1
|
Alwani A, Andreasik A, Szatanek R, Siedlar M, Baj-Krzyworzeka M. The Role of miRNA in Regulating the Fate of Monocytes in Health and Cancer. Biomolecules 2022; 12:100. [PMID: 35053248 PMCID: PMC8773712 DOI: 10.3390/biom12010100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/23/2022] Open
Abstract
Monocytes represent a heterogeneous population of blood cells that provide a link between innate and adaptive immunity. The unique potential of monocytes as both precursors (e.g., of macrophages) and effector cells (as phagocytes or cytotoxic cells) makes them an interesting research and therapeutic target. At the site of a tumor, monocytes/macrophages constitute a major population of infiltrating leukocytes and, depending on the type of tumor, may play a dual role as either a bad or good indicator for cancer recovery. The functional activity of monocytes and macrophages derived from them is tightly regulated at the transcriptional and post-transcriptional level. This review summarizes the current understanding of the role of small regulatory miRNA in monocyte formation, maturation and function in health and cancer development. Additionally, signatures of miRNA-based monocyte subsets and the influence of exogenous miRNA generated in the tumor environment on the function of monocytes are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland; (A.A.); (A.A.); (R.S.); (M.S.)
| |
Collapse
|
2
|
Papan P, Kantapan J, Sangthong P, Meepowpan P, Dechsupa N. Iron (III)-Quercetin Complex: Synthesis, Physicochemical Characterization, and MRI Cell Tracking toward Potential Applications in Regenerative Medicine. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:8877862. [PMID: 33456403 PMCID: PMC7785384 DOI: 10.1155/2020/8877862] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
In cell therapy, contrast agents T1 and T2 are both needed for the labeling and tracking of transplanted stem cells over extended periods of time through magnetic resonance imaging (MRI). Importantly, the metal-quercetin complex via coordination chemistry has been studied extensively for biomedical applications, such as anticancer therapies and imaging probes. Herein, we report on the synthesis, characterization, and labeling of the iron (III)-quercetin complex, "IronQ," in circulating proangiogenic cells (CACs) and also explore tracking via the use of a clinical 1.5 Tesla (T) MRI scanner. Moreover, IronQ had a paramagnetic T1 positive contrast agent property with a saturation magnetization of 0.155 emu/g at 1.0 T and longitudinal relaxivity (r1) values of 2.29 and 3.70 mM-1s-1 at 1.5 T for water and human plasma, respectively. Surprisingly, IronQ was able to promote CAC growth in conventional cell culture systems without the addition of specific growth factors. Increasing dosages of IronQ from 0 to 200 μg/mL led to higher CAC uptake, and maximum labeling time was achieved in 10 days. The accumulated IronQ in CACs was measured by two methodologies, an inductively coupled plasma optical emission spectrometry (ICP-EOS) and T1-weighted MRI. In our research, we confirmed that IronQ has excellent dual functions with the use of an imaging probe for MRI. IronQ can also act as a stimulating agent by favoring circulating proangiogenic cell differentiation. Optimistically, IronQ is considered beneficial for alternative labeling and in the tracking of circulation proangiogenic cells and/or other stem cells in applications of cell therapy through noninvasive magnetic resonance imaging in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Phakorn Papan
- Research Unit of Molecular Imaging Probes and Radiobiology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Kantapan
- Research Unit of Molecular Imaging Probes and Radiobiology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nathupakorn Dechsupa
- Research Unit of Molecular Imaging Probes and Radiobiology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Zhang J, Cui Y, Li X, Xiao Y, Liu L, Jia F, He J, Xie X, Parthasarathy S, Hao H, Fang N. 5F peptide promotes endothelial differentiation of bone marrow stem cells through activation of ERK1/2 signaling. Eur J Pharmacol 2020; 876:173051. [PMID: 32145325 DOI: 10.1016/j.ejphar.2020.173051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 11/29/2022]
Abstract
Synthetic apolipoprotein A-I (apoA-I) mimetic peptide 5F exhibits anti-atherosclerotic ability with largely unknown mechanism(s). Bone marrow (BM)-derived endothelial progenitor cells (EPCs) play a critical role in vascular integrity and function. The objective of the present study was to evaluate the effect of 5F on endothelial differentiation of BM stem cells and related mechanisms. Murine BM multipotent adult progenitor cells (MAPCs) were induced to differentiate into endothelial cells in vitro with or without 5F. The expression of endothelial markers vWF, Flk-1 and CD31 was significantly increased in the cells treated with 5F with enhanced in vitro vascular tube formation and LDL uptake without significant changes on proliferation and stem cell maker Oct-4 expression. Phosphorylated ERK1/2, not Akt, was significantly increased in 5F-treated cells. Treatment of MAPCs with PD98059 or small interfering RNA against ERK2 substantially attenuated ERK1/2 phosphorylation, and effectively prevented 5F-induced enhancement of endothelial differentiation of MAPCs. In vivo studies revealed that 5F increased EPCs number in the BM in mice after acute hindlimb ischemia that was effectively prevented with PD98059 treatment. These data supported the conclusion that 5F promoted endothelial differentiation of MAPCs through activation of ERK1/2 signaling.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, 200127, China; Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yuqi Cui
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xin Li
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yuan Xiao
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lingjuan Liu
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Fengpeng Jia
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jianfeng He
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiaoyun Xie
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, USA
| | - Hong Hao
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ningyuan Fang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, 200127, China.
