1
|
Peng X, Han J, Huang J, Zhou L, Chen X, Zhou W. A CDKN2B-Associated Immune Prognostic Model for Predicting Immune Cell Infiltration and Prognosis in Esophageal Carcinoma. Clin Exp Gastroenterol 2025; 18:41-54. [PMID: 40265174 PMCID: PMC12013638 DOI: 10.2147/ceg.s510078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Objective Studies have indicated that cyclin dependent protein kinase inhibitor 2B (CDKN2B) deletion is one of the most common changes in esophageal cancer (EC) which affects its progression and prognosis. This study explored the association between CDKN2B deletion, immunophenotype, and the prognosis of EC. Methods We investigated CDKN2B status and RNA expression, identified differentially expressed immune-associated genes between wild-type CDKN2B (CDKN2BWT) and deleted CDKN2B (CDKN2Bdeletion) in Cancer Genome Atlas (TCGA) EC samples. We also a constructed an immune prognostic model (IPM) based on these genes. Thereafter, the effects of IPM on the immune microenvironment of EC were analyzed. Finally, we established a nomogram by integrating the IPM and other clinical factors. Results CDKN2B deletion leads to downregulation of the immune response in EC. A total of 136 immune-associated genes were identified based on the CDKN2B deletion status, and three genes with remarkable potential as individual targets were selected for model construction. An IPM was developed and validated, it showed good performance in differentiating patients with a low or high risk of poor prognosis, and its predictive ability was independent of traditional clinical features. High-risk patients with EC had increased T follicular helper cells (Tfh) and M0 macrophages, and lower infiltration levels of resting CD4 memory T cells resting, and naive B cells. The nomogram developed for clinical application showed good predictive performance. Conclusions Our results suggested that CDKN2B deletion was associated with the survival and immune microenvironment in EC. IPM is not only an effective indicator of the immune response and prognosis, but also suggest potential targets for immunotherapy in patients with EC.
Collapse
Affiliation(s)
- Xiulan Peng
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei, 430000, People’s Republic of China
| | - Juping Han
- Department of Gastroenterology, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei, 430000, People’s Republic of China
| | - Juan Huang
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei, 430000, People’s Republic of China
| | - Longshu Zhou
- Department of Cardiothoracic Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, People’s Republic of China
| | - Xianzhe Chen
- Department of Sixin Street Health Service Centre, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei, 430000, People’s Republic of China
| | - Wen Zhou
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
2
|
Mauri G, Patelli G, Roazzi L, Valtorta E, Amatu A, Marrapese G, Bonazzina E, Tosi F, Bencardino K, Ciarlo G, Mariella E, Marsoni S, Bardelli A, Bonoldi E, Sartore-Bianchi A, Siena S. Clinicopathological characterisation of MTAP alterations in gastrointestinal cancers. J Clin Pathol 2025; 78:195-201. [PMID: 38350716 PMCID: PMC11874331 DOI: 10.1136/jcp-2023-209341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Methylthioadenosine phosphorylase (MTAP) is an essential metabolic enzyme in the purine and methionine salvage pathway. In cancer, MTAP gene copy number loss (MTAP loss) confers a selective dependency on the related protein arginine methyltransferase 5. The impact of MTAP alterations in gastrointestinal (GI) cancers remains unknown although hypothetically druggable. Here, we aim to investigate the prevalence, clinicopathological features and prognosis of MTAP loss GI cancers. METHODS Cases with MTAP alterations were retrieved from The Cancer Genome Atlas (TCGA) and a real-world cohort of GI cancers profiled by next-generation sequencing. If MTAP alterations other than loss were found, immunohistochemistry was performed. Finally, we set a case-control study to assess MTAP loss prognostic impact. RESULTS Findings across the TCGA dataset (N=1363 patients) and our cohort (N=508) were consistent. Gene loss was the most common MTAP alteration (9.4%), mostly co-occurring with CDKN2A/B loss (97.7%). Biliopancreatic and gastro-oesophageal cancers had the highest prevalence of MTAP loss (20.5% and 12.7%, respectively), being mostly microsatellite stable (99.2%). In colorectal cancer, MTAP loss was rare (1.1%), while most MTAP alterations were mutations (5/7, 71.4%); among the latter, only MTAP-CDKN2B truncation led to protein loss, thus potentially actionable. MTAP loss did not confer worse prognosis. CONCLUSIONS MTAP alterations are found in 5%-10% of GI cancers, most frequently biliopancreatic and gastro-oesophageal. MTAP loss is the most common alteration, identified almost exclusively in MSS, CDKN2A/B loss, upper-GI cancers. Other MTAP alterations were found in colorectal cancer, but unlikely to cause protein loss and drug susceptibility.
