1
|
Ferreira VRS, Cunha EJ, Calvão LB, Luiza-Andrade A, Resende BOD, Carvalho FGD, Bomfim FDF, Fares ALB, Cabral GS, Lima M, Montag LFDA, Michelan TS, Juen L. Amazon streams impacted by bauxite mining present distinct local contributions to the beta diversity of aquatic insects, fish, and macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177292. [PMID: 39477100 DOI: 10.1016/j.scitotenv.2024.177292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Integrating the physicochemical characteristics of aquatic environments with their biotas is essential for the conservation and monitoring of biodiversity, given the sensitivity of both the biotic and the abiotic components to environmental changes linked to water quality and human activities. In the present study, we evaluate how the contributions of different taxa to beta diversity, through local and species effects, can indicate the priority sites for conservation and ecological restoration in an Amazon region impacted by bauxite mining. We also investigate how environmental conditions at local and landscape scales influence the beta diversity of the aquatic biota. We hypothesize that unique species assemblages (a high local contribution) are more likely to be found in more degraded streams, with these assemblages being influenced strongly by local conditions and landscape characteristics. Our findings indicate that local contributions to beta diversity can be explained significantly by physicochemical variables, such as the pH and electrical conductivity of the water, with streams impacted by mining exhibiting distinct species compositions. The environmental factors affected different biological groups in distinct manners, including fish, aquatic insects (water bugs, and the larvae of mayflies, stoneflies, caddisflies, and dragonflies), adult dragonflies, and macrophytes. Streams with unique communities also often exhibited low species richness, which highlights the need for environmental restoration. These results reinforce the value of the use of beta diversity metrics as guidelines for conservation and restoration efforts in aquatic ecosystems that have been affected by anthropogenic disturbances. Furthermore, our findings underscore the importance of a multi-taxon approach to ensure the formulation of a more comprehensive picture of the responses of a region's biodiversity to anthropogenic impacts.
Collapse
Affiliation(s)
- Victor Rennan Santos Ferreira
- Laboratory of Ecology and Conservation (LABECO), Graduate Program in Ecology, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, PA 66075-110, Brazil.
| | - Erlane José Cunha
- Laboratory of Ecology and Conservation (LABECO), Graduate Program in Ecology, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, PA 66075-110, Brazil; Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém 66055-900, Brazil
| | - Lenize Batista Calvão
- Laboratory of Ecology and Conservation (LABECO), Graduate Program in Ecology, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, PA 66075-110, Brazil
| | - Ana Luiza-Andrade
- Laboratory of Ecology and Conservation (LABECO), Graduate Program in Ecology, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, PA 66075-110, Brazil; Coleções Zoológicas, Laboratório de Biologia e Diversidade de Insetos (LABDIn), Departamento de Biologia, Universidade Federal de Rondônia (UNIR), BR 364, Km 9,5, Porto Velho, RO 76801-974, Brazil
| | - Bethânia Oliveira de Resende
- Laboratory of Ecology and Conservation (LABECO), Graduate Program in Ecology, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, PA 66075-110, Brazil
| | - Fernando Geraldo de Carvalho
- Laboratory of Ecology and Conservation (LABECO), Graduate Program in Ecology, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, PA 66075-110, Brazil; Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém 66055-900, Brazil
| | - Francieli de Fátima Bomfim
- Laboratory of the Ecology of Primary Producers (ECOPRO), Graduate Program in Ecology, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, PA 66075-110, Brazil
| | - Ana Luísa Biondi Fares
- Laboratory of the Ecology of Primary Producers (ECOPRO), Graduate Program in Ecology, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, PA 66075-110, Brazil
| | - Guilherme Sampaio Cabral
- Laboratory of the Ecology of Primary Producers (ECOPRO), Graduate Program in Ecology, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, PA 66075-110, Brazil
| | - Myllena Lima
- Laboratory of Ecology and Conservation (LABECO), Graduate Program in Ecology, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, PA 66075-110, Brazil
| | - Luciano Fogaça de Assis Montag