| |
Collapse
|
4
|
Dimova I, Karthik S, Makanya A, Hlushchuk R, Semela D, Volarevic V, Djonov V. SDF-1/CXCR4 signalling is involved in blood vessel growth and remodelling by intussusception. J Cell Mol Med 2019; 23:3916-3926. [PMID: 30950188 PMCID: PMC6533523 DOI: 10.1111/jcmm.14269] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
The precise mechanisms of SDF‐1 (CXCL12) in angiogenesis are not fully elucidated. Recently, we showed that Notch inhibition induces extensive intussusceptive angiogenesis by recruitment of mononuclear cells and it was associated with increased levels of SDF‐1 and CXCR4. In the current study, we demonstrated SDF‐1 expression in liver sinusoidal vessels of Notch1 knockout mice with regenerative hyperplasia by means of intussusception, but we did not detect any SDF‐1 expression in wild‐type mice with normal liver vessel structure. In addition, pharmacological inhibition of SDF‐1/CXCR4 signalling by AMD3100 perturbs intussusceptive vascular growth and abolishes mononuclear cell recruitment in the chicken area vasculosa. In contrast, treatment with recombinant SDF‐1 protein increased microvascular density by 34% through augmentation of pillar number compared to controls. The number of extravasating mononuclear cells was four times higher after SDF‐1 application and two times less after blocking this pathway. Bone marrow‐derived mononuclear cells (BMDC) were recruited to vessels in response to elevated expression of SDF‐1 in endothelial cells. They participated in formation and stabilization of pillars. The current study is the first report to implicate SDF‐1/CXCR4 signalling in intussusceptive angiogenesis and further highlights the stabilizing role of BMDC in the formation of pillars during vascular remodelling.
Collapse
Affiliation(s)
- Ivanka Dimova
- Institute of Anatomy, University of Bern, Bern, Switzerland.,Center of Molecular Medicine, Medical University Sofia, Sofia, Bulgaria
| | - Swapna Karthik
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Andrew Makanya
- Institute of Anatomy, University of Bern, Bern, Switzerland.,Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | | | - David Semela
- Liver Biology Laboratory, Medical Research Center, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Vladislav Volarevic
- Institute of Anatomy, University of Bern, Bern, Switzerland.,Center of Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | |
Collapse
|
5
|
Shi X, Zhang W, Yin L, Chilian WM, Krieger J, Zhang P. Vascular precursor cells in tissue injury repair. Transl Res 2017; 184:77-100. [PMID: 28284670 PMCID: PMC5429880 DOI: 10.1016/j.trsl.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/25/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
Vascular precursor cells include stem cells and progenitor cells giving rise to all mature cell types in the wall of blood vessels. When tissue injury occurs, local hypoxia and inflammation result in the generation of vasculogenic mediators which orchestrate migration of vascular precursor cells from their niche environment to the site of tissue injury. The intricate crosstalk among signaling pathways coordinates vascular precursor cell proliferation and differentiation during neovascularization. Establishment of normal blood perfusion plays an essential role in the effective repair of the injured tissue. In recent years, studies on molecular mechanisms underlying the regulation of vascular precursor cell function have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches to treat chronic wounds and ischemic diseases in vital organ systems. Verification of safety and establishment of specific guidelines for the clinical application of vascular precursor cell-based therapy remain major challenges in the field.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Weihong Zhang
- Department of Basic Medicine, School of Nursing, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Liya Yin
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - William M Chilian
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jessica Krieger
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Ping Zhang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio.
| |
Collapse
|
6
|
Wils J, Favre J, Bellien J. Modulating putative endothelial progenitor cells for the treatment of endothelial dysfunction and cardiovascular complications in diabetes. Pharmacol Ther 2016; 170:98-115. [PMID: 27773788 DOI: 10.1016/j.pharmthera.2016.10.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetes induces a decrease in the number and function of different pro-angiogenic cell types generically designated as putative endothelial progenitor cells (EPC), which encompasses cells from myeloid origin that act in a paracrine fashion to promote angiogenesis and putative "true" EPC that contribute to endothelial replacement. This not only compromises neovasculogenesis in ischemic tissues but also impairs, at an early stage, the reendotheliziation process at sites of injury, contributing to the development of endothelial dysfunction and cardiovascular complications. Hyperglycemia, insulin resistance and dyslipidemia promote putative EPC dysregulation by affecting the SDF-1/CXCR-4 and NO pathways and the p53/SIRT1/p66Shc axis that contribute to their mobilization, migration, homing and vasculogenic properties. To optimize the clinical management of patients with hypoglycemic agents, statins and renin-angiotensin system inhibitors, which display pleiotropic effects on putative EPC, is a first step to improve their number and angiogenic potential but specific strategies are needed. Among them, mobilizing therapies based on G-CSF, erythropoietin or CXCR-4 antagonism have been developed to increase putative EPC number to treat ischemic diseases with or without prior cell isolation and transplantation. Growth factors, genetic and pharmacological strategies are also evaluated to improve ex vivo cultured EPC function before transplantation. Moreover, pharmacological agents increasing in vivo the bioavailability of NO and other endothelial factors demonstrated beneficial effects on neovascularization in diabetic ischemic models but their effects on endothelial dysfunction remain poorly evaluated. More experiments are warranted to develop orally available drugs and specific agents targeting p66Shc to reverse putative EPC dysfunction in the expected goal of preventing endothelial dysfunction and diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Julien Wils
- Department of Pharmacology, Rouen University Hospital, Rouen, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Julie Favre
- MITOVASC Institute, Angers, France; Centre National de la Recherche Scientifique (CNRS) UMR 6214, Angers, France; INSERM U1083, Angers, France; University of Angers, Angers, France
| | - Jérémy Bellien
- Department of Pharmacology, Rouen University Hospital, Rouen, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France.
