1
|
Ramaswamy VD, Keidar M. Progressive Approaches in Oncological Diagnosis and Surveillance: Real-Time Impedance-Based Techniques and Advanced Algorithms. Bioelectromagnetics 2025; 46:e22540. [PMID: 39865345 DOI: 10.1002/bem.22540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025]
Abstract
Cancer remains a formidable global health challenge, necessitating the development of innovative diagnostic techniques capable of early detection and differentiation of tumor/cancerous cells from their healthy counterparts. This review focuses on the confluence of advanced computational algorithms with noninvasive, label-free impedance-based biophysical methodologies-techniques that assess biological processes directly without the need for external markers or dyes. This review elucidates a diverse array of state-of-the-art impedance-based technologies, illuminating distinct electrical signatures inherent to cancer vs healthy tissues. Additionally, the study probes the transformative potential of these diagnostic modalities in recalibrating personalized cancer treatment paradigms. These modalities offer real-time insights into tumor dynamics, paving the way for precision-guided therapeutic interventions. By emphasizing the quest for continuous in vivo monitoring, these techniques herald a pivotal advancement in the overarching endeavor to combat cancer globally.
Collapse
Affiliation(s)
- Viswambari Devi Ramaswamy
- Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, Washington, DC, USA
| | - Michael Keidar
- Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, Washington, DC, USA
| |
Collapse
|
2
|
Brunsgaard EK, Sanchez B, Grossman D. Electrical Impedance Dermography: Background, Current State, and Emerging Clinical Opportunities. Dermatol Res Pract 2024; 2024:2085098. [PMID: 39184921 PMCID: PMC11343630 DOI: 10.1155/2024/2085098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/25/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024] Open
Abstract
Electrical impedance dermography (EID), based on electrical impedance spectroscopy, is a specific technique for the evaluation of skin disorders that relies upon the application and measurement of painless, alternating electrical current. EID assesses pathological changes to the normal composition and architecture of the skin that influence the flow of electrical current, including changes associated with inflammation, keratinocyte and melanocyte carcinogenesis, and scarring. Assessing the electrical properties of the skin across a range of frequencies and in multiple directions of current flow can provide diagnostic information to aid in the identification of pathologic skin conditions. EID holds the promise of serving as a diagnostic biomarker and potential to be used in skin cancer detection and staging. EID may also be useful as a biomarker in monitoring effectiveness of treatment in individual patients and in therapeutic research. This review highlights ongoing efforts to improve mechanistic understanding of skin electrical changes, study of EID in a variety of clinical contexts, and further refine the technology to find greater clinical use in dermatology and dermatologic research.
Collapse
Affiliation(s)
| | - Benjamin Sanchez
- Department of Electrical and Computer EngineeringUniversity of Utah, Salt Lake City, UT, USA
| | - Douglas Grossman
- Huntsman Cancer InstituteUniversity of Utah Health, Salt Lake City, UT, USA
- Department of DermatologyUniversity of Utah Health, Salt Lake City, UT, USA
- Department of Oncological SciencesUniversity of Utah Health, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Soglia S, Pérez-Anker J, Lobos Guede N, Giavedoni P, Puig S, Malvehy J. Diagnostics Using Non-Invasive Technologies in Dermatological Oncology. Cancers (Basel) 2022; 14:5886. [PMID: 36497368 PMCID: PMC9738560 DOI: 10.3390/cancers14235886] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
The growing incidence of skin cancer, with its associated mortality and morbidity, has in recent years led to the developing of new non-invasive technologies, which allow an earlier and more accurate diagnosis. Some of these, such as digital photography, 2D and 3D total-body photography and dermoscopy are now widely used and others, such as reflectance confocal microscopy and optical coherence tomography, are limited to a few academic and referral skin cancer centers because of their cost or the long training period required. Health care professionals involved in the treatment of patients with skin cancer need to know the implications and benefits of new non-invasive technologies for dermatological oncology. In this article we review the characteristics and usability of the main diagnostic imaging methods available today.
