1
|
Satapathy BS, Mishra A, Mohanty K, Pattnaik S, Tripathy S, Biswal B. Lipid nanocarrier-based bigel of Piper betel oil for analgesic and anti-inflammatory applications. J Microencapsul 2025; 42:47-69. [PMID: 39587839 DOI: 10.1080/02652048.2024.2430651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Present study reports analgesic and anti-inflammatory potential of Piper betel (L.) leaf oil loaded lipid nanocarrier (BLNs)-embedded bigel. BLNs were developed by solvent evaporation technique and were characterised by FESEM, Cryo-TEM, mean diameter, zeta potential, loading efficiency, etc. BLNs embedded bigel (BLNs-G) was evaluated for analgesic and anti-inflammatory efficacy in rat model. Data showed spherical BLNs with intact lamellarity, 138.2 ± 1.08 nm mean diameter, 0.182 PDI, -46.6 ± 0.61 mV zeta potential, 76.2 ± 2.1% (w/w) loading efficiency and a sustained release in vitro. BLNs-G was homogenous with satisfied viscosity (40 734 ± 1.7 cps), spreadability (8.3 ± 1.5 g.cm sec-1), extrudability (91.33 ± 1.3% w/w) along with a sustained permeation ex vivo. Significant analgesic and anti-inflammatory action were depicted by BLNs-G (1% w/w) in rat model (p ˂ 0.05) within 30 minutes post topical application. In silico docking study revealed high affinity of major phytoactive components with key analgesic/inflammatory mediators. Further pre-clinical investigations are warranted for futuristic clinical application of BLNs-G.
Collapse
Affiliation(s)
- Bhabani Sankar Satapathy
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM Deemed to be University, Hyderabad, India
| | - Abhishek Mishra
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | | | - Snigdha Pattnaik
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | - Shyamalendu Tripathy
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | - Biswabhusan Biswal
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| |
Collapse
|
2
|
Zhang J, Tong Z, Chen L, Qian Y, Lu Y, Chen Q, Si M. Development and applications of peri-implantitis mouse models. Oral Dis 2024; 30:3788-3798. [PMID: 38501334 DOI: 10.1111/odi.14929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE Peri-implantitis is one of the most common complications of implants. However, its pathogenesis has not been clarified. In recent years, mouse models are gradually being used in the study of peri-implantitis. This review aims to summarize the methods used to induce peri-implantitis in mice and their current applications. METHOD Articles of peri-implantitis mouse models were collected. We analyzed the various methods of inducing peri-implantitis and their application in different areas. RESULTS Most researchers have induced peri-implantitis by silk ligatures. Some others have induced peri-implantitis by Pg gavage and LPS injection. Current applications of peri-implantitis mouse models are in the following areas: investigation of pathogenesis and exploration of new interventions, comparison of peri-implantitis with periodontitis, the interaction between systemic diseases and peri-implantitis, etc. CONCLUSION: Silk ligature for 2-4 weeks, Pg gavage for 6 weeks, and LPS injection for 6 weeks all successfully induced peri-implantitis in mice. Mice have the advantages of mature gene editing technology, low cost, and short time to induce peri-implantitis. It has applications in the study of pathogenesis, non-surgical treatments, and interactions with other diseases. However, compared with large animals, mice also have a number of disadvantages that limit their application.
Collapse
Affiliation(s)
- Jianwei Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zian Tong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Long Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yinjie Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yifan Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Florimond M, Duong LT, Lours E, Brau JJ, Ferré FC, Fouilloux I, Boukpessi T. Oral Health in Patients with History of Head and Neck Cancer: Complexity and Benefits of a Targeted Oral Healthcare Pathway. Curr Oncol Rep 2024; 26:258-271. [PMID: 38376626 PMCID: PMC10920472 DOI: 10.1007/s11912-024-01507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE OF REVIEW This work consists in a literature review on the current state of knowledge regarding the oral management of patients with a history of head and neck cancer (HNC), corroborated by clinical cases and illustrated by clear infographic summaries. It aims to provide healthcare professionals with a comprehensive overview of the oral health status of HCN patients. RECENT FINDINGS Head and neck cancers (HNCs) represent the seventh most common type of cancer worldwide, with over 660,000 annual new cases. Despite the significant negative impact of HNCs on oral health, patients often receive no or inappropriate oral care while the significant impact of oral pathologies on cancer prognosis is commonly underestimated. This work (i) describes the oral cavity during and after HNC through the prism of care complexity and (ii) highlights several potential key factors that could worsen long-time patients' prognosis and quality of life. By investigating the biological, microbiological, functional, and psychological dimensions of the interrelationships between HNCs and oral health, the authors explored the barriers and benefits of a targeted oral healthcare pathway. This article emphasizes the importance of multidisciplinary care and highlights the need for further research elucidating the intricate relationships between oral health and HNCs, particularly through the microbiota.