| |
Collapse
|
7
|
Jose Corbalan J, Vatner DE, Vatner SF. Myocardial apoptosis in heart disease: does the emperor have clothes? Basic Res Cardiol 2016; 111:31. [PMID: 27043720 DOI: 10.1007/s00395-016-0549-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023]
Abstract
Since the discovery of a novel mechanism of cell death that differs from traditional necrosis, i.e., apoptosis, there have been numerous studies concluding that increased apoptosis augments myocardial infarction and heart failure and that limiting apoptosis protects the heart. Importantly, the vast majority of cells in the heart are non-myocytes with only roughly 30 % myocytes, yet almost the entire field studying apoptosis in the heart has disregarded non-myocyte apoptosis, e.g., only 4.7 % of 423 studies on myocardial apoptosis in the past 3 years quantified non-myocyte apoptosis. Accordingly, we reviewed the history of apoptosis in the heart focusing first on myocyte apoptosis, followed by the history of non-myocyte apoptosis in myocardial infarction and heart failure. Apoptosis of several of the major non-myocyte cell types in the heart (cardiac fibroblasts, endothelial cells, vascular smooth muscle cells, macrophages and leukocytes) may actually be responsible for affecting the severity of myocardial infarction and heart failure. In summary, even though it is now known that the majority of apoptosis in the heart occurs in non-myocytes, very little work has been done to elucidate the mechanisms by which non-myocyte apoptosis might be responsible for the adverse effects of apoptosis in myocardial infarction and heart failure. The goal of this review is to provide an impetus for future work in this field on non-myocyte apoptosis that will be required for a better understanding of the role of apoptosis in the heart.
Collapse
Affiliation(s)
- J Jose Corbalan
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
8
|
Landers-Ramos RQ, Corrigan KJ, Guth LM, Altom CN, Spangenburg EE, Prior SJ, Hagberg JM. Short-term exercise training improves flow-mediated dilation and circulating angiogenic cell number in older sedentary adults. Appl Physiol Nutr Metab 2016; 41:832-41. [PMID: 27441589 DOI: 10.1139/apnm-2015-0637] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cardiovascular disease risk increases with age due, in part, to impaired endothelial function and decreased circulating angiogenic cell (CAC) number and function. We sought to determine if 10 days of aerobic exercise training improves endothelial function, CAC number, and intracellular redox balance in older sedentary adults. Eleven healthy subjects (4 men, 7 women), 61 ± 2 years of age participated in 60 min of aerobic exercise at 70% maximal oxygen consumption for 10 consecutive days while maintaining body weight. Before and after training, endothelial function was measured as flow-mediated dilation of the brachial artery and fasting blood was drawn to enumerate 3 CAC subtypes. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) in CD34+ CACs were measured using fluorescent probes and reinforced via real-time quantitative polymerase chain reaction. Flow-mediated dilation improved significantly following training (10% ± 1.3% before vs. 16% ± 1.4% after training; P < 0.05). Likewise, CD34+/KDR+ number increased 104% and KDR+ number increased 151% (P < 0.05 for both), although CD34+ number was not significantly altered (P > 0.05). Intracellular NO and ROS levels in CD34+ CACs were not different after training (P > 0.05 for both). Messenger RNA expression of SOD1, endothelial nitric oxide synthase, and NADPH oxidase 2 and neutrophil cytosolic factor 1 in CD34+ CACs was not significantly altered with training (P > 0.05). In conclusion, 10 consecutive days of aerobic exercise increased flow-mediated dilation and CAC number in older, previously sedentary adults, but did not affect intracellular redox balance in CD34+ CACs. Overall, these data indicate that even short-term aerobic exercise training can have a significant impact on cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Rian Q Landers-Ramos
- a Department of Kinesiology, University of Maryland, College Park, MD 20742-2611, USA
| | - Kelsey J Corrigan
- a Department of Kinesiology, University of Maryland, College Park, MD 20742-2611, USA
| | - Lisa M Guth
- a Department of Kinesiology, University of Maryland, College Park, MD 20742-2611, USA
| | - Christine N Altom
- a Department of Kinesiology, University of Maryland, College Park, MD 20742-2611, USA
| | - Espen E Spangenburg
- a Department of Kinesiology, University of Maryland, College Park, MD 20742-2611, USA
| | - Steven J Prior
- b University of Maryland School of Medicine and Baltimore VA GRECC, Baltimore, MD 21201, USA
| | - James M Hagberg
- a Department of Kinesiology, University of Maryland, College Park, MD 20742-2611, USA
| |
Collapse
|
9
|
Cui Y, Sun Q, Liu Z. Ambient particulate matter exposure and cardiovascular diseases: a focus on progenitor and stem cells. J Cell Mol Med 2016; 20:782-93. [PMID: 26988063 PMCID: PMC4831366 DOI: 10.1111/jcmm.12822] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/29/2016] [Indexed: 12/13/2022] Open
Abstract
Air pollution is a major challenge to public health. Ambient fine particulate matter (PM) is the key component for air pollution, and associated with significant mortality. The majority of the mortality following PM exposure is related to cardiovascular diseases. However, the mechanisms for the adverse effects of PM exposure on cardiovascular system remain largely unknown and under active investigation. Endothelial dysfunction or injury is considered one of the major factors that contribute to the development of cardiovascular diseases such as atherosclerosis and coronary heart disease. Endothelial progenitor cells (EPCs) play a critical role in maintaining the structural and functional integrity of vasculature. Particulate matter exposure significantly suppressed the number and function of EPCs in animals and humans. However, the mechanisms for the detrimental effects of PM on EPCs remain to be fully defined. One of the important mechanisms might be related to increased level of reactive oxygen species (ROS) and inflammation. Bone marrow (BM) is a major source of EPCs. Thus, the number and function of EPCs could be intimately associated with the population and functional status of stem cells (SCs) in the BM. Bone marrow stem cells and other SCs have the potential for cardiovascular regeneration and repair. The present review is focused on summarizing the detrimental effects of PM exposure on EPCs and SCs, and potential mechanisms including ROS formation as well as clinical implications.