Collapse
Affiliation(s)
- Gianluca Mauri
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giorgio Patelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Roazzi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Emanuele Valtorta
- Department of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessio Amatu
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giovanna Marrapese
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Erica Bonazzina
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Tosi
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Katia Bencardino
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Gabriele Ciarlo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Elisa Mariella
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Silvia Marsoni
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Alberto Bardelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Emanuela Bonoldi
- Department of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Division of Research and Innovation, Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
3
|
Conway E, Wu H, Tian L. Overview of Risk Factors for Esophageal Squamous Cell Carcinoma in China. Cancers (Basel) 2023; 15:5604. [PMID: 38067307 PMCID: PMC10705141 DOI: 10.3390/cancers15235604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 05/27/2024] Open
Abstract
(1) Background: China has the highest esophageal squamous cell carcinoma (ESCC) incidence areas in the world, with some areas of incidence over 100 per 100,000. Despite extensive public health efforts, its etiology is still poorly understood. This study aims to review and summarize past research into potential etiologic factors for ESCC in China. (2) Methods: Relevant observational and intervention studies were systematically extracted from four databases using key terms, reviewed using Rayyan software, and summarized into Excel tables. (3) Results: Among the 207 studies included in this review, 129 studies were focused on genetic etiologic factors, followed by 22 studies focused on dietary-related factors, 19 studies focused on HPV-related factors, and 37 studies focused on other factors. (4) Conclusions: ESCC in China involves a variety of factors including genetic variations, gene-environment interactions, dietary factors like alcohol, tobacco use, pickled vegetables, and salted meat, dietary behavior such as hot food/drink consumption, infections like HPV, poor oral health, gastric atrophy, and socioeconomic factors. Public health measures should prioritize genetic screening for relevant polymorphisms, conduct comprehensive investigations into environmental, dietary, and HPV influences, enhance oral health education, and consider socioeconomic factors overall as integral strategies to reduce ESCC in high-risk areas of China.
Collapse
Affiliation(s)
| | | | - Linwei Tian
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Hong Kong SAR, China; (E.C.); (H.W.)
| |
Collapse
|
4
|
McGrath J, Kane LE, Maher SG. The Influence of MicroRNA-31 on Oxidative Stress and Radiosensitivity in Pancreatic Ductal Adenocarcinoma. Cells 2022; 11:2294. [PMID: 35892591 PMCID: PMC9332078 DOI: 10.3390/cells11152294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 01/27/2023] Open
Abstract
Radioresistance remains a significant challenge in treating pancreatic ductal adenocarcinoma (PDAC), contributing to the poor survival rates of this cancer. MicroRNAs (miRs) are small non-coding RNA molecules that may play an essential role in regulating radioresistance by altering the levels of oxidative stress. In this study, we investigated the role and potential mechanisms linking miR-31 to PDAC radioresistance. A pCMV-miR vector containing a miR-31 mimic was stably expressed into a miR-31-deficient PDAC cell line, BxPC-3. Additionally, a pmiRZip lentivector suppressing miR-31 was stably expressed in a miR-31 abundant PDAC cell line, Panc-1. Clonogenic assays were conducted to explore the role of miR-31 manipulation on radiosensitivity. Fluorometric ROS assays were performed to quantify ROS levels. The expression of potential miR-31 targets was measured by Western blot analysis. It was found that the manipulation of miR-31 altered the radiosensitivity in PDAC cells by regulating oxidative stress. Using online bioinformatics tools, we identified the 3'UTR of GPx8 as a predicted target of miR-31. Our study demonstrates, for the first time, that manipulating miR-31 alters GPx8 expression, regulating ROS detoxification and promoting either a radioresistant or radiosensitive phenotype. MiR-31 may represent a promising therapeutic target for altering radiosensitivity in PDAC cells.