Collapse
Affiliation(s)
- Simone Soglia
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
- Department of Dermatology, University of Brescia, 25121 Brescia, Italy
| | - Javiera Pérez-Anker
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| | - Nelson Lobos Guede
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| | - Priscila Giavedoni
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| | - Josep Malvehy
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| |
Collapse
|
4
|
Chavez-Bourgeois M, Ribero S, Barreiro A, Espinoza N, Carrera C, Garcia A, Alos L, Puig S, Malvehy J. Reflectance Confocal Microscopy and Electrical Impedance Spectroscopy in the Early Detection of Melanoma in Changing Lesions during Long-term Follow-up of Very High-risk Patients. Acta Derm Venereol 2022; 102:adv00751. [PMID: 35535641 PMCID: PMC9558334 DOI: 10.2340/actadv.v102.1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Electrical impedance spectroscopy has clinical relevance in diagnosing malignancy in melanocytic lesions. Sixty-eight lesions with changes during digital follow-up of patients at very high risk of developing melanoma were prospectively included in this study from February to December 2016. Electrical impedance spectroscopy and reflectance confocal microscopy were performed to evaluate their performance in this subset of difficult lesions. Forty-six lesions were considered suspicious on reflectance confocal microscopy and were excised, of these, 19 were diagnosed as melanoma. Fifteen melanomas were detected by electrical impedance spectroscopy, while 4 received a score lower than 4, which suggested no malignancy. The addition of reflectance confocal microscopy improves accuracy while maintaining the same sensitivity. In the case of electrical impedance spectroscopy scores <4, lesions exhibiting changes in follow-up may need short-term monitoring or excision if dermoscopy shows criteria for melanoma. Results of electrical impedance spectroscopy in this subset of very early lesions should be carefully considered due to the risk of false negatives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clinic Barcelona, Villarroel 170, ES-08036, Barcelona, Spain.
| | | |
Collapse
|
5
|
Ma H, Wang Z, Cheng Z, He G, Feng T, Zuo C, Qiu H. Multiscale confocal photoacoustic dermoscopy to evaluate skin health. Quant Imaging Med Surg 2022; 12:2696-2708. [PMID: 35502399 PMCID: PMC9014143 DOI: 10.21037/qims-21-878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/12/2022] [Indexed: 08/29/2023]
Abstract
Background Photoacoustic dermoscopy (PAD) is a promising branch of photoacoustic microscopy (PAM) that can provide a range of functional and morphologic information for clinical assessment and diagnosis of dermatological conditions. However, most PAM setups are unsuitable for clinical dermatology because their single-scale mode and narrow frequency band result in insufficient imaging depth or poor spatiotemporal resolution when visualizing the internal texture of the skin. Methods We developed a multiscale confocal photoacoustic dermoscopy (MC-PAD) with a multifunction opto-sono objective that could achieve high quality dermatological imaging. Using the objective to coordinate the spatial resolution and penetration depth, the MC-PAD was used to visualize pathophysiological biomarkers and vascular morphology from the epidermis (EP) to the dermis, which enabled us to quantify skin abnormalities without using exogenous contrast agents for human skin. Results The MC-PAD was shown to have the ability to differentiate between different types of cells (such as red blood cells and melanoma cells), image and quantify pigment of the skin, and visualize skin morphology and blood capillary landmarks. The MC-PAD detected a significant difference in the structures of some pigmented and vascular lesions of skin diseases compared with that of healthy skin (P<0.01). The café au lait macule (CALM) skin type was found to have a relatively higher melanin concentration and thicker stratum basale (SB) in the EP than healthy skin. The dermal vascular network of skin that had a port wine stain (PWS) had greater diameters and a denser distribution than healthy skin, as reported in clinical trials. Conclusions The MC-PAD has a broad range of applications for the diagnosis of human skin diseases and evaluation of the curative effect of treatments, and it can offer new perspectives in biomedical sciences.