Collapse
Affiliation(s)
- Yuqi Cui
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Qinghua Sun
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Zhenguo Liu
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
10
|
Eccles SA, Court W, Patterson L. In Vitro Assays for Endothelial Cell Functions Required for Angiogenesis: Proliferation, Motility, Tubular Differentiation, and Matrix Proteolysis. Methods Mol Biol 2016; 1430:121-147. [PMID: 27172950 DOI: 10.1007/978-1-4939-3628-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This chapter deconstructs the process of angiogenesis into its component parts in order to provide simple assays to measure discrete endothelial cell functions. The techniques described will be suitable for studying stimulators and/or inhibitors of angiogenesis and determining which aspect of the process is modulated. The assays are designed to be robust and straightforward, using human umbilical vein endothelial cells, but with an option to use other sources such as microvascular endothelial cells from various tissues or lymphatic endothelial cells. It must be appreciated that such reductionist approaches cannot cover the complexity of the angiogenic process as a whole, incorporating as it does a myriad of positive and negative signals, three-dimensional interactions with host tissues and many accessory cells including fibroblasts, macrophages, pericytes and platelets. The extent to which in vitro assays predict physiological or pathological processes in vivo (e.g., wound healing, tumor angiogenesis) or surrogate techniques such as the use of Matrigel™ plugs, sponge implants, corneal assays etc remains to be determined.
Collapse
Affiliation(s)
- Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK.
| | - William Court
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK
| | - Lisa Patterson
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK
| |
Collapse
|
11
|
Favre J, Yildirim C, Leyen TA, Chen WJY, van Genugten RE, van Golen LW, Garcia-Vallejo JJ, Musters R, Baggen J, Fontijn R, van der Pouw Kraan T, Serné E, Koolwijk P, Diamant M, Horrevoets AJG. Palmitic acid increases pro-oxidant adaptor protein p66Shc expression and affects vascularization factors in angiogenic mononuclear cells: Action of resveratrol. Vascul Pharmacol 2015; 75:7-18. [PMID: 26254104 DOI: 10.1016/j.vph.2015.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/04/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
A defect in neo-vascularization process involving circulating angiogenic mononuclear cells (CACs) dysfunction is associated with diabetes. We showed that oxidative stress was elevated in CACs cultured from blood of individuals with metabolic syndrome (MetS) and diabetes. We then assessed the action of palmitic acid (PA), a deregulated and increased NEFA in metabolic disorders, focusing on its oxidant potential. We observed that the phyto-polyphenol resveratrol normalized oxidative stress both in CACs isolated from MetS patients or treated with PA. Resveratrol further decreased the deleterious action of PA on gene expression of vascularization factors (TNFα, VEGF-A, SDF1α, PECAM-1, VEGFR2, Tie2 and CXCR4) and improved CAC motility. Particularly, resveratrol abolished the PA-induced over-expression of the pro-oxidant protein p66Shc. Neither KLF2 nor SIRT1, previously shown in resveratrol and p66Shc action, was directly involved. Silencing p66Shc normalized PA action on VEGF-A and TNFα specifically, without abolishing the PA-induced oxidative stress, which suggests a deleterious role of p66Shc independently of any major modulation of the cellular oxidative status in a high NEFA levels context. Besides showing that resveratrol reverses PA-induced harmful effects on human CAC function, certainly through profound cellular modifications, we establish p66Shc as a major therapeutic target in metabolic disorders, independent from glycemic control.
