1
|
Su LL, Secor DT, McGary AK, Nguyen MC, Jadlowiec CC, Williams LA, Kinard TN, Adamski J, Stoker AD, Frasco PE. Preservation of coagulation function by normothermic machine perfusion in liver transplant as evidenced by thromboelastography parameters. Liver Transpl 2025; 31:464-475. [PMID: 39641139 DOI: 10.1097/lvt.0000000000000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 12/07/2024]
Abstract
The use of normothermic machine perfusion (NMP) over static cold storage in liver transplantation has been shown to reduce posttransplant risks of early allograft dysfunction, primary nonfunction, and ischemic cholangiopathy, and its increasing use has played a role in the expanded utilization of marginal livers. While studies have demonstrated improved clinical outcomes using NMP over static cold storage preservation, real-time intraoperative data reflecting the quality and viability of NMP livers is limited. This retrospective, single-center study compared NMP versus static cold storage livers in first-time recipients of liver transplants through the evaluation of synthetic coagulation function as measured by thromboelastography and conventional coagulation testing. Secondarily, transfusion utilization between the 2 cohorts was reviewed. One hundred eighty-six recipients of liver transplants receiving allografts from donors after circulatory death were included in the study, of which 99 (53%) allografts were preserved in static cold storage, and 87 (47%) allografts were placed on the TransMedics Organ Care System. Study findings showed NMP livers supported with the TransMedics Organ Care System were associated with increased synthetic coagulation function and less excess fibrinolysis in the postreperfusion period compared to static cold storage livers, and that these findings were better reflected in real-time with thromboelastography monitoring versus conventional coagulation testing. Following reperfusion, there was a significant decrease in the transfusion of blood products in the NMP group compared with that in the static cold storage group. Overall, we determined that the use of intraoperative thromboelastography can provide real-time data to assess one aspect of reperfusion liver quality and viability.
Collapse
Affiliation(s)
- Leon L Su
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| | - Daniel T Secor
- Mayo Clinic Alix School of Medicine, Phoenix, Arizona, USA
| | - Alyssa K McGary
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| | - Michelle C Nguyen
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| | - Caroline C Jadlowiec
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| | - Lance A Williams
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| | - Theresa N Kinard
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| | - Jill Adamski
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| | - Alex D Stoker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| | - Peter E Frasco
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| |
Collapse
|
2
|
Pavan-Guimaraes J, Devos L, Lascaris B, de Meijer VE, Monbaliu D, Jochmans I, Pulitano C, Porte RJ, Martins PN. Long-Term Liver Machine Perfusion Preservation: A Review of Recent Advances, Benefits and Logistics. Artif Organs 2025; 49:339-352. [PMID: 39895504 DOI: 10.1111/aor.14941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND The global shortage of suitable donor livers for transplantation has prompted efforts to expand the donor pool by using extended criteria donors. Machine preservation technology has shown promise in optimizing graft preservation and improving logistics. Additionally, it holds potential for organ repair, regeneration, therapeutic applications during extended preservation periods, and enhancing organ allocation. METHODS We conducted a comprehensive literature review using PubMed, Embase, and Web of Science databases. All studies published between January 1, 2022, and February 7, 2024, that described machine perfusion preservation of livers for more than 24 h were eligible for inclusion. The findings were synthesized in a narrative review format to highlight key benefits and advancements. RESULTS We identified eleven studies from multiple research groups, employing various techniques, devices, and preservation durations. Perfusion durations ranged from 1 to 13 days, with notable variations in protocols for long-term preservation beyond 24 h. Viability was assessed during perfusion only. No livers were transplanted. Among the reviewed studies, the introduction of a dialysis system emerged as the most effective strategy for managing waste accumulation during long-term liver perfusion. Differences were also observed in hemodynamics, oxygenation, organ chambers, supplemental regimens, and glycemic control. CONCLUSION Over the past two years, substantial progress has been made in refining protocols for long-term liver machine perfusion, with significant advancements in waste management, enabling successful multi-day perfusions. While these developments are promising, further research is necessary to standardize and optimize long-term perfusion protocols, establishing a reliable platform for both organ preservation and therapeutic applications.