Collapse
Affiliation(s)
- Haigang Ma
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China
| | - Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhongwen Cheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Guo He
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ting Feng
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
| | - Chao Zuo
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
| | - Haixia Qiu
- Department of Laser medicine, the First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Anushree U, Shetty S, Kumar R, Bharati S. Adjunctive Diagnostic Methods for Skin Cancer Detection: A Review of Electrical Impedance-Based Techniques. Bioelectromagnetics 2022; 43:193-210. [PMID: 35181899 DOI: 10.1002/bem.22396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/06/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
Skin cancer is among the fastest-growing cancers with an excellent prognosis, if detected early. However, the current method of diagnosis by visual inspection has several disadvantages such as overlapping tumor characteristics, subjectivity, low sensitivity, and specificity. Hence, several adjunctive diagnostic techniques such as thermal imaging, optical imaging, ultrasonography, tape stripping methods, and electrical impedance imaging are employed along with visual inspection to improve the diagnosis. Electrical impedance-based skin cancer detection depends upon the variations in electrical impedance characteristics of the transformed cells. The information provided by this technique is fundamentally different from other adjunctive techniques and thus has good prospects. Depending on the stage, type, and location of skin cancer, various impedance-based devices have been developed. These devices when used as an adjunct to visual methods have increased the sensitivity and specificity of skin cancer detection up to 100% and 87%, respectively, thus demonstrating their potential to minimize unnecessary biopsies. In this review, the authors track the advancements and progress made in this technique for the detection of skin cancer, focusing mainly on the advantages and limitations in the clinical setting. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- U Anushree
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sachin Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Luo X, Zhou Y, Smart T, Grossman D, Sanchez B. Electrical Characterization of Basal Cell Carcinoma Using a Handheld Electrical Impedance Dermography Device. JID INNOVATIONS 2022; 2:100075. [PMID: 35072140 PMCID: PMC8762075 DOI: 10.1016/j.xjidi.2021.100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 10/28/2022] Open
|
8
|
Jartarkar SR, Patil A, Wollina U, Gold MH, Stege H, Grabbe S, Goldust M. New diagnostic and imaging technologies in dermatology. J Cosmet Dermatol 2021; 20:3782-3787. [PMID: 34652880 DOI: 10.1111/jocd.14499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Diagnosis of dermatological disorders is primarily based on clinical examination in combination with histopathology. However, clinical findings alone may not be sufficient for accurate diagnosis and cutaneous biopsies are being associated with morbidity. OBJECTIVE The objective of this article is to review the newer technologies along with their applications, limitation and future prospectus. METHODOLOGY Comprehensive literature search was performed using electronic online databases "PubMed" and "Google Scholar". Articles published in English language were considered for the review. RESULTS In order to improve and/or widen the armamentarium in dermatologic disease diagnosis and therapy, newer emerging technologies are being made available which aid in diagnosis and management. New emerging technologies include confocal microscopy, digital photographic imaging, optical coherence tomography, high frequency ultrasonography, and artificial intelligence. There have been advancements in the dermoscopes. CONCLUSION Significant progress is seen in the diagnostic methods and imaging technologies in dermatology, each having its advantages and limitations. Artificial intelligence/machine-based learning software may have a great scope to influence the dermatological practice.