Collapse
Affiliation(s)
- Julie Favre
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Cansu Yildirim
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Thomas A Leyen
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Weena J Y Chen
- Department of Diabetes Center Internal medicine, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Renate E van Genugten
- Department of Diabetes Center Internal medicine, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Larissa W van Golen
- Department of Diabetes Center Internal medicine, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Juan-Jesus Garcia-Vallejo
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Rene Musters
- Department of Physiology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Josefien Baggen
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Ruud Fontijn
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Tineke van der Pouw Kraan
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Erik Serné
- Department of Diabetes Center Internal medicine, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Pieter Koolwijk
- Department of Physiology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Michaela Diamant
- Department of Diabetes Center Internal medicine, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands
| | - Anton J G Horrevoets
- Department of Molecular Cell Biology, VU University Medical Center, van der Boechorstraat 7, 1081BT Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Vergori L, Lauret E, Gaceb A, Beauvillain C, Andriantsitohaina R, Martinez MC. PPARα Regulates Endothelial Progenitor Cell Maturation and Myeloid Lineage Differentiation Through a NADPH Oxidase-Dependent Mechanism in Mice. Stem Cells 2015; 33:1292-303. [DOI: 10.1002/stem.1924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/31/2014] [Accepted: 11/14/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Luisa Vergori
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques; Institut de Biologie en Santé Université d'Angers; Angers France
- Department of Biosciences, Biotechnologies and Biofarmaceutic; University of Bari; Bari Italy
- Centre Hospitalo-Universitaire d'Angers; Angers France
| | - Emilie Lauret
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques; Institut de Biologie en Santé Université d'Angers; Angers France
| | - Abderahim Gaceb
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques; Institut de Biologie en Santé Université d'Angers; Angers France
| | - Céline Beauvillain
- Centre Hospitalo-Universitaire d'Angers; Angers France
- INSERM U892, CNRS UMR6299; Université d'Angers; Angers France
| | - Ramaroson Andriantsitohaina
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques; Institut de Biologie en Santé Université d'Angers; Angers France
- Centre Hospitalo-Universitaire d'Angers; Angers France
| | - M. Carmen Martinez
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques; Institut de Biologie en Santé Université d'Angers; Angers France
- Centre Hospitalo-Universitaire d'Angers; Angers France
| |
Collapse
|
13
|
Li M, Zhang G, Zhang X, Lv G, Wei X, Yuan H, Hou J. Overexpression of B7-H3 in CD14+ monocytes is associated with renal cell carcinoma progression. Med Oncol 2014; 31:349. [DOI: 10.1007/s12032-014-0349-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
|
14
|
Foster WS, Suen CM, Stewart DJ. Regenerative Cell and Tissue-based Therapies for Pulmonary Arterial Hypertension. Can J Cardiol 2014; 30:1350-60. [DOI: 10.1016/j.cjca.2014.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/13/2014] [Accepted: 08/24/2014] [Indexed: 12/21/2022] Open
|
15
|
Fontijn RD, Favre J, Naaijkens BA, Meinster E, Paauw NJ, Ragghoe SL, Nauta TD, van den Broek MA, Weijers EM, Niessen HW, Koolwijk P, Horrevoets AJ. Adipose tissue-derived stromal cells acquire endothelial-like features upon reprogramming with SOX18. Stem Cell Res 2014; 13:367-78. [PMID: 25290189 DOI: 10.1016/j.scr.2014.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 07/29/2014] [Accepted: 09/17/2014] [Indexed: 01/08/2023] Open
Abstract
Adipose tissue-derived stromal cells (ASC) form a rich source of autologous cells for use in regenerative medicine. In vitro induction of an endothelial phenotype may improve performance of ASCs in cardiovascular repair. Here, we report on an in vitro strategy using direct reprogramming of ASCs by means of ectopic expression of the endothelial-specific transcription factor SRY (sex determining region Y)-box18 (SOX18). SOX18 induces ASCs to express a set of genes involved in vascular patterning: MMP7, KDR, EFNB2, SEMA3G and CXCR4. Accordingly, SOX18 transduced ASCs reorganize under conditions of shear stress, display VEGF-induced chemotaxis and form tubular structures in 3D matrices in an MMP7-dependent manner. These in vitro findings provide insight into molecular and cellular processes downstream of SOX18 and show that reprogramming using SOX18 is sufficient to induce several endothelial-like features in ASCs.
Collapse
Affiliation(s)
- R D Fontijn
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | - J Favre
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | - B A Naaijkens
- Department of Pathology and Cardiac Surgery, VU University Medical Center, de Boelelaan 117, 1081 HV Amsterdam, The Netherlands.
| | - E Meinster
- Department of Pathology and Cardiac Surgery, VU University Medical Center, de Boelelaan 117, 1081 HV Amsterdam, The Netherlands.
| | - N J Paauw
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | - S L Ragghoe
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - T D Nauta
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | - M A van den Broek
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | - E M Weijers
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | - H W Niessen
- Department of Pathology and Cardiac Surgery, VU University Medical Center, de Boelelaan 117, 1081 HV Amsterdam, The Netherlands.