Collapse
Affiliation(s)
| | - Lene Devos
- Department of Microbiology, Immunology and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
| | - Bianca Lascaris
- Section of HPB Surgery and Liver Transplantation, UMCG Comprehensive Transplant Center, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Section of HPB Surgery and Liver Transplantation, UMCG Comprehensive Transplant Center, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Ina Jochmans
- Department of Microbiology, Immunology and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Carlo Pulitano
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Robert J Porte
- Division of HPB and Transplant Surgery, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paulo N Martins
- Department of Surgery, Transplant Institute, University of Oklahoma, Oklahoma City, Oklahoma, USA
| |
Collapse
|
3
|
Lascaris B, Bodewes SB, Adelmeijer J, Nijsten MWN, Porte RJ, de Meijer VE, Lisman T. Production of physiological amounts of hemostatic proteins by human donor livers during ex situ long-term normothermic machine perfusion for up to 7 days. J Thromb Haemost 2024; 22:3097-3106. [PMID: 39173880 DOI: 10.1016/j.jtha.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) is used for preservation and assessment of human donor livers prior to transplantation. During NMP, the liver is metabolically active, which allows detailed studies on the physiology of human livers. OBJECTIVES To study the production of hemostatic proteins in human donor livers during NMP for up to 7 days. METHODS In this observational study, 9 livers underwent NMP for up to 7 days with a heparinized perfusate based on red blood cells and colloids using a modified Liver Assist device (XVIVO). Perfusate samples were collected before NMP and daily thereafter for measurement of antigen and activity levels of a comprehensive panel of hemostatic proteins after heparin neutralization. RESULTS Within 1 day, perfusate samples displayed the potential for coagulation activation as evidenced by international normalized ratio and activated partial thromboplastin assays. This was accompanied by detection of substantial quantities of functionally active coagulation proteins and inhibitors, although the specific activity of many proteins was decreased, compared with that in normal plasma. Perfusate levels of hemostatic proteins increased in the first days, reaching a stable level after 3 to 4 days of perfusion. CONCLUSION During long-term NMP of human livers, functionally active hemostatic proteins are released into the perfusate in substantial quantities, but some proteins appear to have decreased functional properties compared with proteins in normal human plasma. We propose that NMP may be used as a platform to test efficacy of drugs that stimulate or inhibit the production of coagulation factors or to test liver-mediated clearance of prohemostatic protein therapeutics.
Collapse
Affiliation(s)
- Bianca Lascaris
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Silke B Bodewes
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jelle Adelmeijer
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maarten W N Nijsten
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Große-Segerath L, Follert P, Behnke K, Ettich J, Buschmann T, Kirschner P, Hartwig S, Lehr S, Korf-Klingebiel M, Eberhard D, Lehwald-Tywuschik N, Al-Hasani H, Knoefel WT, Heinrich S, Levkau B, Wollert KC, Scheller J, Lammert E. Identification of myeloid-derived growth factor as a mechanically-induced, growth-promoting angiocrine signal for human hepatocytes. Nat Commun 2024; 15:1076. [PMID: 38316785 PMCID: PMC10844291 DOI: 10.1038/s41467-024-44760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Recently, we have shown that after partial hepatectomy (PHx), an increased hepatic blood flow initiates liver growth in mice by vasodilation and mechanically-triggered release of angiocrine signals. Here, we use mass spectrometry to identify a mechanically-induced angiocrine signal in human hepatic endothelial cells, that is, myeloid-derived growth factor (MYDGF). We show that it induces proliferation and promotes survival of primary human hepatocytes derived from different donors in two-dimensional cell culture, via activation of mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3). MYDGF also enhances proliferation of human hepatocytes in three-dimensional organoids. In vivo, genetic deletion of MYDGF decreases hepatocyte proliferation in the regenerating mouse liver after PHx; conversely, adeno-associated viral delivery of MYDGF increases hepatocyte proliferation and MAPK signaling after PHx. We conclude that MYDGF represents a mechanically-induced angiocrine signal and that it triggers growth of, and provides protection to, primary mouse and human hepatocytes.
Collapse
Affiliation(s)
- Linda Große-Segerath
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Paula Follert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Tobias Buschmann
- Institute for Molecular Medicine III, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Philip Kirschner
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany
| | - Sonja Hartwig
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225, Düsseldorf, Germany
| | - Stefan Lehr
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225, Düsseldorf, Germany
| | - Mortimer Korf-Klingebiel
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Daniel Eberhard
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany
| | - Nadja Lehwald-Tywuschik
- Department of General, Visceral, Thorax and Pediatric Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225, Düsseldorf, Germany
| | - Wolfram Trudo Knoefel
- Department of General, Visceral, Thorax and Pediatric Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Stefan Heinrich
- Department of General, Visceral and Transplantation Surgery, University Hospital Center Mainz, 55131, Mainz, Germany
| | - Bodo Levkau
- Institute for Molecular Medicine III, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Kai C Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Eckhard Lammert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany.
