1
|
Mevissen M, Ducray A, Ward JM, Kopp-Schneider A, McNamee JP, Wood AW, Rivero TM, Straif K. Effects of radiofrequency electromagnetic field exposure on cancer in laboratory animal studies, a systematic review. ENVIRONMENT INTERNATIONAL 2025; 199:109482. [PMID: 40339346 DOI: 10.1016/j.envint.2025.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/25/2025] [Accepted: 04/16/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND More than ten years ago, the World Health Organization's (WHO) International Agency for Research on Cancer (IARC) published a monograph concluding there was limited evidence in experimental animals for carcinogenicity of Radio Frequency Electromagnetic Field (RF EMF). OBJECTIVE The objective of this review was to systematically evaluate the effects of RF EMF exposure on cancer in experimental animals. METHODS Eligibility criteria: Based on pre-established Populations, Exposures, Comparators, Outcomes, and Study Type (PECOS) criteria, studies in experimental animals of the following study types were included: chronic cancer bioassays, initiation-(co-)promotion studies, and studies with tumor-prone animals. INFORMATION SOURCES MEDLINE (PubMed), Science Citation Index Expanded and Emerging Sources Citation Index (Web of Science), and the EMF Portal. Data abstraction and synthesis: Data are publicly available online as interactive visuals with downloadable metadata. We adapted the risk-of-bias (RoB) tool developed by Office of Health Assessment and Translation (OHAT) to include considerations pertinent to the evaluation of RF EMF exposure and cancer bioassays. Study sensitivity was assessed with a tool adopted from the Report on Carcinogens (RoC). We synthesized studies using a narrative approach. Effect size was calculated as the 1% Bayesian Average benchmark dose (BMD) of a respective study when dose-response or a trend was identified (see BMDAnalysisSupplementaryMaterial) (Supplement 1). Evidence Assessment: Certainty of the evidence (CoE) was assessed using the Grading of Recommendations, Assessment, Developing and Evaluations (GRADE) approach, as refined by OHAT. Evidence from chronic cancer bioassays was considered the most directly applicable to evaluation of carcinogenicity. RESULTS We included 52 studies with 20 chronic bioassays No studies were excluded based on risk of bias concerns. Studies were not considered suitable for meta-analysis due to heterogeneity in study design, species, strain, sex, exposure characteristics, and cancer outcome. No or minimal evidence of RF EMF exposure-related cancer outcomes was found in most systems or organs in any study (these included gastrointestinal/digestive, kidney, mammary gland, urinary, endocrine, musculoskeletal, reproductive, and auditory). For lymphoma (18 studies), with 6 chronic bioassays (1,120 mice, 1,780 rats) inconsistency between two chronic bioassays was not plausibly explainable, and the CoE for lymphoma was rated 'moderate'. For brain tumors (20 studies), including 5 chronic bioassays (1,902 mice, 6,011 rats), an increase in glial cell-derived neoplasms was reported in two chronic bioassays in male rats. The CoE for an increased risk in glioma was judged as high. The BMD analysis was statistically significant for only one study and the BMD was 4.25 (95% CI 2.70, 10.24). For neoplasms of the heart (4 chronic bioassays with 6 experiments), 3 studies were performed in rats (∼2,165 animals), and 1 in mice (∼720 animals). Based on 2 bioassays, statistically significant increases in malignant schwannomas was judged as high CoE for an increase in heart schwannomas in male rats. The BMDs from the two positive studies were 1.92 (95 %CI 0.71, 4.15) and 0.177 (95 %CI 0.125, 0.241), respectively. Twelve studies reported neoplasms in the adrenal gland (5 chronic bioassays). The CoE for an increased risk in pheochromocytoma was judged as moderate. None of these findings were dose-dependent when compared to the sham controls. Sixteen studies investigated tumors of the liver with 5 of these being chronic bioassays. The CoE was evaluated as moderate for hepatoblastomas. For neoplasms of the lung (3 chronic bioassays), 8 studies were conducted in rats (∼1,296 animals) and 23 studies in mice (∼2,800 animals). In one chronic bioassay, a statistically significant positive trend was reported for bronchoalveolar adenoma or carcinoma (combined), which was rated as moderate CoE for an increase in lung neoplasms with some evidence from 2 initiation-(co-)promotion studies. DISCUSSION Meta-analysis was considered inappropriate due to the heterogeneity in study methods. The GRADE/OHAT CoE framework has not been frequently applied to animal studies and experience to date suggests refinements are needed. We referred to standard methods in environmental