Collapse
Affiliation(s)
| | | | - Stephen G. Maher
- Cancer Chemoradiation Research Group, Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, St. James’s Hospital, D08 W9RT 8 Dublin, Ireland; (J.M.); (L.E.K.)
| |
Collapse
|
5
|
Spiliopoulou P, Yang SC, Bruce JP, Wang BX, Berman HK, Pugh TJ, Siu LL. All is not lost: learning from 9p21 loss in cancer. Trends Immunol 2022; 43:379-390. [DOI: 10.1016/j.it.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
|
6
|
Zhang X, Wang Y, Meng L. Comparative genomic analysis of esophageal squamous cell carcinoma and adenocarcinoma: New opportunities towards molecularly targeted therapy. Acta Pharm Sin B 2022; 12:1054-1067. [PMID: 35530133 PMCID: PMC9069403 DOI: 10.1016/j.apsb.2021.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer is one of the most lethal cancers worldwide because of its rapid progression and poor prognosis. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are two major subtypes of esophageal cancer. ESCC predominantly affects African and Asian populations, which is closely related to chronic smoking and alcohol consumption. EAC typically arises in Barrett's esophagus with a predilection for Western countries. While surgical operation and chemoradiotherapy have been applied to combat this deadly cancer, molecularly targeted therapy is still at the early stages. With the development of large-scale next-generation sequencing, various genomic alterations in ESCC and EAC have been revealed and their potential roles in the initiation and progression of esophageal cancer have been studied. Potential therapeutic targets have been identified and novel approaches have been developed to combat esophageal cancer. In this review, we comprehensively analyze the genomic alterations in EAC and ESCC and summarize the potential role of the genetic alterations in the development of esophageal cancer. Progresses in the therapeutics based on the different tissue types and molecular signatures have also been reviewed and discussed.
Collapse
|
7
|
Du C, Li SW, Singh SX, Roso K, Sun MA, Pirozzi CJ, Yang R, Li JL, He Y. Epigenetic Regulation of Fanconi Anemia Genes Implicates PRMT5 Blockage as a Strategy for Tumor Chemosensitization. Mol Cancer Res 2021; 19:2046-2056. [PMID: 34521764 DOI: 10.1158/1541-7786.mcr-21-0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Strengthened DNA repair pathways in tumor cells contribute to the development of resistance to DNA-damaging agents. Consequently, targeting proteins in these pathways is a promising strategy for tumor chemosensitization. Here, we show that the expression of a subset of Fanconi anemia (FA) genes is attenuated in glioblastoma tumor cells deficient in methylthioadenosine phosphorylase (MTAP), a common genetic alteration in a variety of cancers. Subsequent experiments in cell line models of different cancer types illustrate that this reduced transcription of FA genes can be recapitulated by blockage of Protein Arginine Methyltransferase 5 (PRMT5), a promising therapeutically targetable epigenetic regulator whose enzymatic activity is compromised in MTAP-deficient cells. Further analyses provide evidence to support that PRMT5 can function as an epigenetic regulator that contributes to the increased expression of FA genes in cancer cells. Most notably and consistent with the essential roles of FA proteins in resolving DNA damage elicited by interstrand crosslinking (ICL) agents, PRMT5 blockage, as well as MTAP loss, sensitizes tumor cells to ICL agents both in vitro and in xenografts. Collectively, these findings reveal a novel epigenetic mechanism underlying the upregulated expression of FA genes in cancer cells and suggest that therapeutically targeting PRMT5 can have an additional benefit of chemosensitizing tumor cells to ICL agents. IMPLICATIONS: PRMT5 positively regulates the expression of FA genes. Inhibition of PRMT5 attenuates FA-dependent DNA repair pathway and sensitizes tumor cells to ICL agents.
Collapse
Affiliation(s)
- Changzheng Du
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina.,School of Medicine, Southern University of Science and Technology, and Southern University of Science and Technology Hospital, Nanshan District, Shenzhen, Guangdong, China
| | - Steven W Li
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Simranjit X Singh
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Pathology Graduate Program, Duke University Medical Center, Durham, North Carolina
| | - Kristen Roso
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Michael A Sun
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Pathology Graduate Program, Duke University Medical Center, Durham, North Carolina
| | - Christopher J Pirozzi
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Rui Yang
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina. .,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
8
|
Heidari R, Akbariqomi M, Asgari Y, Ebrahimi D, Alinejad-Rokny H. A systematic review of long non-coding RNAs with a potential role in breast cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 787:108375. [PMID: 34083033 DOI: 10.1016/j.mrrev.2021.108375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
The human transcriptome contains many non-coding RNAs (ncRNAs), which play important roles in gene regulation. Long noncoding RNAs (lncRNAs) are an important class of ncRNAs with lengths between 200 and 200,000 bases. Unlike mRNA, lncRNA lacks protein-coding features, specifically, open-reading frames, and start and stop codons. LncRNAs have been reported to play a role in the pathogenesis and progression of many cancers, including breast cancer (BC), acting as tumor suppressors or oncogenes. In this review, we systematically mined the literature to identify 65 BC-related lncRNAs. We then perform an integrative bioinformatics analysis to identify 14 lncRNAs with a potential regulatory role in BC. The biological function of these 14 lncRNAs, their regulatory mechanisms, and roles in the initiation and progression of BC are discussed in this review. Additionally, we elaborate on the current and future applications of lncRNAs as diagnostic and/or therapeutic biomarkers in BC.