- Laboratory of Ecology and Conservation (LABECO), Graduate Program in Ecology, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, PA 66075-110, Brazil
| | - Thaisa Sala Michelan
- Laboratory of the Ecology of Primary Producers (ECOPRO), Graduate Program in Ecology, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, PA 66075-110, Brazil
| | - Leandro Juen
- Laboratory of Ecology and Conservation (LABECO), Graduate Program in Ecology, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, PA 66075-110, Brazil
| |
Collapse
|
2
|
Jorquera MA, Acuña JJ, Huerta N, Bai J, Zhang L, Xiao R, Sadowsky MJ. Multiple antibiotic resistance and herbicide catabolic profiles of bacteria isolated from Lake Villarrica surface sediments (Chile). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124538. [PMID: 39002747 DOI: 10.1016/j.envpol.2024.124538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Antibiotics and herbicides are contaminants of emerging concern in aquatic environments. Lake Villarrica is a relevant freshwater body in Chile and was recently designated a 'saturated nutrient zone'. Here, we investigated the occurrence of multiple antibiotic resistance (MAR) and herbicide catabolic profiles among bacteria present in the surface sediments of Lake Villarrica. The occurrence of antibiotic-resistant genes (ARGs; blaTEM, catA and tetM) and herbicide-catabolic genes (HCGs; phnJ and atzA) was investigated by qPCR. Subsequently, the presence of culturable bacteria with multiple resistance to amoxicillin (AMX), chloramphenicol (CHL) and oxytetracycline (OXT) was studied. Forty-six culturable MAR (AMX + CHL + OXT) strains were isolated and characterized with respect to their resistance to 11 antibiotics by using a disc diffusion assay and testing their ability to use herbicides as a nutrient source. qPCR analyses revealed that ARGs and HCGs were present in all sediment samples (101 to 103 gene copies g-1), with significant (P ≤ 0.05) higher values in sites near Villarrica city and cattle pastures. The plate method was used to recover MAR isolates from sediment (103-106 CFU g-1), and most of the 46 isolates also showed resistance to oxacillin (100%), cefotaxime (83%), erythromycin (96%) and vancomycin (93%). Additionally, 54 and 57% of the MAR isolates were able to grow on agar supplemented (50 mg L-1) with atrazine and glyphosate as nutrient sources, respectively. Most of the MAR isolates were taxonomically close to Pseudomonas (76.1%) and Pantoea (17.4%), particularly those isolated from urbanized sites (Pucón city). This study shows the presence of MAR bacteria with herbicide catabolic activity in sediments, which is valuable for conservation strategies and risk assessments of Lake Villarrica. However, major integrative studies on sediments as reservoirs or on the fate of MAR strains and traces of antibiotics and herbicides as a result of anthropic pressure are still needed.
Collapse
Affiliation(s)
- Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| | - Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile; Millennium Institute Center for Genome Regulation (MI-CGR), Valenzuela Puelma 10207, La Reina, 7800003, Chile
| | - Nicole Huerta
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Junhong Bai
- School of Environment, Beijing Normal University, 19, Xinjiekouwaida Street, Haidian District, Beijing, 100875, China
| | - Ling Zhang
- School of Environment, Beijing Normal University, 19, Xinjiekouwaida Street, Haidian District, Beijing, 100875, China
| | - Rong Xiao
- College of Environment & Safety Engineering, FuZhou University, Fuzhou, China
| | - Michael J Sadowsky
- College of Agriculture, Food, and Environmental Sciences, University of Minnesota, St. Paul, Minnesota, 55108, USA
| |
Collapse
|
3
|
Mathers KL, Robinson CT, Hill M, Kowarik C, Heino J, Deacon C, Weber C. How effective are ecological metrics in supporting conservation and management in degraded streams? BIODIVERSITY AND CONSERVATION 2024; 33:3981-4002. [PMID: 39559549 PMCID: PMC11568992 DOI: 10.1007/s10531-024-02933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 11/20/2024]
Abstract