Collapse
Affiliation(s)
- Shishira R Jartarkar
- Department of Dermatology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India
| | - Anant Patil
- Department of Pharmacology, Dr. DY Patil Medical College, Navi Mumbai, India
| | - Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Teaching Hospital of the Technical University of Dresden, Dresden, Germany
| | - Michael H Gold
- Gold Skin Care Center, Tennessee Clinical Research Center, Nashville, Tennessee, USA
| | - Henner Stege
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
9
|
Ma H, Cheng Z, Wang Z, Qiu H, Shen T, Xing D, Gu Y, Yang S. Quantitative and anatomical imaging of dermal angiopathy by noninvasive photoacoustic microscopic biopsy. BIOMEDICAL OPTICS EXPRESS 2021; 12:6300-6316. [PMID: 34745738 PMCID: PMC8547993 DOI: 10.1364/boe.439625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 05/19/2023]
Abstract
The ability to noninvasively acquire the fine structure of deep tissues is highly valuable but remains a challenge. Here, a photoacoustic microscopic biopsy (PAMB) combined switchable spatial-scale optical excitation with single-element depth-resolved acoustic detection mode was developed, which effectively coordinated the spatial resolution and the penetration depth for visualizations of skin delamination and chromophore structures up to reticular dermis depth, with the lateral resolution from 1.5 to 104 μm and the axial resolution from 34 to 57 μm. The PAMB obtained anatomical imaging of the pigment distribution within the epidermis and the vascular patterns of the deep dermal tissue, enabling quantification of morphological abnormalities of angiopathy without the need for exogenous contrast agents. The features of healthy skin and scar skin, and the abnormal alteration of dermal vasculature in port wine stains (PWS) skin were first precisely displayed by PAMB-shown multi-layered imaging. Moreover, the quantitative vascular parameters evaluation of PWS were carried out by the detailed clinical PAMB data on 174 patients, which reveals distinct differences among different skin types. PAMB captured the PWS changes in capillary-loop depth, diameter, and vascular volume, making it possible to perform an objective clinical evaluation on the severity of PWS. All the results demonstrated the PAMB can provide vascular biopsy and new indexes deep into the dermal skin noninvasively, which should be meaningful to timely evaluate the pathological types and treatment response of skin diseases. This opens up a new perspective for label-free and non-invasive biopsies of dermal angiopathy.
Collapse
Affiliation(s)
- Haigang Ma
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Shenzhen Research Institude of Northwestern Polytechnical University, Shenzhen 518057, China
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhongwen Cheng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhiyang Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haixia Qiu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Tianding Shen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ying Gu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
10
|
Blundo A, Cignoni A, Banfi T, Ciuti G. Comparative Analysis of Diagnostic Techniques for Melanoma Detection: A Systematic Review of Diagnostic Test Accuracy Studies and Meta-Analysis. Front Med (Lausanne) 2021; 8:637069. [PMID: 33968951 PMCID: PMC8103840 DOI: 10.3389/fmed.2021.637069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/17/2021] [Indexed: 11/24/2022] Open
Abstract
Melanoma has the highest mortality rate among skin cancers, and early-diagnosis is essential to maximize survival rate. The current procedure for melanoma diagnosis is based on dermoscopy, i.e., a qualitative visual inspection of lesions with intrinsic limited diagnostic reliability and reproducibility. Other non-invasive diagnostic techniques may represent valuable solutions to retrieve additional objective information of a lesion. This review aims to compare the diagnostic performance of non-invasive techniques, alternative to dermoscopy, for melanoma detection in clinical settings. A systematic review of the available literature was performed using PubMed, Scopus and Google scholar databases (2010-September 2020). All human, in-vivo, non-invasive studies using techniques, alternative to dermoscopy, for melanoma diagnosis were included with no restriction on the recruited population. The reference standard was histology but dermoscopy was accepted only in case of benign lesions. Attributes of the analyzed studies were compared, and the quality was evaluated using CASP Checklist. For studies in which the investigated technique was implemented as a diagnostic tool (DTA studies), the QUADAS-2 tool was applied. For DTA studies that implemented a melanoma vs. other skin lesions classification task, a meta-analysis was performed reporting the SROC curves. Sixty-two references were included in the review, of which thirty-eight were analyzed using QUADAS-2. Study designs were: clinical trials (13), retrospective studies (10), prospective studies (8), pilot studies (10), multitiered study (1); the remain studies were proof of concept or had undefined study type. Studies were divided in categories based on the physical principle employed by each diagnostic technique. Twenty-nine out of thirty-eight DTA studies were included in the meta-analysis. Heterogeneity of studies' types, testing strategy, and diagnostic task limited the systematic comparison of the techniques. Based on the SROC curves, spectroscopy achieved the best performance in terms of sensitivity (93%, 95% CI 92.8-93.2%) and specificity (85.2%, 95%CI 84.9-85.5%), even though there was high concern regarding robustness of metrics. Reflectance-confocal-microscopy, instead, demonstrated higher robustness and a good diagnostic performance (sensitivity 88.2%, 80.3-93.1%; specificity 65.2%, 55-74.2%). Best practice recommendations were proposed to reduce bias in future DTA studies. Particular attention should be dedicated to widen the use of alternative techniques to conventional dermoscopy.