| | - P Koolwijk
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | - A J Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Smits AIPM, Ballotta V, Driessen-Mol A, Bouten CVC, Baaijens FPT. Shear flow affects selective monocyte recruitment into MCP-1-loaded scaffolds. J Cell Mol Med 2014; 18:2176-88. [PMID: 25103256 PMCID: PMC4224552 DOI: 10.1111/jcmm.12330] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/23/2014] [Indexed: 02/06/2023] Open
Abstract
Novel cardiovascular replacements are being developed by using degradable synthetic scaffolds, which function as a temporary guide to induce neotissue formation directly in situ. Priming of such scaffolds with fast-releasing monocyte chemoattractant protein-1 (MCP-1) was shown to improve the formation of functional neoarteries in rats. However, the underlying mechanism has not been clarified. Therefore, the goal of this study was to investigate the effect of a burst-release of MCP-1 from a synthetic scaffold on the local recruitment of circulating leucocytes under haemodynamic conditions. Herein, we hypothesized that MCP-1 initiates a desired healing cascade by recruiting favourable monocyte subpopulations into the implanted scaffold. Electrospun poly(ε-caprolactone) scaffolds were loaded with fibrin gel containing various doses of MCP-1 and exposed to a suspension of human peripheral blood mononuclear cells in static or dynamic conditions. In standard migration assay, a dose-dependent migration of specific CD14+ monocyte subsets was observed, as measured by flow cytometry. In conditions of pulsatile flow, on the other hand, a marked increase in immediate monocyte recruitment was observed, but without evident selectivity in monocyte subsets. This suggests that the selectivity was dependent on the release kinetics of the MCP-1, as it was overruled by the effect of shear stress after the initial burst-release. Furthermore, these findings demonstrate that local recruitment of specific MCP-1-responsive monocytes is not the fundamental principle behind the improved neotissue formation observed in long-term in vivo studies, and mobilization of MCP-1-responsive cells from the bone marrow into the bloodstream is suggested to play a predominant role in vivo.
Collapse
Affiliation(s)
- Anthal I P M Smits
- Soft Tissue Biomechanics and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Guhanarayan G, Jablonski J, Witkowski S. Circulating angiogenic cell population responses to 10 days of reduced physical activity. J Appl Physiol (1985) 2014; 117:500-6. [PMID: 25012029 DOI: 10.1152/japplphysiol.00087.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Circulating angiogenic cells (CACs) are a diverse group that have been identified as predictors of cardiovascular health and are inversely proportional to cardiovascular disease (CVD) outcomes. Inactivity is a growing concern in industrialized nations and is an independent risk factor for CVD. There is limited evidence regarding the impact of reduced physical activity (rPA) on different CAC populations. The purpose of this study was to evaluate the effect of objectively monitored rPA with maintained energy balance on two CAC populations (CFU and CD34(+) cells), intracellular nitric oxide (NOi), and genes related to NO production in active, healthy men. Participants (age 25 ± 2.9 yr) refrained from structured physical activity for 10 days, which was reflected by a significant reduction in time in vigorous + very vigorous intensity activity (P = 0.03). Sedentary time tended to increase (P = 0.06) with rPA. CFU CACs have been characterized as mainly monocytic and lymphocytic cells. We found significant reductions in both the number of CFU CACs (-35.69%, P = 0.01) and CFU CAC NOi (-33.84%, P = 0.03). Neither NOi nor the number of CD34(+) cells, which are hematopoietic and endothelial progenitors, changed with rPA. We found no significant differences in NO-related gene expression or oxidative stress-related gene expression with rPA in either CAC type. Therefore, we conclude that although various CAC populations have been related to vascular health, regular physical activity is necessary to maintain CAC NOi and the vulnerability of CACs to short-term reductions in physical activity is population specific.
Collapse
Affiliation(s)
- Gayatri Guhanarayan
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Julianne Jablonski
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Sarah Witkowski
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
18
|
Radom-Aizik S, Zaldivar FP, Haddad F, Cooper DM. Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease. Brain Behav Immun 2014; 39:121-9. [PMID: 24423463 PMCID: PMC4101903 DOI: 10.1016/j.bbi.2014.01.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 12/24/2013] [Accepted: 01/04/2014] [Indexed: 12/14/2022] Open
Abstract
Physical activity can prevent and/or attenuate atherosclerosis, a disease clearly linked to inflammation. Paradoxically, even brief exercise induces a stress response and increases inflammatory cells like monocytes in the circulation. We hypothesized that exercise would regulate the expression of genes, gene pathways, and microRNAs in monocytes in a way that could limit pro-inflammatory function and drive monocytes to prevent, rather than contribute to, atherosclerosis. Twelve healthy men (22-30year old) performed ten 2-min bouts of cycle ergometer exercise at a constant work equivalent to an average of 82% of maximum O2 consumption interspersed with 1-min rest. Blood was drawn before and immediately after the exercise. Monocytes were isolated from peripheral blood mononuclear cells. Flow cytometry was used to identify monocyte subtypes. We used Affymetrix U133 + 2.0 arrays for gene expression and Agilent Human miRNA V2 Microarray for miRNAs. A stringent statistical approach (FDR <0.05) was used to determine that exercise significantly altered the expression of 894 annotated genes and 19 miRNAs. We found distinct gene alterations that were likely to direct monocytes in an anti-inflammatory, anti-atherogenic pathway, including the downregulation of monocyte TNF, TLR4, and CD36 genes and the upregulation of EREG and CXCR4. Exercise significantly altered a number of microRNAs that likely influence monocytes involvement in vascular health. Exercise leads to a novel genomic profile of circulating monocytes, which appears to promote cardiovascular health despite the overall stress response.