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| |
Collapse
|
5
|
Shimoda T, Liu C, Mathis BJ, Goto Y, Ageyama N, Kato H, Matsubara M, Ohigashi T, Gosho M, Suzuki Y, Hiramatsu Y. Effect of cardiopulmonary bypass on coagulation factors II, VII and X in a primate model: an exploratory pilot study. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2023; 37:ivad194. [PMID: 38015856 PMCID: PMC10701202 DOI: 10.1093/icvts/ivad194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/05/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVES The use of cardiopulmonary bypass (CPB) in cardiac surgery is a major risk factor for postoperative bleeding. We hypothesized that consumptive coagulopathy and haemodilution influence the coagulation factors; therefore, we aimed to estimate the activity profiles of coagulation factors II, VII and X during CPB circulation. METHODS A 120-min bypass was surgically established in cynomolgus monkeys (n = 7). Activities of coagulation factors II, VII and X were measured at 6 time points during the experiment (baseline, 0, 30, 60, 120 min of bypass and 60 min after bypass). To assess the influence of consumptive coagulopathy, the values were adjusted for haemodilution using the haematocrit values. Data were expressed as mean (standard deviation). RESULTS Activities of coagulation factors decreased during the experiment. In particular, the activities for II, VII and X were decreased the most by 44.2% (5.0), 61.4% (4.3) and 49.0% (3.7) at 30 min following CPB initiation (P < 0.001, P < 0.001 and P < 0.001, respectively). Following adjustments for haemodilution, change magnitudes lessened but remained significant for factor VII. The adjusted concentration of factor VII was observed to decrease from the baseline to the initiation of bypass circulation. CONCLUSIONS In conclusion, coagulation factor II, VII and X concentrations decreased during CPB. Following adjustment for haemodilution, a decrease in concentration was observed with factor VII.
Collapse
Affiliation(s)
- Tomonari Shimoda
- Department of Cardiovascular Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Chang Liu
- Department of Cardiovascular Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Bryan J Mathis
- International Medical Center, University of Tsukuba Hospital, Ibaraki, Japan
| | - Yukinobu Goto
- Department of Thoracic Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naohide Ageyama
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Tsukuba, Ibaraki, Japan
| | - Hideyuki Kato
- Department of Cardiovascular Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Muneaki Matsubara
- Department of Cardiovascular Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tomohiro Ohigashi
- Tsukuba Clinical Research & Development Organization, University of Tsukuba Hospital, Ibaraki, Japan
| | - Masahiko Gosho
- Department of Biostatistics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yasuyuki Suzuki
- Department of Cardiovascular Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Eden J, Breuer E, Birrer D, Müller M, Pfister M, Mayr H, Sun K, Widmer J, Huwyler F, Ungethüm U, Humar B, Gupta A, Schiess S, Wendt M, Immer F, Elmer A, Meierhofer D, Schlegel A, Dutkowski P. Screening for mitochondrial function before use-routine liver assessment during hypothermic oxygenated perfusion impacts liver utilization. EBioMedicine 2023; 98:104857. [PMID: 37918219 PMCID: PMC10641151 DOI: 10.1016/j.ebiom.2023.104857] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND To report on a concept of liver assessment during ex situ hypothermic oxygenated perfusion (HOPE) and its significant impact on liver utilization. METHODS An analysis of prospectively collected data on donation after circulatory death (DCD) livers, treated by HOPE at our institution, during a 11-year period between January 2012 and December 2022. FINDINGS Four hundred and fifteen DCD Maastricht III livers were offered during the study period in Switzerland, resulting in 249 liver transplants. Of those, we performed 158 DCD III liver transplants at our institution, with 1-year patient survival and death censored graft survival (death with functioning graft) of 87 and 89%, respectively, thus comparable to benchmark graft survivals of ideal DBD and DCD liver transplants (89% and 86%). Correspondingly, graft loss for primary non-function or cholangiopathy was overall low, i.e., 7/158 (4.4%) and 11/158 (6.9%), despite more than 82% of DCD liver grafts ranked high (6-10 points) or futile risk (>10 points) according to the UK-DCD score. Consistently, death censored graft survival was not different between low-, high-risk or futile DCD III livers. The key behind these achievements was the careful development and implementation of a routine perfusate assessment of mitochondrial biomarkers for injury and function, i.e., release of flavin mononucleotide from complex I, perfusate NADH, and mitochondrial CO2 production during HOPE, allowing a more objective interpretation of liver quality on a subcellular level, compared to donor derived data. INTERPRETATION HOPE after cold storage is a highly suitable and easy to perform perfusion approach, which allows reliable liver graft assessment, enabling surgeons to make a fact based decision on whether or not to implant the organ. HOPE-treatment should be combined with viability assessment particularly when used for high-risk organs, including DCD livers or organs with relevant steatosis. FUNDING This study was supported by the Swiss National Foundation (SNF) grant 320030_189055/1 to PD.