Collapse
Affiliation(s)
- Alessia Blundo
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Arianna Cignoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Tommaso Banfi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
11
|
Fried L, Tan A, Bajaj S, Liebman TN, Polsky D, Stein JA. Technological advances for the detection of melanoma. J Am Acad Dermatol 2020; 83:983-992. [DOI: 10.1016/j.jaad.2020.03.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 03/02/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
|
12
|
Litchman GH, Teplitz RW, Marson JW, Rigel DS. Impact of electrical impedance spectroscopy on dermatologists' number needed to biopsy metric and biopsy decisions for pigmented skin lesions. J Am Acad Dermatol 2020; 85:976-979. [PMID: 32926981 DOI: 10.1016/j.jaad.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Affiliation(s)
| | - Rebeca W Teplitz
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York
| | | | - Darrell S Rigel
- New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
13
|
Abstract
As a result of increasing melanoma incidence and challenges with clinical and histopathologic evaluation of pigmented lesions, noninvasive techniques to assist in the assessment of skin lesions are highly sought after. This review discusses the methods, benefits, and limitations of adhesive patch biopsy, electrical impedance spectroscopy (EIS), multispectral imaging, high-frequency ultrasonography (HFUS), optical coherence tomography (OCT), and reflectance confocal microscopy (RCM) in the detection of skin cancer. Adhesive patch biopsy provides improved sensitivity and specificity for the detection of melanoma without a trade-off of higher sensitivity for lower specificity seen in other diagnostic tools to aid in skin cancer detection, including EIS and multispectral imaging. EIS and multispectral imaging provide objective information based on computer-assisted diagnosis to assist in the decision to biopsy and/or excise an atypical melanocytic lesion. HFUS may be useful for the determination of skin tumor depth and identification of surgical borders, although further studies are necessary to determine its accuracy in the detection of skin cancer. OCT and RCM provide enhanced resolution of skin tissue and have been applied for improved accuracy in skin cancer diagnosis, as well as monitoring the response of nonsurgical treatments of skin cancers and the determination of tumor margins and recurrences. These novel approaches to skin cancer assessment offer opportunities to dermatologists, but are dependent on the individual dermatologist's comfort, knowledge, and desire to invest in training and implementation of noninvasive techniques. These noninvasive modalities may have a role in the complementary assessment of skin cancers, although histopathologic diagnosis remains the gold standard for the evaluation of skin cancer.
Collapse
|
14
|
Pathiraja AA, Weerakkody RA, von Roon AC, Ziprin P, Bayford R. The clinical application of electrical impedance technology in the detection of malignant neoplasms: a systematic review. J Transl Med 2020; 18:227. [PMID: 32513179 PMCID: PMC7282098 DOI: 10.1186/s12967-020-02395-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/29/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Electrical impedance technology has been well established for the last 20 years. Recently research has begun to emerge into its potential uses in the detection and diagnosis of pre-malignant and malignant conditions. The aim of this study was to systematically review the clinical application of electrical impedance technology in the detection of malignant neoplasms. METHODS A search of Embase Classic, Embase and Medline databases was conducted from 1980 to 22/02/2018 to identify studies reporting on the use of bioimpedance technology in the detection of pre-malignant and malignant conditions. The ability to distinguish between tissue types was defined as the primary endpoint, and other points of interest were also reported. RESULTS 731 articles were identified, of which 51 reported sufficient data for analysis. These studies covered 16 different cancer subtypes in a total of 7035 patients. As the studies took various formats, a qualitative analysis of each cancer subtype's data was undertaken. All the studies were able to show differences in electrical impedance and/or related metrics between malignant and normal tissue. CONCLUSIONS Electrical impedance technology provides a novel method for the detection of malignant tissue, with large studies of cervical, prostate, skin and breast cancers showing encouraging results. Whilst these studies provide promising insights into the potential of this technology as an adjunct in screening, diagnosis and intra-operative margin assessment, customised development as well as multi-centre clinical trials need to be conducted before it can be reliably employed in the clinical detection of malignant tissue.