Biodiversity loss is increasing worldwide, necessitating effective approaches to counteract negative trends. Here, we assessed aquatic macroinvertebrate biodiversity in two river catchments in Switzerland; one significantly degraded and associated with urbanisation and instream barriers, and one in a near-natural condition. Contrary to our expectations, environmental heterogeneity was lower in the near-natural stream, with enhanced productivity in the degraded system resulting in a greater range of environmental conditions. At face value, commonly employed alpha, beta and gamma biodiversity metrics suggested both catchments constituted healthy systems, with greater richness or comparable values recorded in the degraded system relative to the near-natural one. Further, functional metrics considered to be early indicators for anthropogenic disturbance, demonstrated no anticipated differences between degraded and near-natural catchments. However, investigating the identity of the taxa unique to each river system showed that anthropogenic degradation led to replacement of specialist, sensitive species indicative of pristine rivers, by generalist, pollution tolerant species. These replacements reflect a major alteration in community composition in the degraded system compared with the near-natural system. Total nitrogen and fine sediment were important in distinguishing the respective communities. We urge caution in biodiversity studies that employ numerical biodiversity metrics alone. Assessing just one aspect of diversity, such as richness, is not sufficient to track biodiversity changes associated with environmental stress. We advocate that biodiversity monitoring for conservation and management purposes must go beyond traditional richness biodiversity metrics, to include indices that incorporate detailed nuances of biotic communities that relates to taxon identity. Supplementary Information The online version contains supplementary material available at 10.1007/s10531-024-02933-7.
Collapse
Affiliation(s)
- Kate L. Mathers
- Geography and Environment, Loughborough University, Loughborough, Leicestershire, LE11 3TU UK
- Department of Surface Waters Research and Management, Eawag (Swiss Federal Institute of Aquatic Science and Technology), 6047 Kastanienbaum, Switzerland
| | - Christopher T. Robinson
- Department of Aquatic Ecology, Eawag, 8600 Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| | - Matthew Hill
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB UK
| | - Carmen Kowarik
- Department of Aquatic Ecology, Eawag, 8600 Dübendorf, Switzerland
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 8000, Oulu, Finland
| | - Charl Deacon
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Christine Weber
- Department of Surface Waters Research and Management, Eawag (Swiss Federal Institute of Aquatic Science and Technology), 6047 Kastanienbaum, Switzerland
| |
Collapse
|
4
|
Mathers KL, Armitage PD, Hill M, Bickerton M, Mckenzie M, Pardo I, Tickner D, Wood PJ. Context specific effects of substrate composition on the taxonomic and functional diversity of macroinvertebrate communities in temperate lowland streams. Ecol Evol 2024; 14:e70034. [PMID: 39206456 PMCID: PMC11349607 DOI: 10.1002/ece3.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Substrate composition has been widely recognised as a primary variable shaping lotic macroinvertebrate communities at the habitat unit level. However, fundamental understanding of how communities inhabiting mineralogical habitats (i.e., gravel, sand and silt) are structured across differing rivers is lacking. Moreover, research largely focusses on gravel beds and fine sediment in general (<2 mm) and as a result detailed field observations specifically of the sand and silt fractions are lacking. Using data from five UK streams collated from published studies, we assess taxonomic and functional biodiversity (alpha and beta diversity) at the habitat unit level (as defined by substrate composition of sand, silt and gravel). We found that the composition of taxonomic communities were clearly different in all habitat units for each individual stream (and at the landscape scale), with comparable, but less strong, distinctions between substrates for functional macroinvertebrate community composition. However, alpha diversity metrics and Local Contribution to Beta Diversity (LCBD) recorded among the different habitat units varied significantly across individual rivers, and the amount of variation explained by the habitat unit for taxonomic and functional composition demonstrated considerable differences suggesting strong context dependence. The depositional fine sediment habitats of sand and silt were found to support a discrete community composition and differing levels of alpha and beta diversity within and between rivers. We advocate that care should be taken when seeking to generalise biodiversity patterns at a landscape scale as our study highlights the high degree of context dependency when considering the role of the habitat template. Moreover, our results provide evidence that discriminating between the size fractions of fine sediment habitats (sand or silt) is important to fully elucidate the wider ecological importance of these habitats and the distinct taxonomic and functional biodiversity they support.