Collapse
Affiliation(s)
- Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, UC Irvine School of Medicine, United States.
| | - Frank P. Zaldivar
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, UC Irvine School of Medicine
| | - Fadia Haddad
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, UC Irvine School of Medicine
| | - Dan M. Cooper
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, UC Irvine School of Medicine
| |
Collapse
|
19
|
Navarro A, Marín S, Riol N, Carbonell-Uberos F, Miñana MD. Human adipose tissue-resident monocytes exhibit an endothelial-like phenotype and display angiogenic properties. Stem Cell Res Ther 2014; 5:50. [PMID: 24731246 PMCID: PMC4055093 DOI: 10.1186/scrt438] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/04/2014] [Indexed: 01/01/2023] Open
Abstract
Introduction Adipose tissue has the unique property of expanding throughout adult life, and angiogenesis is required for its growth. However, endothelial progenitor cells contribute minimally to neovascularization. Because myeloid cells have proven to be angiogenic, and monocytes accumulate in expanding adipose tissue, they might contribute to vascularization. Methods The stromal vascular fraction (SVF) cells from human adipose tissue were magnetically separated according to CD45 or CD14 expression. Adipose-derived mesenchymal stromal cells (MSCs) were obtained from SVF CD45- cells. CD14+ monocytes were isolated from peripheral blood (PB) mononuclear cells and then cultured with SVF-derived MSCs. Freshly isolated or cultured cells were characterized with flow cytometry; the conditioned media were analyzed for the angiogenic growth factors, angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), granulocyte colony-stimulating factor (G-CSF), and granulocyte macrophage colony-stimulating factor (GM-CSF) with Luminex Technology; their angiogenic capacity was determined in an in vivo gelatinous protein mixture (Matrigel) plug angiogenesis assay. Results CD45+ hematopoietic cells within the SVF contain CD14+ cells that co-express the CD34 progenitor marker and the endothelial cell antigens VEGF receptor 2 (VEGFR2/KDR), VEGFR1/Flt1, and Tie2. Co-culture experiments showed that SVF-derived MSCs promoted the acquisition of KDR and Tie-2 in PB monocytes. MSCs secreted significant amounts of Ang-2 and HGF, but minimal amounts of bFGF, G-CSF, or GM-CSF, whereas the opposite was observed for SVF CD14+ cells. Additionally, SVF CD14+ cells secreted significantly higher levels of VEGF and bFGF than did MSCs. Culture supernatants of PB monocytes cultured with MSCs contained significantly higher concentrations of VEGF, HGF, G-CSF, and GM-CSF than did the supernatants from cultures without MSCs. Quantitative analysis of angiogenesis at 14 days after implantation demonstrated that neovascularization of the implants containing SVF CD14+ cells or PB monocytes previously co-cultured with MSCs was 3.5 or 2 times higher than that observed in the implants with SVF-derived MSCs. Moreover, immunofluorescence of Matrigel sections revealed that SVF CD14+ cells differentiated into endothelial cells and contributed to vascular endothelium. Conclusions The results from this study suggest that adipose tissue-resident monocytes should contribute to tissue vascularization. Because SVF CD14+ cells were more efficient in inducing angiogenesis than SVF-derived MSCs, and differentiated into vascular endothelial cells, they may constitute a new cell source for cell-based therapeutic angiogenesis.
Collapse
|
20
|
Voronov E, Carmi Y, Apte RN. The role IL-1 in tumor-mediated angiogenesis. Front Physiol 2014; 5:114. [PMID: 24734023 PMCID: PMC3975103 DOI: 10.3389/fphys.2014.00114] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/07/2014] [Indexed: 12/12/2022] Open
Abstract
Tumor angiogenesis is one of the hallmarks of tumor progression and is essential for invasiveness and metastasis. Myeloid inflammatory cells, such as immature myeloid precursor cells, also termed myeloid-derived suppressor cells (MDSCs), neutrophils, and monocytes/macrophages, are recruited to the tumor microenvironment by factors released by the malignant cells that are subsequently “educated” in situ to acquire a pro-invasive, pro-angiogenic, and immunosuppressive phenotype. The proximity of myeloid cells to endothelial cells (ECs) lining blood vessels suggests that they play an important role in the angiogenic response, possibly by secreting a network of cytokines/chemokines and inflammatory mediators, as well as via activation of ECs for proliferation and secretion of pro-angiogenic factors. Interleukin-1 (IL-1) is an “alarm,” upstream, pro-inflammatory cytokine that is generated primarily by myeloid cells. IL-1 initiates and propagates inflammation, mainly by inducing a local cytokine network and enhancing inflammatory cell infiltration to affected sites and by augmenting adhesion molecule expression on ECs and leukocytes. Pro-inflammatory mediators were recently shown to play an important role in tumor-mediated angiogenesis and blocking their function may suppress tumor progression. In this review, we summarize the interactions between IL-1 and other pro-angiogenic factors during normal and pathological conditions. In addition, the feasibility of IL-1 neutralization approaches for anti-cancer therapy is discussed.