Collapse
Affiliation(s)
- Reza Heidari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Akbariqomi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Diako Ebrahimi
- Biomedical Informatics Lab, Texas Biomedical Research Institute, San Antonio, TX, 78227, United States
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia; Core Member of UNSW Data Science Hub, The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia; Health Data Analytics Program Leader, AI-enabled Processes (AIP) Research Centre, Macquarie University, Sydney, 2109, Australia.
| |
Collapse
|
9
|
Liang B, Ding H, Huang L, Luo H, Zhu X. GWAS in cancer: progress and challenges. Mol Genet Genomics 2020; 295:537-561. [PMID: 32048005 DOI: 10.1007/s00438-020-01647-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/11/2020] [Indexed: 12/31/2022]
Abstract
The genome-wide association study (GWAS) is an effective method to detect single-nucleotide polymorphisms (SNPs) of multiple individual genes based on linkage disequilibrium (LD). GWAS examines genotypes and distinguishing gene characteristics that are exhibited in diseases. In the past few decades, more and more literature has reported the results of applying GWAS to study tumors. Although many pleiotropic loci associated with complex phenotypes have been identified by GWAS, the biological functions of many genetic variation loci remain unclear, and the genetic mechanisms of most complex phenotypes cannot be systematically explained. In this article, we will review the new findings of several tumor types, and categorize the new sites and mechanisms that have recently been discovered. We linked the mechanisms of action of various tumors and searched for links to related gene expression pathways. We found that susceptible sites can be divided into hub genes and peripheral genes; the two interact to link gene expression in a variety of diseases.
Collapse
Affiliation(s)
- Baiqiang Liang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China.,The Marine Biomedical Research Institute, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China.,Cancer Center, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023, China
| | - Hongrong Ding
- The Marine Biomedical Research Institute, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China.,Key Laboratory of Guangdong Provincial Medical Molecular Diagnosis, Dongguan, 523808, China
| | - Lianfang Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China.,The Marine Biomedical Research Institute, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China
| | - Haiqing Luo
- Cancer Center, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China. .,The Marine Biomedical Research Institute, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China. .,Key Laboratory of Guangdong Provincial Medical Molecular Diagnosis, Dongguan, 523808, China.
| |
Collapse
|
10
|
Tian S, Wang C, Zhang J, Yu D. The cox-filter method identifies respective subtype-specific lncRNA prognostic signatures for two human cancers. BMC Med Genomics 2020; 13:18. [PMID: 32024523 PMCID: PMC7003323 DOI: 10.1186/s12920-020-0691-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The most common histological subtypes of esophageal cancer are squamous cell carcinoma (ESCC) and adenocarcinoma (EAC). It has been demonstrated that non-marginal differences in gene expression and somatic alternation exist between these two subtypes; consequently, biomarkers that have prognostic values for them are expected to be distinct. In contrast, laryngeal squamous cell cancer (LSCC) has a better prognosis than hypopharyngeal squamous cell carcinoma (HSCC). Likewise, subtype-specific prognostic signatures may exist for LSCC and HSCC. Long non-coding RNAs (lncRNAs) hold promise for identifying prognostic signatures for a variety of cancers including esophageal cancer and head and neck squamous cell carcinoma (HNSCC). METHODS In this study, we applied a novel feature selection method capable of identifying specific prognostic signatures uniquely for each subtype - the Cox-filter method - to The Cancer Genome Atlas esophageal cancer and HSNCC RNA-Seq data, with the objectives of constructing subtype-specific prognostic lncRNA expression signatures for esophageal cancer and HNSCC. RESULTS By incorporating biological relevancy information, the lncRNA lists identified by the Cox-filter method were further refined. The resulting signatures include genes that are highly related to cancer, such as H19 and NEAT1, which possess perfect prognostic values for esophageal cancer and HNSCC, respectively. CONCLUSIONS The Cox-filter method is indeed a handy tool to identify subtype-specific prognostic lncRNA signatures. We anticipate the method will gain wider applications.