Collapse
Affiliation(s)
- Kate L. Mathers
- Geography and EnvironmentLoughborough UniversityLoughboroughUK
| | | | - Matthew Hill
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| | - Melanie Bickerton
- School of Geography, Earth and Environmental SciencesUniversity of BirminghamEdgbastonUK
| | | | - Isabel Pardo
- Department of Ecology and Animal BiologyUniversity of VigoVigoSpain
| | | | - Paul J. Wood
- Geography and EnvironmentLoughborough UniversityLoughboroughUK
| |
Collapse
|
5
|
Liu Y, Yan Y, Lin L, Wang L, Zhang Y, Kang B. Prioritizing the multifaceted community and species uniqueness for the conservation of lacustrine fishes in the largest subtropical floodplain, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121301. [PMID: 38850912 DOI: 10.1016/j.jenvman.2024.121301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Hydrological variations affect habitat characteristics and fish distribution in floodplain lakes. Assessing the contributions of the local community (i.e., LCBD, community uniqueness) and species to overall β diversity (i.e., SCBD, species uniqueness) of fish assemblages is valuable for habitat and species conservation planning, particularly from functional and phylogenetic perspectives. We examined the changes in multifaceted LCBD and SCBD of fish across different hydrological periods in the Poyang Lake, China, and analyzed their responsive mechanisms using regression models, based on which the conservation priorities of habitats and species were evaluated. The findings revealed that taxonomic, functional, and phylogenetic LCBD and SCBD were lowest during the wet season compared to the normal and dry seasons, emphasizing the regulatory effects of hydrological regimes on fish assemblages. Taxonomic and functional LCBD were significantly impacted by the mean abundance of migratory fish, highlighting the importance of specific species combinations on community uniqueness. Taxonomic and functional SCBD exhibited positive correlations primarily with mean abundance, suggesting the potential uniqueness of certain common species. Additionally, we identified the river-lake junction (Hukou station) and natural reserve (Xingzi and Nanjishan stations) with high overall community uniqueness as critical habitats. We also emphasized the necessity for increased conservation efforts for species having high overall species uniqueness during different hydrological periods, including Coilia brachygnathus, Ctenopharyngodon idella, Coilia nasus, Saurogobio dabryi, Hypophthalmichthys molitrix, Megalobrama amblycephala, and Parabramis pekinensis. This research underscores the significance of integrating multiple ecological perspectives to manage biodiversity changes and maintain ecological conservation values effectively.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Yang Yan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Li Lin
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao, 266003, China; Department of Animal Husbandry and Fisheries, Guizhou Vocational College of Agriculture, Guiyang, 550000, Guizhou, China
| | - Linlong Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Yanping Zhang
- Department of Fishery Resources, Jiangxi Fisheries Research Institute, Nanchang, 330000, Jiangxi, China
| | - Bin Kang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
6
|
Lin L, Liu Y, Yan Y, Kang B. Optimizing efficiency and resilience of no-take marine protected areas for fish conservation under climate change along the coastlines of China Seas. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14174. [PMID: 37650435 DOI: 10.1111/cobi.14174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/29/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Climate change is one of the major threats to coastal fish biodiversity, and optimization of no-take marine protected areas (MPAs) is imminent. We predicted fish redistribution under climate change in coastal China Seas with joint species distribution modeling and prioritized areas for conservation with Zonation, for which we used core area zonation (CAZ) and additive benefit function (ABF). Based on our results, we devised an expansion plan of no-take MPAs. Under climate change, fish were redistributed northward along the coast. These redistributions were segmented by the Yangtze River estuary and its adjacent waters, indicating a possible biogeographical barrier. Under CAZ and ABF, significantly more fish habitat was conserved than under random prioritization (p < 0.001, Cohen's d = -0.36 and -0.62, respectively). The ABF better represented areas with higher species richness, whereas CAZ better represented core habitats for species with narrow distributions. Without accounting for species redistribution, the expanded MPAs were mainly distributed in the northwest of the South China Sea, the East China Sea, the north of the Yellow Sea, and the west of the Bohai Sea. When accounting for species redistribution, the proposed MPAs were mainly distributed in the north of the Bohai Sea and southwest of the Yellow Sea, corresponding to the northern species redistributions. These MPAs conserved less habitat for fishes at present but protected more and better quality habitat for fishes in 2050 and 2100 than those MPAs that did not account for species redistribution, indicating improved fish conservation under climate change. Incorporating species redistribution and trade-offs between areas with high species richness and areas that contain habitats for rare species are suggested to address coastal fish conservation under climate change. This work provides valuable information for fish conservation and is a precursor to systematic conservation planning along the coastlines of China Seas.