Collapse
Affiliation(s)
- Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The Cancer Research Center, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Yaron Carmi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The Cancer Research Center, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Ron N Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The Cancer Research Center, Ben-Gurion University of the Negev Beer-Sheva, Israel
| |
Collapse
|
21
|
Czepluch FS, Bernhardt M, Kuschicke H, Gogiraju R, Schroeter MR, Riggert J, Hasenfuss G, Schäfer K. In VitroandIn VivoEffects of Human Monocytes and their Subsets on New Vessel Formation. Microcirculation 2014; 21:148-58. [DOI: 10.1111/micc.12100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Frauke S. Czepluch
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Markus Bernhardt
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Hendrik Kuschicke
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Rajinikanth Gogiraju
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Marco R. Schroeter
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Joachim Riggert
- Department of Transfusion Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Katrin Schäfer
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| |
Collapse
|
22
|
Ostojic A, Crowe S, McNeill B, Ruel M, Suuronen EJ. Preparation and characterization of circulating angiogenic cells for tissue engineering applications. Methods Mol Biol 2014; 1181:27-38. [PMID: 25070324 DOI: 10.1007/978-1-4939-1047-2_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Circulating angiogenic cells (CACs) are a heterogeneous cell population of bone marrow (BM) origin. These cells are most commonly derived from the peripheral blood, bone marrow, and cord blood, and are one of the leading candidates for promoting vascularization in tissue engineering therapies. CACs can be isolated by culturing peripheral blood mononuclear cells (PBMCs) on fibronectin or by flow cytometry to obtain more specific subpopulations. Here we will describe how to generate a population of CACs, and how to characterize the cells and confirm their phenotype. Also, we will provide select methods that can be used to assess the angiogenic and endothelial cell-like properties of the CACs.
Collapse
Affiliation(s)
- Aleksandra Ostojic
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada, K1Y 4W7
| | | | | | | | | |
Collapse
|
23
|
Roura S, Gálvez-Montón C, Bayes-Genis A. The challenges for cardiac vascular precursor cell therapy: lessons from a very elusive precursor. J Vasc Res 2013; 50:304-23. [PMID: 23860201 DOI: 10.1159/000353294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
There is compelling evidence that cardiovascular disorders arise and/or progress due mainly to endothelial dysfunction. Novel therapeutic strategies aim to generate new myocardial tissue using cells with regenerative potential, either alone or in combination with biomaterials, cytokines and advanced monitoring devices. Among the human adult progenitor cells used in such methods, those historically termed 'endothelial progenitor cells' show promise for vascular growth and repair. Asahara et al. [Science 1997;275:964-967] initially described putative endothelial cell precursors in 1997. Subsequently, distinct cell populations termed endothelial colony-forming units-Hill, circulating angiogenic cells and endothelial colony-forming cells were identified that varied in terms of phenotype, vascular homeostasis contribution and purity. Notably, most of these cells are not genuine vascular precursor cells belonging to the endothelial lineage. This review provides a broad overview of the main properties of the endothelium, focusing on the basis governing its growth and repair. We discuss efforts to identify true vascular precursors, a matter of debate for the past 15 years, as well as recent methodological advances in identifying new hierarchies of more homogeneous, clonogenic and proliferative vascular endothelial-lineage precursors. Consideration of these issues provides insights that may help develop more effective therapies against human diseases that involve vascular deficits.
Collapse
Affiliation(s)
- Santiago Roura
- ICREC Research Program, Health Research Institute Germans Trias i Pujol-IGTP, University Hospital Germans Trias i Pujol, Badalona, Spain.
| | | | | |
Collapse
|
24
|
Affiliation(s)
- Hiroshi Iwata
- From the Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts (H.I.); Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan (H.I., I.M., R.N.); and Jichi Medical University, Yakushiji, Shimotsuke-shi, Tochigi Prefecture, Japan (R.N.)
| | - Ichiro Manabe
- From the Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts (H.I.); Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan (H.I., I.M., R.N.); and Jichi Medical University, Yakushiji, Shimotsuke-shi, Tochigi Prefecture, Japan (R.N.)
| | - Ryozo Nagai
- From the Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts (H.I.); Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan (H.I., I.M., R.N.); and Jichi Medical University, Yakushiji, Shimotsuke-shi, Tochigi Prefecture, Japan (R.N.)
| |
Collapse
|
25
|
Yoder MC. Endothelial progenitor cell: a blood cell by many other names may serve similar functions. J Mol Med (Berl) 2013; 91:285-95. [PMID: 23371317 PMCID: PMC3704045 DOI: 10.1007/s00109-013-1002-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/13/2013] [Indexed: 12/15/2022]
Abstract
The first reports of circulating cells that displayed the capacity to repair and regenerate damaged vascular endothelial cells as progenitor cells for the endothelial lineage (EPC) were met with great enthusiasm. However, the cell surface antigens and colony assays used to identify the putative EPC were soon found to overlap with those of the hematopoietic lineage. Over the past decade, it has become clear that specific hematopoietic subsets play important roles in vascular repair and regeneration. This review will provide some overview of the hematopoietic hierarchy and methods to segregate distinct subsets that may provide clarity in identifying the proangiogenic hematopoietic cells. This review will not discuss those circulating viable endothelial cells that play a role as EPC and are called endothelia colony-forming cells. The review will conclude with identification of some roadblocks to progress in the field of identification of circulating cells that participate in vascular repair and regeneration.
Collapse
Affiliation(s)
- Mervin C Yoder
- Hermann B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|