Collapse
Affiliation(s)
- Suyan Tian
- Division of Clinical Research, The First Hospital of Jilin University, 1Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| | - Chi Wang
- Department of Biostatistics, College of Public Health, University of Kentucky, 800 Rose St, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky, 800 Rose St, Lexington, KY, 40536, USA
| | - Jing Zhang
- School of Life Science, 2699 Qianjin Street, Changchun, Jilin, 130012, People's Republic of China
| | - Dan Yu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, Jilin, 130041, People's Republic of China.
| |
Collapse
|
11
|
Li Y, Sun Y, Yang Q, Wu J, Xiong Z, Li S, Jin T. Variants in COL6A3 gene influence susceptibility to esophageal cancer in the Chinese population. Cancer Genet 2019; 238:23-30. [PMID: 31425922 DOI: 10.1016/j.cancergen.2019.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 01/07/2023]
Abstract
Esophageal cancer (EC) is a frequent malignant tumor in our world, and has a highly morbidity and mortality. It was reported that genetic factors play vital roles in its pathogenesis. Here, we performed a case - control study to evaluate the COL6A3 genetic variants and EC risk in a Chinese Han cohort. All subjects were genotyped with the Agena MassARRAY platform. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression after adjusting age and gender. We found that rs6720283 (G > A) allele had significantly enhanced EC risk (OR = 1.32, 95% CI = 1.11 alculate p = 0.002). Stratified analysis was performed by gender, age, alcohol drinking, BMI, TNM stage and lymph node metastasis, the results showed that rs7436, rs115510139 and rs6720283 were significantly associated with the risk of EC in different groups (all p < 0.05). Besides, no statistical significant was found between the COL6A3 gene polymorphisms and clinicopathological parameters such as TNM stage and lymph node metastasis among EC patients (p > 0.05). In conclusions, our study found that COL6A3 variants were associated with risk of EC in the Chinese population.
Collapse
Affiliation(s)
- Yang Li
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China
| | - Qinshuai Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China
| | - Shanqu Li
- Out-patient Department of Tangdu Hospital, Air Force Medical University (The Fourth Military Medical University), Xi'an, Shaanxi 710038, China.
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China; Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.
| |
Collapse
|
12
|
Hansen LJ, Sun R, Yang R, Singh SX, Chen LH, Pirozzi CJ, Moure CJ, Hemphill C, Carpenter AB, Healy P, Ruger RC, Chen CPJ, Greer PK, Zhao F, Spasojevic I, Grenier C, Huang Z, Murphy SK, McLendon RE, Friedman HS, Friedman AH, Herndon JE, Sampson JH, Keir ST, Bigner DD, Yan H, He Y. MTAP Loss Promotes Stemness in Glioblastoma and Confers Unique Susceptibility to Purine Starvation. Cancer Res 2019; 79:3383-3394. [PMID: 31040154 PMCID: PMC6810595 DOI: 10.1158/0008-5472.can-18-1010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 01/28/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022]
Abstract
Homozygous deletion of methylthioadenosine phosphorylase (MTAP) is one of the most frequent genetic alterations in glioblastoma (GBM), but its pathologic consequences remain unclear. In this study, we report that loss of MTAP results in profound epigenetic reprogramming characterized by hypomethylation of PROM1/CD133-associated stem cell regulatory pathways. MTAP deficiency promotes glioma stem-like cell (GSC) formation with increased expression of PROM1/CD133 and enhanced tumorigenicity of GBM cells and is associated with poor prognosis in patients with GBM. As a combined consequence of purine production deficiency in MTAP-null GBM and the critical dependence of GSCs on purines, the enriched subset of CD133+ cells in MTAP-null GBM can be effectively depleted by inhibition of de novo purine synthesis. These findings suggest that MTAP loss promotes the pathogenesis of GBM by shaping the epigenetic landscape and stemness of GBM cells while simultaneously providing a unique opportunity for GBM therapeutics. SIGNIFICANCE: This study links the frequently mutated metabolic enzyme MTAP to dysregulated epigenetics and cancer cell stemness and establishes MTAP status as a factor for consideration in characterizing GBM and developing therapeutic strategies.
