588 Raymond Stotzer Pw, 4466 TAMU, College Station Texas, 77843, USA
- Correspondence address. Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA. Tel: +1-979-862-1332; Fax: +1-979-845-6544, E-mail:
| |
Collapse
|
41
|
Conner KE, Bottom RT, Huffman KJ. The Impact of Paternal Alcohol Consumption on Offspring Brain and Behavioral Development. Alcohol Clin Exp Res 2019; 44:125-140. [PMID: 31746471 DOI: 10.1111/acer.14245] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) describe the wide array of long-lasting developmental abnormalities in offspring due to prenatal alcohol (ethanol [EtOH]) exposure via maternal gestational drinking. Although the teratogenic consequences of prenatal EtOH exposure, are apparent, the effects of preconception paternal EtOH exposure (PatEE) are still unclear. Previous research suggests that PatEE can induce molecular changes and abnormal behavior in the offspring. However, it is not known whether PatEE impacts the development of the neocortex and behavior in offspring as demonstrated in maternal consumption models of FASD (J Neurosci, 33, 2013, 18893). METHODS In this study, we utilized a novel mouse model of PatEE where male mice self-administered 25% EtOH for an extended period prior to conception, generating indirect exposure to the offspring through the paternal germline. Following mating, we examined the effects of PatEE on offspring neocortical development at postnatal day (P) 0 and evaluated several aspects of behavior at both P20 and P30 using a battery of behavioral assays. RESULTS PatEE resulted in significant impact on neocortical development, including abnormal patterns of gene expression within the neocortex at P0 and subtle alterations in patterns of intraneocortical connections. Additionally, PatEE mice exhibited a sex-specific increase in activity and sensorimotor integration deficits at P20, and decreased balance, coordination, and short-term motor learning at P30. This suggests that PatEE may generate long-lasting, sex-specific effects on offspring behavior. CONCLUSIONS These results demonstrate that the developmental impact of preconception PatEE is more harmful than previously thought and provide additional insights into the biological mechanisms that may underlie atypical behavior observed in children of alcoholic fathers.
Collapse
Affiliation(s)
- Kathleen E Conner
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California
| | - Riley T Bottom
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California
| | - Kelly J Huffman
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California.,Department of Psychology, University of California, Riverside, Riverside, California
| |
Collapse
|
42
|
Chang RC, Thomas KN, Bedi YS, Golding MC. Programmed increases in LXRα induced by paternal alcohol use enhance offspring metabolic adaptation to high-fat diet induced obesity. Mol Metab 2019; 30:161-172. [PMID: 31767168 PMCID: PMC6807343 DOI: 10.1016/j.molmet.2019.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives Paternally inherited alterations in epigenetic programming are emerging as relevant factors in numerous disease states, including the growth and metabolic defects observed in fetal alcohol spectrum disorders. In rodents, chronic paternal alcohol use induces fetal growth restriction, as well as sex-specific alterations in insulin signaling and lipid homeostasis in the offspring. Based on previous studies, we hypothesized that the observed metabolic irregularities are the consequence of paternally inherited alterations liver x receptor (LXR) activity. Methods Male offspring of alcohol-exposed sires were challenged with a high-fat diet and the molecular pathways controlling glucose and lipid homeostasis assayed for LXR-induced alterations. Results Similar to findings in studies employing LXR agonists we found that the male offspring of alcohol-exposed sires display resistance to diet-induced obesity and improved glucose homeostasis when challenged with a high-fat diet. This improved metabolic adaptation is mediated by LXRα trans-repression of inflammatory cytokines, releasing IKKβ inhibition of the insulin signaling pathway. Interestingly, paternally programmed increases in LXRα expression are liver-specific and do not manifest in the pancreas or visceral fat. Conclusions These studies identify LXRα as a key mediator of the long-term metabolic alterations induced by preconception paternal alcohol use. Chronic paternal alcohol use induces up-regulation of LXRα in the male offspring. Male offspring of alcohol-exposed fathers are protected from diet-induced obesity. Paternally-inherited up-regulation of LXRα only manifests in the liver. Improved metabolic adaptation is linked to LXRα suppression of cytokine production. Male offspring exhibit the same phenotypes observed in studies of LXR agonists.