Collapse
Affiliation(s)
- Li Lin
- College of Fisheries, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Yang Liu
- College of Fisheries, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Yang Yan
- College of Fisheries, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Bin Kang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| |
Collapse
|
7
|
Alahuhta J, García-Girón J, Hjort J, Salminen H, Tukiainen H, Heino J. Quantitative measurement of geodiversity uniqueness: research implications and conservation applications. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230056. [PMID: 38342212 DOI: 10.1098/rsta.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/29/2023] [Indexed: 02/13/2024]
Abstract
Quantitative approaches are needed to complement qualitative explorations to identify sites with unique geodiversity and thereby guide geoconservation and geoheritage programmes. Here, we introduce the concept and associated index of 'geodiversity uniqueness'. This index is based on a numerical analysis of geofeatures and allows the identification of sites with unique geodiversity in a study area. We applied this approach to geofeature data from three areas in Finland. Our results showed that patterns of geodiversity uniqueness varied profoundly among the three study areas and across sites within each area. This was due to different sets of geofeatures and distinct characteristics of each study area. More importantly, the approach presented here was robust across the datasets and selection criteria for sets of sites, showing potential for geoconservation in each study area. The geodiversity uniqueness approach is a promising starting point to identify and map sites with unique geodiversity that can be further verified using field observations. To improve our knowledge of geodiversity variation, complementary approaches providing objective information on contributions to total beta geodiversity are needed to advance geoconservation programmes across areas and different spatial scales. This article is part of the Theo Murphy meeting issue 'Geodiversity for science and society'.
Collapse
Affiliation(s)
- Janne Alahuhta
- Geography Research Unit, University of Oulu, Pentti Kaiteran Katu 1, 90570 Oulu, Finland
| | - Jorge García-Girón
- Geography Research Unit, University of Oulu, Pentti Kaiteran Katu 1, 90570 Oulu, Finland
- Department of Biodiversity and Environmental Management, Universidad de León, León, Spain
| | - Jan Hjort
- Geography Research Unit, University of Oulu, Pentti Kaiteran Katu 1, 90570 Oulu, Finland
| | - Henriikka Salminen
- Geography Research Unit, University of Oulu, Pentti Kaiteran Katu 1, 90570 Oulu, Finland
| | - Helena Tukiainen
- Geography Research Unit, University of Oulu, Pentti Kaiteran Katu 1, 90570 Oulu, Finland
| | - Jani Heino
- Geography Research Unit, University of Oulu, Pentti Kaiteran Katu 1, 90570 Oulu, Finland
| |
Collapse
|
8
|
Zuo J, Xiao P, Heino J, Tan F, Soininen J, Chen H, Yang J. Eutrophication increases the similarity of cyanobacterial community features in lakes and reservoirs. WATER RESEARCH 2024; 250:120977. [PMID: 38128306 DOI: 10.1016/j.watres.2023.120977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/05/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Eutrophication of inland waters is a mostly anthropogenic phenomenon impacting aquatic biodiversity worldwide, and might change biotic community structure and ecosystem functions. However, little is known about the patterns of cyanobacterial community variations and changes both on alpha and beta diversity levels in response to eutrophication. Here, we investigated cyanobacterial communities sampled at 140 sites from 59 lakes and reservoirs along a strong eutrophication gradient in eastern China through using CPC-IGS and 16S rRNA gene amplicon sequencing. We found that taxonomic diversity increased, but phylogenetic diversity decreased significantly along the eutrophication gradient. Both niche width and niche overlap of cyanobacteria significantly decreased from low- to high-nutrient waterbodies. Cyanobacterial community distance-decay relationship became weaker from mesotrophic to hypereutrophic waterbodies, while ecological uniqueness (i.e., local contributions to beta diversity) tended to increase in high-nutrient waterbodies. Latitude and longitude were more important in shaping cyanobacterial community structure than other environmental variables. These findings suggest that eutrophication affects alpha and beta diversity of cyanobacterial communities, leading to increasingly similar community structures in lakes and reservoirs with a higher level of eutrophication. Our work highlights how cyanobacterial communities respond to anthropogenic eutrophication and calls for an urgent need to develop conservation and management strategies to control lake eutrophication and protect freshwater biodiversity.