Collapse
Affiliation(s)
- Landon J Hansen
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Ran Sun
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Jilin, China
| | - Rui Yang
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Simranjit X Singh
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Lee H Chen
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Christopher J Pirozzi
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Casey J Moure
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Carlee Hemphill
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Austin B Carpenter
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Patrick Healy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Ryan C Ruger
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Chin-Pu J Chen
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Paula K Greer
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Fangping Zhao
- Genetron Health Technologies, Inc., Research Triangle Park, North Carolina
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Carole Grenier
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Roger E McLendon
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Henry S Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Allan H Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - James E Herndon
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - John H Sampson
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Stephen T Keir
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Darell D Bigner
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Hai Yan
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
13
|
Li M, Yue C, Jin G, Guo H, Ma H, Wang G, Huang S, Wu F, Zhao X. Rs1884444 variant in
IL23R
gene is associated with a decreased risk in esophageal cancer in Chinese population. Mol Carcinog 2019; 58:1822-1831. [PMID: 31197899 DOI: 10.1002/mc.23069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/15/2019] [Accepted: 05/26/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Miao Li
- Department of Internal Medicine OncologyThe First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
- Department of Internal Medicine OncologyThe Fifth People's Hospital of Qinghai Province Xining Qinghai China
| | - Chenli Yue
- Department of Respiratory MedicineShaanxi Provincial Crops Hospital of Chinese People's Armed Police Force Xi'an Shaanxi China
| | - Guoquan Jin
- Department of General SurgeryThe Fifth People's Hospital of Qinghai Province Xining Qinghai China
| | - Hulin Guo
- Department of Internal Medicine OncologyThe Fifth People's Hospital of Qinghai Province Xining Qinghai China
| | - Haizhao Ma
- Medical DepartmentThe Fifth People's Hospital of Qinghai Province Xining Qinghai China
| | - Guanying Wang
- Department of Internal Medicine OncologyThe First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
| | - Shangke Huang
- Department of Internal Medicine OncologyThe First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
- Department of OncologyThe Affiliated Hospital of Southwest Medical University Luzhou Sichuan China
| | - Fang Wu
- Department of NeonatologyThe First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
| | - Xinhan Zhao
- Department of Internal Medicine OncologyThe First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
| |
Collapse
|
14
|
Lin X, Yan C, Gao Y, Du J, Zhu X, Yu F, Huang T, Dai J, Ma H, Jiang Y, Yin R, Hu Z, Jin G, Xu L, Shen H. Genetic variants at 9p21.3 are associated with risk of esophageal squamous cell carcinoma in a Chinese population. Cancer Sci 2017; 108:250-255. [PMID: 27960044 PMCID: PMC5329157 DOI: 10.1111/cas.13130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
Genome‐wide association studies have linked genetic variants at 9p21.3 to the risk of multiple cancers. However, the roles of genetic variants at 9p21.3 in esophageal squamous cell carcinoma (ESCC) development are largely unknown. We evaluated the genetic variants at 9p21.3 reported in cancer genome‐wide association studies with a case–control study including 2139 ESCC cases and 2273 controls in a Chinese population, and measured the mRNA expression levels of MTAP,CDKN2A,CDKN2B, and CDKN2B‐AS1 in paired ESCC tumor and adjacent normal tissues. We found that the G allele of rs7023329 was significantly associated with a decreased risk of ESCC with a per‐allele odds ratio of 0.84 (95% confidence interval, 0.77–0.91; P = 2.95 × 10−5). The rs7023329‐G allele was related to a high expression of MTAP (P = 0.020). The rs1679013‐C allele was independently associated with an increased risk of ESCC with a per‐allele odds ratio of 1.12 (95% confidence interval, 1.01–1.24; P = 0.039). We also found that the carriers of the risk allele rs1679013‐C had lower expression of CDKN2B than non‐carriers (P = 0.035). CDKN2B was also significantly downregulated in ESCC tumor tissues compared with adjacent normal tissues (P = 3.50×10−5). Therefore, our findings indicate that genetic variants at 9p21.3 may modulate the expression of MTAP and CDKN2B and contribute to ESCC susceptibility. This may further advance our understanding of the 9p21.3 locus in cancer development.
Collapse
Affiliation(s)
- Xiaoming Lin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Caiwang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yong Gao
- Department of Medical Oncology, The Affiliated Huaian First People's Hospital of Nanjing Medical University, Huaian, China
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fei Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tongtong Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rong Yin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|