Collapse
Affiliation(s)
- Marion Florimond
- URP 2496 BRIO, Biomedical Research in Odontology, Université Paris Cité, 1 Rue Maurice Arnoux, 92120, Montrouge, France.
- Dental Faculty, Department of Oral Biology, Université Paris Cité, Paris, France.
- Dental Department, Charles Foix Hospital, AP-HP, 94200, Ivry Sur Seine, France.
| | - Lucas T Duong
- Dental Department, Charles Foix Hospital, AP-HP, 94200, Ivry Sur Seine, France
- Centre de Recherche Des Cordeliers, UMRS 1138, Molecular Oral Pathophysiology, Université Paris Cité, INSERM, Sorbonne Université, Paris, France
- Dental Faculty, Department of Oral Surgery, Université Paris Cité, Paris, France
- Department of Head and Neck Surgical Oncology, Institut Gustave Roussy, Villejuif, France
| | - Elodie Lours
- Dental Department, Charles Foix Hospital, AP-HP, 94200, Ivry Sur Seine, France
| | - Jean-Jacques Brau
- Department of Head and Neck Surgical Oncology, Institut Gustave Roussy, Villejuif, France
| | - François C Ferré
- Dental Department, Charles Foix Hospital, AP-HP, 94200, Ivry Sur Seine, France
- Centre de Recherche Des Cordeliers, UMRS 1138, Molecular Oral Pathophysiology, Université Paris Cité, INSERM, Sorbonne Université, Paris, France
- Dental Faculty, Department of Oral Surgery, Université Paris Cité, Paris, France
| | - Isabelle Fouilloux
- Dental Department, Charles Foix Hospital, AP-HP, 94200, Ivry Sur Seine, France
- Dental Faculty, Department of Prosthetics, Université Paris Cité, Paris, France
| | - Tchilalo Boukpessi
- URP 2496 BRIO, Biomedical Research in Odontology, Université Paris Cité, 1 Rue Maurice Arnoux, 92120, Montrouge, France
- Dental Department, Pitié Salpêtrière Hospital, AP-HP, 75013, Paris, France
- Dental Faculty, Department of Restorative Dentistry and Endodontics, Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Quintão Manhanini Souza E, Felipe Toro L, Franzão Ganzaroli V, de Oliveira Alvarenga Freire J, Matsumoto MA, Casatti CA, Tavares Ângelo Cintra L, Leone Buchaim R, Mardegan Issa JP, Gouveia Garcia V, Theodoro LH, Ervolino E. Peri-implantitis increases the risk of medication-related osteonecrosis of the jaws associated with osseointegrated implants in rats treated with zoledronate. Sci Rep 2024; 14:627. [PMID: 38182598 PMCID: PMC10770413 DOI: 10.1038/s41598-023-49647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
This study evaluated the peri-implant tissues under normal conditions and under the influence of experimental peri-implantitis (EPI) in osseointegrated implants installed in the maxillae of rats treated with oncologic dosage of zoledronate. Twenty-eight senescent female rats underwent the extraction of the upper incisor and placement of a titanium dental implant (DI). After eight weeks was installated a transmucosal healing screw on DI. After nine weeks, the following groups were formed: VEH, ZOL, VEH-EPI and ZOL-EPI. From the 9th until the 19th, VEH and VEH-EPI groups received vehicle and ZOL and ZOL-EPI groups received zoledronate. At the 14th week, a cotton ligature was installed around the DI in VEH-EPI and ZOL-EPI groups to induce the EPI. At the 19th week, euthanasia was performed, and the maxillae were processed so that at the implanted sites were analyzed: histological aspects and the percentage of total bone tissue (PTBT) and non-vital bone tissue (PNVBT), along with TNFα, IL-1β, VEGF, OCN and TRAP immunolabeling. ZOL group presented mild persistent peri-implant inflammation, higher PNVBT and TNFα and IL-1β immunolabeling, but lower for VEGF, OCN and TRAP in comparison with VEH group. ZOL-EPI group exhibited exuberant peri-implant inflammation, higher PNVBT and TNFα and IL-1β immunolabeling when compared with ZOL and VEH-EPI groups. Zoledronate disrupted peri-implant environment, causing mild persistent inflammation and increasing the quantity of non-vital bone tissue. Besides, associated with the EPI there were an exacerbated inflammation and even greater increase in the quantity of non-vital bone around the DI, which makes this condition a risk factor for medication-related osteonecrosis of the jaws.