Collapse
Affiliation(s)
- Jun Zuo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 8000, Oulu FI-90014, Finland
| | - Fengjiao Tan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
9
|
Chen K, Midway SR, Peoples BK, Wang B, Olden JD. Shifting taxonomic and functional community composition of rivers under land use change. Ecology 2023; 104:e4155. [PMID: 37611172 DOI: 10.1002/ecy.4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 08/25/2023]
Abstract
Land use intensification has led to conspicuous changes in plant and animal communities across the world. Shifts in trait-based functional composition have recently been hypothesized to manifest at lower levels of environmental change when compared to species-based taxonomic composition; however, little is known about the commonalities in these responses across taxonomic groups and geographic regions. We investigated this hypothesis by testing for taxonomic and geographic similarities in the composition of riverine fish and insect communities across gradients of land use in major hydrological regions of the conterminous United States. We analyzed an extensive data set representing 556 species and 33 functional trait modalities from 8023 fish communities and 1434 taxa and 50 trait modalities from 5197 aquatic insect communities. Our results demonstrate abrupt threshold changes in both taxonomic and functional community composition due to land use conversion. Functional composition consistently demonstrated lower land use threshold responses compared to taxonomic composition for both fish (urban p = 0.069; agriculture p = 0.029) and insect (urban p = 0.095; agriculture p = 0.043) communities according to gradient forest models. We found significantly lower thresholds for urban versus agricultural land use for fishes (taxonomic and functional p < 0.001) and insects (taxonomic p = 0.001; functional p = 0.033). We further revealed that threshold responses in functional composition were more geographically consistent than for taxonomic composition to both urban and agricultural land use change. Traits contributing the most to overall functional composition change differed along urban and agricultural land gradients and conformed to predicted ecological mechanisms underpinning community change. This study points to reliable early-warning thresholds that accurately forecast compositional shifts in riverine communities to land use conversion, and highlight the importance of considering trait-based indicators of community change to inform large-scale land use management strategies and policies.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Stephen R Midway
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Brandon K Peoples
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, South Carolina, USA
| | - Beixin Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Li Z, García-Girón J, Zhang J, Jia Y, Jiang X, Xie Z. Anthropogenic impacts on multiple facets of macroinvertebrate α and β diversity in a large river-floodplain ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162387. [PMID: 36848991 DOI: 10.1016/j.scitotenv.2023.162387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic disturbances have become one of the primary causes of biodiversity decline in freshwater ecosystems. Beyond the well-documented loss of taxon richness in increasingly impacted ecosystems, our knowledge on how different facets of α and β diversity respond to human disturbances is still limited. Here, we examined the responses of taxonomic (TD), functional (FD) and phylogenetic (PD) α and β diversity of macroinvertebrate communities to human impact across 33 floodplain lakes surrounding the Yangtze River. We found that most pairwise correlations between TD and FD/PD were low and non-significant, whereas FD and PD metrics were instead positively and significantly correlated. All facets of α diversity decreased from weakly to strongly impacted lakes owing to the removal of sensitive species harboring unique evolutionary legacies and phenotypes. By contrast, the three facets of β diversity responded inconsistently to anthropogenic disturbance: while FDβ and PDβ showed significant impairment in moderately and strongly impacted lakes as a result of spatial homogenization, TDβ was lowest in weakly impacted lakes. The multiple facets of diversity also responded differently to the underlying environmental gradients, re-emphasizing that