Collapse
Affiliation(s)
- Janina Eden
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Eva Breuer
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Dominique Birrer
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Matteo Müller
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Matthias Pfister
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Hemma Mayr
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Keyue Sun
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Jeannette Widmer
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Florian Huwyler
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Udo Ungethüm
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Bostjan Humar
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Anurag Gupta
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Stefanie Schiess
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Martin Wendt
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Franz Immer
- Swisstransplant, The Swiss National Foundation for Organ Donation and Transplantation, Effingerstrasse 1, Bern 3011, Switzerland
| | - Andreas Elmer
- Swisstransplant, The Swiss National Foundation for Organ Donation and Transplantation, Effingerstrasse 1, Bern 3011, Switzerland
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, Berlin 14195, Germany
| | - Andrea Schlegel
- Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland.
| |
Collapse
|
7
|
Bodewes SB, Lascaris B, Adelmeijer J, de Meijer VE, Porte RJ, Lisman T. Normothermic Machine-perfused Human Donor Livers Produce Functional Hemostatic Proteins. Transplantation 2023; 107:2377-2383. [PMID: 37291723 DOI: 10.1097/tp.0000000000004670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) is used for the viability assessment of high-risk donor livers before transplantation. The production of hemostatic proteins is one of the major synthetic functions of the liver. The objective of this study was to measure the concentration and functionality of hemostatic proteins concentration in the NMP perfusate of human donor livers. METHODS Thirty-six livers that underwent NMP for viability assessment were included in this study. Perfusate samples taken during NMP (start, 150 min, and 300 min) were used for the measurement of antigen and activity levels of hemostatic proteins (factors II, VII, and X; fibrinogen; plasminogen; antithrombin; tissue plasminogen activator; von Willebrand factor; and proteins induced by vitamin K absence). The antigen levels were correlated with hepatocellular function according to previously proposed individual hepatocellular viability criteria: lactate clearance and perfusate pH. RESULTS Antigen levels of hemostatic proteins reached subphysiological levels in the NMP perfusate. Hemostatic proteins that were produced during NMP were at least partially active. All livers produced all hemostatic proteins tested within 150 min of NMP. Hemostatic protein concentrations did not significantly correlate with perfusate lactate and perfusate pH after 150 min of NMP. CONCLUSIONS All livers produce functional hemostatic proteins during NMP. The generation of a functional hemostatic system in NMP perfusate confirms the need for adequate anticoagulation of the perfusate to avoid generation of (micro)thrombi that may harm the graft.
Collapse
Affiliation(s)
- Silke B Bodewes
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bianca Lascaris
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jelle Adelmeijer
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Vincent E de Meijer
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Kim JI, Torres-Hernandez A, Griesemer A. Pigs or Pumps: A new strategy emerges for liver perfusion. Hepatology 2023; 78:694-696. [PMID: 37013927 DOI: 10.1097/hep.0000000000000392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023]
Affiliation(s)
- Jacqueline I Kim
- Transplant Institute, NYU Langone Health, New York, New York, USA
| | | | | |
Collapse
|
9
|
Schuler MJ, Becker D, Mueller M, Bautista Borrego L, Mancina L, Huwyler F, Binz J, Hagedorn C, Schär B, Gygax E, Weisskopf M, Sousa Da Silva RX, Antunes Crisóstomo JM, Dutkowski P, Rudolf von Rohr P, Clavien PA, Tibbitt MW, Eshmuminov D, Hefti M. Observations and findings during the development of a subnormothermic/normothermic long-term ex vivo liver perfusion machine. Artif Organs 2023; 47:317-329. [PMID: 36106378 DOI: 10.1111/aor.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Ex situliver machine perfusion at subnormothermic/normothermic temperature isincreasingly applied in the field of transplantation to store and evaluateorgans on the machine prior transplantation. Currently, various perfusionconcepts are in clinical and preclinical applications. Over the last 6 years ina multidisciplinary team, a novel blood based perfusion technology wasdeveloped to keep a liver alive and metabolically active outside of the bodyfor at least one week. METHODS Within thismanuscript, we present and compare three scenarios (Group 1, 2 and 3) we werefacing during our research and development (R&D) process, mainly linked tothe measurement of free hemoglobin and lactate in the blood based perfusate. Apartfrom their proven value in liver viability assessment (ex situ), these twoparameters are also helpful in R&D of a long-term liver perfusion machine and moreover supportive