Collapse
Affiliation(s)
- Angela A. Pathiraja
- Department of Surgery and Cancer, Imperial College London, London, UK
- St Mary’s Hospital, 10th Floor QEQM Building, Paddington, London, W2 1NY UK
| | - Ruwan A. Weerakkody
- Department of Surgery and Cancer, Imperial College London, London, UK
- St Mary’s Hospital, 10th Floor QEQM Building, Paddington, London, W2 1NY UK
| | - Alexander C. von Roon
- Department of Surgery and Cancer, Imperial College London, London, UK
- St Mary’s Hospital, 10th Floor QEQM Building, Paddington, London, W2 1NY UK
| | - Paul Ziprin
- Department of Surgery and Cancer, Imperial College London, London, UK
- St Mary’s Hospital, 10th Floor QEQM Building, Paddington, London, W2 1NY UK
| | - Richard Bayford
- Department of Natural Sciences, Middlesex University, London, UK
- School of Science and Technology, Middlesex University, The Burroughs, Hendon, London, NW4 4BT UK
| |
Collapse
|
15
|
Kratkiewicz K, Manwar R, Rajabi-Estarabadi A, Fakhoury J, Meiliute J, Daveluy S, Mehregan D, Avanaki KM. Photoacoustic/Ultrasound/Optical Coherence Tomography Evaluation of Melanoma Lesion and Healthy Skin in a Swine Model. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2815. [PMID: 31238540 PMCID: PMC6630987 DOI: 10.3390/s19122815] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022]
Abstract
The marked increase in the incidence of melanoma coupled with the rapid drop in the survival rate after metastasis has promoted the investigation into improved diagnostic methods for melanoma. High-frequency ultrasound (US), optical coherence tomography (OCT), and photoacoustic imaging (PAI) are three potential modalities that can assist a dermatologist by providing extra information beyond dermoscopic features. In this study, we imaged a swine model with spontaneous melanoma using these modalities and compared the images with images of nearby healthy skin. Histology images were used for validation.
Collapse
Affiliation(s)
- Karl Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA.
| | - Rayyan Manwar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA.
| | - Ali Rajabi-Estarabadi
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Joseph Fakhoury
- Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | - Steven Daveluy
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
- Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA.
| | - Darius Mehregan
- Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Kamran Mohammad Avanaki
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA.
- Wayne State University School of Medicine, Detroit, MI 48201, USA.
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
- Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA.