taxonomic, functional and phylogenetic diversities provide complementary information on community dynamics. However, the explanatory power of our machine learning and constrained ordination models was relatively low and suggests that unmeasured environmental features and stochastic processes may strongly contribute to macroinvertebrate communities in floodplain lakes suffering from variable levels of anthropogenic degradation. We finally suggested guidelines for effective conservation and restoration targets aimed at achieving healthier aquatic biotas in a context of increasing human impact across the 'lakescape' surrounding the Yangtze River, the most important being the control of nutrient inputs and increased spatial spillover effects to promote natural metasystem dynamics.
Collapse
Affiliation(s)
- Zhengfei Li
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jorge García-Girón
- Geography Research Unit, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland; Department of Biodiversity and Environmental Management, University of León, Campus de Vegazana, 24007 León, Spain.
| | - Junqian Zhang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yintao Jia
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoming Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China.
| | - Zhicai Xie
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
11
|
Ma Y, Yu Z, Jia S, Wu N, Yin K, Wang Y, Giesy JP, Jin X. Multiple anthropogenic stressors influence the taxonomic and functional homogenization of macroinvertebrate communities on the mainstream of an urban-agricultural river in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118017. [PMID: 37150169 DOI: 10.1016/j.jenvman.2023.118017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
Biodiversity loss is caused by intensive human activities and threatens human well-being. However, less is known about how the combined effects of multiple stressors on the diversity of internal (alpha diversity) and multidimensional (beta diversity) communities. Here, we conducted a long-term experiment to quantify the contribution of environmental stressors (including water quality, land use, climate factors, and hydrological regimes) to macroinvertebrate communities alpha and beta diversity in the mainstream of the Songhua River, the third largest river in China, from 2012 to 2019. Our results demonstrated that the alpha and beta diversity indices showed a decline during the study period, with the dissimilarity in community composition between sites decreasing significantly, especially in the impacted river sections (upper and midstream). Despite overall improvement in water quality after management intervention, multiple human-caused stressors still have led to biotic homogenization of macroinvertebrate communities in terms of both taxonomic and functional diversities in the past decade. Our study revealed the increased human land use explained an important portion of the variation of diversities, further indirectly promoting biotic homogenization by changing the physical and chemical factors of water quality, ultimately altering assemblage ecological processes. Furthermore, the facets of diversity have distinct response mechanisms to stressors, providing complementary information from the perspective of taxonomy and function to better reflect the ecological changes of communities. Environmental filtering determined taxonomic beta diversity, and functional beta diversity was driven by the joint efforts of stressors and spatial processes. Finally, we proposed that traditional water quality monitoring alone cannot fully reveal the status of river ecological environment protection, and more importantly, we should explore the continuous changes in biodiversity over the long term. Meanwhile, our results also highlight timely control of nutrient input and unreasonable expansion of land use can better curb the ecological degradation of rivers and promote the healthy and sustainable development of floodplain ecosystems.
Collapse
Affiliation(s)
- Yu Ma
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Zongling Yu
- Ecological Environmental Monitoring Central Station of Heilongjiang Province, Harbin, 150056, China
| | - Shiqi Jia
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, NingboUniversity, Ningbo, 315211, China
| | - Kun Yin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Yeyao Wang
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - John P Giesy
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48895, USA; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76798-7266, USA
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China.
| |
Collapse
|