Collapse
Affiliation(s)
| | - Luan Felipe Toro
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Vinícius Franzão Ganzaroli
- Department of Diagnostic and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Jéssica de Oliveira Alvarenga Freire
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mariza Akemi Matsumoto
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Cláudio Aparecido Casatti
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | | | - Rogério Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - João Paulo Mardegan Issa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Valdir Gouveia Garcia
- Latin American Institute of Dental Research and Education (ILAPEO), Curitiba, PR, Brazil
| | - Leticia Helena Theodoro
- Department of Diagnostic and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
5
|
Li Y, Liu J, Guan T, Zhang Y, Cheng Q, Liu H, Liu C, Luo W, Chen H, Chen L, Zhao T. The submandibular and sublingual glands maintain oral microbial homeostasis through multiple antimicrobial proteins. Front Cell Infect Microbiol 2023; 12:1057327. [PMID: 36704102 PMCID: PMC9872150 DOI: 10.3389/fcimb.2022.1057327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Oral microbial homeostasis is a key factor affecting oral health, and saliva plays a significant role in maintaining oral microbial homeostasis. The submandibular gland (SMG) and sublingual gland (SLG) together produce the most saliva at rest. Organic ingredients, including antimicrobial proteins, are rich and distinctive and depend on the type of acinar cells in the SMG and SLG. However, the functions of the SMG and SLG in maintaining oral microbial homeostasis have been difficult to identify and distinguish, given their unique anatomical structures. Methods In this study, we independently removed either the SMG or SLG from mouse models. SMGs were aseptically removed in three mice in the SMG-removal group, and SLGs were aseptically removed in three mice in the SLG-removal group. Three mice from the sham-operated group were only anesthetized and incised the skin. After one month, we analyzed their oral microbiome through 16S rRNA sequencing. And then, we analyzed each gland using proteomics and single-cell RNA sequencing. Results Our study revealed that the microbiome balance was significantly disturbed, with decreased bacterial richness, diversity, and uniformity in the groups with the SMG or SLG removed compared with the sham-operated group. We identified eight secreted proteins in the SMG and two in the SLG that could be involved in maintaining oral microbial homeostasis. Finally, we identified multiple types of cells in the SMG and SLG (including serous acinar, mucinous acinar, ductal epithelial, mesenchymal, and immune cells) that express potential microbiota homeostasis regulatory proteins. Our results suggest that both the SMG and SLG play crucial roles in maintaining oral microbial homeostasis via excretion. Furthermore, the contribution of the SMG in maintaining oral microbial homeostasis appears to be superior to that of the SLG. These findings also revealed the possible antimicrobial function of gland secreta. Discussion Our results suggest that control of oral microbial dysbiosis is necessary when the secretory function of the SMG or SLG is impaired. Our study could be the basis for further research on the prevention of oral diseases caused by microbial dysbiosis.