| |
Collapse
|
16
|
Dinnes J, Bamber J, Chuchu N, Bayliss SE, Takwoingi Y, Davenport C, Godfrey K, O'Sullivan C, Matin RN, Deeks JJ, Williams HC. High-frequency ultrasound for diagnosing skin cancer in adults. Cochrane Database Syst Rev 2018; 12:CD013188. [PMID: 30521683 PMCID: PMC6516989 DOI: 10.1002/14651858.cd013188] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Early, accurate detection of all skin cancer types is essential to guide appropriate management and to improve morbidity and survival. Melanoma and squamous cell carcinoma (SCC) are high-risk skin cancers with the potential to metastasise and ultimately lead to death, whereas basal cell carcinoma (BCC) is usually localised, with potential to infiltrate and damage surrounding tissue. Anxiety around missing early curable cases needs to be balanced against inappropriate referral and unnecessary excision of benign lesions. Ultrasound is a non-invasive imaging technique that relies on the measurement of sound wave reflections from the tissues of the body. At lower frequencies, the deeper structures of the body such as the internal organs can be visualised, while high-frequency ultrasound (HFUS) with transducer frequencies of 20 MHz or more has a much lower depth of tissue penetration but produces a higher resolution image of tissues and structures closer to the skin surface. Used in conjunction with clinical and/or dermoscopic examination of suspected skin cancer, HFUS may offer additional diagnostic information compared to other technologies. OBJECTIVES To assess the diagnostic accuracy of HFUS to assist in the diagnosis of a) cutaneous invasive melanoma and atypical intraepidermal melanocytic variants, b) cutaneous squamous cell carcinoma (cSCC), and c) basal cell carcinoma (BCC) in adults. SEARCH METHODS We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists as well as published systematic review articles. SELECTION CRITERIA Studies evaluating HFUS (20 MHz or more) in adults with lesions suspicious for melanoma, cSCC or BCC versus a reference standard of histological confirmation or clinical follow-up. DATA COLLECTION AND ANALYSIS Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). Due to scarcity of data and the poor quality of studies, we did not undertake a meta-analysis for this review. For illustrative purposes, we plot estimates of sensitivity and specificity on coupled forest plots. MAIN RESULTS We included six studies, providing 29 datasets: 20 for diagnosis of melanoma (1125 lesions and 242 melanomas) and 9 for diagnosis of BCC (993 lesions and 119 BCCs). We did not identify any data relating to the diagnosis of cSCC.Studies were generally poorly reported, limiting judgements of methodological quality. Half the studies did not set out to establish test accuracy, and all should be considered preliminary evaluations of the potential usefulness of HFUS. There were particularly high concerns for applicability of findings due to selective study populations and data-driven thresholds for test positivity. Studies reporting qualitative assessments of HFUS images excluded up to 22% of lesions (including some melanomas) due to lack of visualisation in the test.Derived sensitivities for qualitative HFUS characteristics were at least 83% (95% CI 75% to 90%) for the detection of melanoma; the combination of three features (lesions appearing hypoechoic, homogenous and well defined) demonstrating 100% sensitivity in two studies (lower limits of the 95% CIs were 94% and 82%), with variable corresponding specificities of 33% (95% CI 20% to 48%) and 73% (95% CI 57% to 85%), respectively. Quantitative measurement of HFUS outputs in two studies enabled decision thresholds to be set to achieve 100% sensitivity; specificities were 93% (95% CI 77% to 99%) and 65% (95% CI 51% to 76%). It was not possible to make summary statements regarding HFUS accuracy for the diagnosis of BCC due to highly variable sensitivities and specificities. AUTHORS' CONCLUSIONS Insufficient data are available on the potential value of HFUS in the diagnosis of melanoma or BCC. Given the between-study heterogeneity, unclear to low methodological quality and limited volume of evidence, we cannot draw any implications for practice. The main value of the preliminary studies included may be in providing guidance on the possible components of new diagnostic rules for diagnosis of melanoma or BCC using HFUS that will require future evaluation. A prospective evaluation of HFUS added to visual inspection and dermoscopy alone in a standard healthcare setting, with a clearly defined and representative population of participants, would be required for a full and proper evaluation of accuracy.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Jeffrey Bamber
- Institute of Cancer Research and The Royal Marsden NHS Foundation TrustJoint Department of Physics15 Cotswold RoadSuttonUKSM2 5NG
| | - Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Kathie Godfrey
- The University of Nottinghamc/o Cochrane Skin GroupNottinghamUK
| | | | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|
17
|
P Santos I, van Doorn R, Caspers PJ, Bakker Schut TC, Barroso EM, Nijsten TEC, Noordhoek Hegt V, Koljenović S, Puppels GJ. Improving clinical diagnosis of early-stage cutaneous melanoma based on Raman spectroscopy. Br J Cancer 2018; 119:1339-1346. [PMID: 30410059 PMCID: PMC6265324 DOI: 10.1038/s41416-018-0257-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022] Open
Abstract
Background Clinical diagnosis of early melanoma (Breslow thickness less than 0.8 mm) is crucial to disease-free survival. However, it is subjective and can be exceedingly difficult, leading to missed melanomas, or unnecessary excision of benign pigmented skin lesions. An objective technique is needed to improve the diagnosis of early melanoma. Methods We have developed a method to improve diagnosis of (thin) melanoma, based on Raman spectroscopy. In an ex vivo study in a tertiary referral (pigmented lesions) centre, high-wavenumber Raman spectra were collected from 174 freshly excised melanocytic lesions suspicious for melanoma. Measurements were performed on multiple locations within the lesions. A diagnostic model was developed and validated on an independent data set of 96 lesions. Results Approximately 60% of the melanomas included in this study were melanomas in situ. The invasive melanomas had an average Breslow thickness of 0.89 mm. The diagnostic model correctly classified all melanomas (including in situ) with a specificity of 43.8%, and showed a potential improvement of the number needed to treat from 6.0 to 2.7, at a sensitivity of 100%. Conclusion This work signifies an important step towards accurate and objective clinical diagnosis of melanoma and in particular melanoma with Breslow thickness <0.8 mm.