Collapse
Affiliation(s)
- Richard C Chang
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Yudhishtar S Bedi
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
43
|
Bedi Y, Chang RC, Gibbs R, Clement TM, Golding MC. Alterations in sperm-inherited noncoding RNAs associate with late-term fetal growth restriction induced by preconception paternal alcohol use. Reprod Toxicol 2019; 87:11-20. [PMID: 31051257 DOI: 10.1016/j.reprotox.2019.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 12/27/2022]
Abstract
Using a mouse model, our group recently described an association between chronic paternal alcohol use prior to conception and deficits in offspring growth. Here, we sought to determine the impact of alcohol exposure on male reproductive physiology and the association of sperm-inherited noncoding RNAs with the transmission of the observed growth defects. Alcohol exposure did not appreciably alter male reproductive physiology or fertility. However, chronic alcohol use reproducibly induced late-term fetal growth restriction in the offspring, which correlated with a shift in the proportional ratio of transfer RNA-derived small RNAs to Piwi-interacting RNAs, as well as altered enrichment of microRNAs miR21, miR30, and miR142 in alcohol-exposed sperm. Although our dataset share similarities to prior works examining the impact of paternal stress on offspring phenotype, we were unable to identify any changes in plasma corticosterone, indicating alcohol may alter sperm-inherited noncoding RNAs through distinct mechanisms.
Collapse
Affiliation(s)
- Yudhishtar Bedi
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University College Station, Texas, 77843, USA
| | - Richard C Chang
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University College Station, Texas, 77843, USA
| | - Rachel Gibbs
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University College Station, Texas, 77843, USA
| | - Tracy M Clement
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University College Station, Texas, 77843, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University College Station, Texas, 77843, USA.
| |
Collapse
|
44
|
Beeler E, Nobile ZL, Homanics GE. Paternal Preconception Every-Other-Day Ethanol Drinking Alters Behavior and Ethanol Consumption in Offspring. Brain Sci 2019; 9:brainsci9030056. [PMID: 30845665 PMCID: PMC6468863 DOI: 10.3390/brainsci9030056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/12/2023] Open
Abstract
Alcohol use disorder is a devastating disease with a complex etiology. Recent preclinical studies have revealed that paternal preconception chronic intermittent ethanol (EtOH) exposure via vaporized EtOH altered drinking behaviors and sensitivity to EtOH selectively in male offspring. In the current study, we used a voluntary oral route of paternal preconception EtOH exposure, i.e., intermittent every-other-day two-bottle choice drinking, and tested offspring for behavioral alterations. Fifteen EtOH drinking sires and 10 control sires were mated to EtOH naïve females to produce EtOH-sired and control-sired offspring. These offspring were tested using the elevated plus maze, open field, drinking in the dark, and unlimited access two-bottle choice assays. We found that paternal preconception every-other-day two-bottle choice drinking resulted in reduced EtOH consumption selectively in male offspring in the drinking in the dark assay compared to control-sired offspring. No differences were detected in either sex in the unlimited access two-bottle choice and elevated plus maze assays. Open field analysis revealed complex changes in basal behavior and EtOH-induced behaviors that were sex specific. We concluded that paternal preconception voluntary EtOH consumption has persistent effects that impact the next generation. This study adds to a growing appreciation that one’s behavioral response to EtOH and EtOH drinking behavior are impacted by EtOH exposure of the prior generation.
Collapse
Affiliation(s)
- Erik Beeler
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, 6068 Biomedical Science Tower-3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA.
| | - Zachary L Nobile
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| | - Gregg E Homanics
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, 6068 Biomedical Science Tower-3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA.
- Center for Neuroscience, University of Pittsburgh School of Medicine, 6060 Biomedical Science Tower-3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA.
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 6060 Biomedical Science Tower-3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA.
- Department of Neurobiology, University of Pittsburgh School of Medicine, 6060 Biomedical Science Tower-3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA.
| |
Collapse
|