Collapse
Affiliation(s)
- Yanan Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jingming Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tong Guan
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Yuxin Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qianyu Cheng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Huikai Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Wenping Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Liang Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China,*Correspondence: Tianyu Zhao, ; Liang Chen,
| | - Tianyu Zhao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China,*Correspondence: Tianyu Zhao, ; Liang Chen,
| |
Collapse
|
6
|
Yan J, Liu M, Zhang Y, Zhu Y, Chen Q, Yang Y, Hu M, Yu H. Deuterohemin-Ala-His-Thr-Val-Glu-Lys (DhHP-6) Mimicking Enzyme as Synergistic Antioxidant and Anti-Inflammatory Material for Periodontitis Therapy. Biomimetics (Basel) 2022; 7:biomimetics7040240. [PMID: 36546940 PMCID: PMC9775017 DOI: 10.3390/biomimetics7040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is an inflammatory disease induced by plaque microorganisms. In the clinic, antibiotic assistant periodontal mechanical therapy is the most effective therapy for the treatment of periodontitis. However, the drug resistance of the antibiotics and the repeated coming and diminishing of the disorder of oxidation-reduction balance in the inflammatory tissue could not meet the high requirements for periodontic health control in long periods. Deuterohemin-ala-his-thr-val-glu-lys (DhHP-6) is a biomimetic oxidase-mimicking enzyme that simulates the reactive oxygen radical scavenger function of heme by synthesizing the new molecular material following the key structure and amino acid sequence of heme. In this article, we report the antioxidant and anti-inflammatory properties of DhHP-6 by building a inflammatory model for human gingival fibroblasts (HGFs) stimulated by lipolysaccharide (LPS) and its effects on periodontitis in Wistar rats. DhHP-6 reduced the oxidative stress of HGFs by increasing the amount of the reductase species of glutathione (GSH) and catalase (CAT) while decreasing the amount of oxidase species of malonaldehyde (MDA) and reactive oxygen species (ROS). DhHP-6 had a dose-dependent protective effect on alveolar bone absorption in rats with periodontitis, enhanced antioxidant capacity, and reduced inflammation. As determined by Micro-CT scanning, DhHP-6 reduced alveolar bone loss and improved the bone structure of the left maxillary first molar of rats. There were no obvious morphological and histological differences in the rat organs with or without DhHP-6 treatment. These results suggest that DhHP-6 can be used to treat periodontitis by increasing the expression levels of antioxidant enzymes and antioxidants in systemic and local tissues, thereby reducing levels of oxidation products and cyto-inflammatory factors. The synergistic antioxidant and anti-inflammatory effects of DhHP-6 suggest that there are promising applications of this biomimetic enzyme molecular material for the next generation of agents for periodontitis therapy.
Collapse
Affiliation(s)
- Jiaqing Yan
- Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Min Liu
- Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yan Zhang
- Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Ying Zhu
- Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Qiuyan Chen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yimeng Yang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Min Hu
- Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Huimei Yu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Correspondence:
| |
Collapse
|
7
|
Chew RJJ, Lu JX, Sim YF, Yeo ABK. Rodent peri-implantitis models: a systematic review and meta-analysis of morphological changes. J Periodontal Implant Sci 2022; 52:479-495. [PMID: 36468467 PMCID: PMC9807853 DOI: 10.5051/jpis.2200900045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Rodent models have emerged as an alternative to established larger animal models for peri-implantitis research. However, the construct validity of rodent models is controversial due to a lack of consensus regarding their histological, morphological, and biochemical characteristics. This systematic review sought to validate rodent models by characterizing their morphological changes, particularly marginal bone loss (MBL), a hallmark of peri-implantitis. METHODS This review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A literature search was performed electronically using MEDLINE (PubMed), and Embase, identifying pre-clinical studies reporting MBL after experimental peri-implantitis induction in rodents. Each study's risk of bias was assessed using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE) risk of bias tool. A meta-analysis was performed for the difference in MBL, comparing healthy implants to those with experimental peri-implantitis. RESULTS Of the 1,014 unique records retrieved, 23 studies that met the eligibility criteria were included. Peri-implantitis was induced using 4 methods: ligatures, lipopolysaccharide, microbial infection, and titanium particles. Studies presented high to unclear risks of bias. During the osseointegration phase, 11.6% and 6.4%-11.3% of implants inserted in mice and rats, respectively, had failed to osseointegrate. Twelve studies were included in the meta-analysis of the linear MBL measured using micro-computed tomography. Following experimental peri-implantitis, the MBL was estimated to be 0.25 mm (95% confidence interval [CI], 0.14-0.36 mm) in mice and 0.26 mm (95% CI, 0.19-0.34 mm) in rats. The resulting peri-implant MBL was circumferential, consisting of supra- and infrabony components. CONCLUSIONS Experimental peri-implantitis in rodent models results in circumferential MBL, with morphology consistent with the clinical presentation of peri-implantitis. While rodent models are promising, there is still a need to further characterize their healing potentials, standardize experiment protocols, and improve the reporting of results and methodology. TRIAL REGISTRATION PROSPERO Identifier: CRD42020209776.
Collapse
Affiliation(s)
| | | | - Yu Fan Sim
- Faculty of Dentistry, National University of Singapore, Singapore
| | | |
Collapse
|