Collapse
Affiliation(s)
- Inês P Santos
- Department of Dermatology, Erasmus MC, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Peter J Caspers
- Department of Dermatology, Erasmus MC, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Tom C Bakker Schut
- Department of Dermatology, Erasmus MC, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elisa M Barroso
- Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Erasmus MC, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Tamar E C Nijsten
- Department of Dermatology, Erasmus MC, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Vincent Noordhoek Hegt
- Department of Pathology, Erasmus MC, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Senada Koljenović
- Department of Pathology, Erasmus MC, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerwin J Puppels
- Department of Dermatology, Erasmus MC, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.
| |
Collapse
|
18
|
Halani S, Foster FS, Breslavets M, Shear NH. Ultrasound and Infrared-Based Imaging Modalities for Diagnosis and Management of Cutaneous Diseases. Front Med (Lausanne) 2018; 5:115. [PMID: 29922650 PMCID: PMC5996893 DOI: 10.3389/fmed.2018.00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Non-invasive bedside imaging tools are becoming more prevalent for assessing cutaneous lesions. Ultrasound used at specific frequencies allows us to assess margins of lesions to minimize the extent of the biopsy that is performed and improve cosmetic outcomes. Vascularity, seen on Doppler ultrasound and contrast-enhanced ultrasound, and stiffness, assessed on tissue elastography, can help differentiate between benign and malignant lesions for clinicians to be more judicious in deciding whether to biopsy. Moreover, research has shown the efficacy in using ultrasound in monitoring flares of hidradenitis suppurativa, a disease affecting apocrine gland-rich areas of the body, for which the current gold standard involves examining and scoring inflammatory lesions with the naked eye. Infrared-based modalities have also been on the uptrend to aid in clinical decision-making regarding suspiciousness of lesions. Reflectance confocal microscopy has lateral resolution that is comparable to histopathology and it has been shown to be an appropriate adjunctive tool to dermoscopy, specifically when evaluating melanomas. Optical coherence tomography has utility in determining lesion thickness because of its depth penetration, and spectrophotometric intracutaneous analysis is becoming more popular as a tool that can be used by general practitioners to know when to refer to dermatology regarding worrisome pigmented lesions. Strides have been made to incorporate electrical impedance spectroscopy alongside dermoscopy in decision-making regarding excision, although the evidence for its use in the clincial setting remains inconclusive. This paper reviews the efficacy and drawbacks of these techniques in the field of dermatology and suggests future directions.
Collapse
Affiliation(s)
- Sheliza Halani
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - F Stuart Foster
- Medical Biophysics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Neil H Shear
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Dermatology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Tromme I. A promising combination: electrical impedance spectroscopy added at baseline visit to short‐term sequential digital dermoscopy. Br J Dermatol 2017; 177:1166-1167. [DOI: 10.1111/bjd.15943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- I. Tromme
- Department of Dermatology King Albert II Institute Cliniques Universitaires Saint Luc Brussels Belgium
| |
Collapse
|