in the biomedical engineering process. RESULTS Group 1 ("good" liver on the perfusion machine) represents the best liver clearance capacity for lactate and free hemoglobin wehave observed. In contrast to Group 2 ("poor" liver on the perfusion machine), that has shown the worst clearance capacity for free hemoglobin. Astonishingly,also for Group 2, lactate is cleared till the first day of perfusion andafterwards, rising lactate values are detected due to the poor quality of theliver. These two perfusate parametersclearly highlight the impact of the organ quality/viability on the perfusion process. Whereas Group 3 is a perfusion utilizing a blood loop only (without a liver). CONCLUSION Knowing the feasible ranges (upper- and lower bound) and the courseover time of free hemoglobin and lactate is helpful to evaluate the quality ofthe organ perfusion itself and the maturity of the developed perfusion device. Freehemoglobin in the perfusate is linked to the rate of hemolysis that indicates how optimizing (gentle blood handling, minimizing hemolysis) the perfusion machine actually is. Generally, a reduced lactate clearancecapacity can be an indication for technical problems linked to the blood supplyof the liver and therefore helps to monitor the perfusion experiments.Moreover, the possibility is given to compare, evaluate and optimize developed liverperfusion systems based on the given ranges for these two parameters. Otherresearch groups can compare/quantify their perfusate (blood) parameters withthe ones in this manuscript. The presented data, findings and recommendations willfinally support other researchers in developing their own perfusion machine ormodifying commercially availableperfusion devices according to their needs.
Collapse
Affiliation(s)
- Martin J Schuler
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Dustin Becker
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Matteo Mueller
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Lucia Bautista Borrego
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Leandro Mancina
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Florian Huwyler
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Jonas Binz
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Catherine Hagedorn
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Beatrice Schär
- Entwicklung biomedizinische Anwendungen, Securecell AG, Urdorf, Switzerland
| | - Erich Gygax
- Forschung und Entwicklung, Fumedica AG, Muri, Switzerland
| | - Miriam Weisskopf
- Center of Surgical Research, University Hospital Zürich, University of Zürich, Zurich, Switzerland
| | - Richard Xavier Sousa Da Silva
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Philipp Dutkowski
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Rudolf von Rohr
- Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Dilmurodjon Eshmuminov
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Max Hefti
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Lascaris B, Thorne AM, Lisman T, Nijsten MWN, Porte RJ, de Meijer VE. Long-term normothermic machine preservation of human livers: what is needed to succeed? Am J Physiol Gastrointest Liver Physiol 2022; 322:G183-G200. [PMID: 34756122 DOI: 10.1152/ajpgi.00257.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although short-term machine perfusion (≤24 h) allows for resuscitation and viability assessment of high-risk donor livers, the donor organ shortage might be further remedied by long-term perfusion machines. Extended preservation of injured donor livers may allow reconditioning, repairing, and regeneration. This review summarizes the necessary requirements and challenges for long-term liver machine preservation, which requires integrating multiple core physiological functions to mimic the physiological environment inside the body. A pump simulates the heart in the perfusion system, including automatically controlled adjustment of flow and pressure settings. Oxygenation and ventilation are required to account for the absence of the lungs combined with continuous blood gas analysis. To avoid pressure necrosis and achieve heterogenic tissue perfusion during preservation, diaphragm movement should be simulated. An artificial kidney is required to remove waste products and control the perfusion solution's composition. The perfusate requires an oxygen carrier, but will also be challenged by coagulation and activation of the immune system. The role of the pancreas can be mimicked through closed-loop control of glucose concentrations by automatic injection of insulin or glucagon. Nutrients and bile salts, generally transported from the intestine to the liver, have to be supplemented when preserving livers long term. Especially for long-term perfusion, the container should allow maintenance of sterility. In summary, the main challenge to develop a long-term perfusion machine is to maintain the liver's homeostasis in a sterile, carefully controlled environment. Long-term machine preservation of human livers may allow organ regeneration and repair, thereby ultimately solving the shortage of donor livers.
Collapse
Affiliation(s)
- Bianca Lascaris
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adam M Thorne
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten W N Nijsten
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|