health where CoE is framed in the context of strength of the evidence providing positive support for carcinogenicity. High CoE can be interpreted as the true effect is highly likely to be reflected in the apparent relationship. Moderate CoE indicates the true effect may be reflected in the apparent relationship. Cancer bioassays conducted in experimental animals are commonly used to identify potential human carcinogens. We note that the two tumor types with high CoE in animals in this systematic review are the same as those identified with limited evidence in humans by the IARC Working Group. However, even in cases where the animal evidence demonstrates high CoE, the extrapolation of risk from cancer bioassays to humans is particularly complex for RF EMF. Without a better understanding of the mechanism of the carcinogenicity of RF-EMF, the choice of exposure metric for risk extrapolation (whole body versus localized), intensity or cumulative exposure, whether or not a monotonic dose-response holds for carcinogenic effects, and whether SAR is the appropriate dose metric for adverse effects induced by RF-EMF, may be critical. OTHER This review was partially funded by the WHO radioprotection programme. The protocol for this review was registered in Prospero reg. no. CRD42021265563 and published in Environment International 2022 (Mevissen et al. 2022).
Collapse
Affiliation(s)
- Meike Mevissen
- Veterinary Pharmacology & Toxicology, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Angélique Ducray
- Veterinary Pharmacology & Toxicology, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - James P McNamee
- Non-Ionizing Radiation Health Sciences Division, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Andrew W Wood
- Department of Health Sciences and Statistics, Swinburne University of Technology, Hawthorn, Australia
| | - Tania M Rivero
- Medical Library, University Library, University of Bern, Bern, Switzerland
| | - Kurt Straif
- ISGlobal, Barcelona, Spain; Boston College, MA, USA
| |
Collapse
|
2
|
Pinto R, Ardoino L, Giardullo P, Villani P, Marino C. A Systematic Review on the In Vivo Studies on Radiofrequency (100 kHz-300 GHz) Electromagnetic Field Exposure and Co-Carcinogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1020. [PMID: 39200630 PMCID: PMC11354106 DOI: 10.3390/ijerph21081020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024]
Abstract
In this systematic review, the potential role of in vivo RF-EMF exposure combined with the administration of well-known carcinogens in tumor promotion/progression is assessed. A total of 25 papers were included in the review. Each paper was assessed for Risk of Bias and for the attribution of the quality category. A meta-analysis was conducted on 18 studies, analyzing data for nine different organs/tumors to assess the potential increased risk for the onset of tumors as well as the effects on survival. A descriptive review was performed for the remaining seven eligible papers. In most cases, the results of the meta-analysis did not reveal a statistically significant difference in tumor onset between the sham and co-exposed samples. There was a numerically small increase in the risk of malignant tumors observed in the kidney and liver, as well as benign lung tumors. The level of evidence for health effects indicated "inadequate" evidence for an association between in vivo co-exposure to RF-EMF and known carcinogens and the onset of malignant or benign tumors in most of the analyzed tissues. Nevertheless, the limited number of eligible papers/studies for most of the analyzed tissues suggests that these results cannot be considered definitively conclusive.
Collapse
Affiliation(s)
- Rosanna Pinto
- Division of Biotechnologies at ENEA, Italian National Agency for New Technologies, Energy, Environment and Sustainable Economic Development, Via Anguillarese, 301, 00123 Rome, Italy; (L.A.); (P.G.); (P.V.); (C.M.)
| | | | | | | | | |
Collapse
|
3
|
Pinto R, Ardoino L, Villani P, Marino C. In Vivo Studies on Radiofrequency (100 kHz-300 GHz) Electromagnetic Field Exposure and Cancer: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2071. [PMID: 36767440 PMCID: PMC9915925 DOI: 10.3390/ijerph20032071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The increasing exposure of the human population to radiofrequency electromagnetic fields has increased concern about its possible health effects. The aim of this systematic review is to provide an update of the state of the research on this topic, through a quantitative analysis, to assess the increased risk of tumor incidence in laboratory animals (rodents) without limitations of species, strain, sex or genotype. The review was conducted according to the PRISMA guideline and individual studies were assessed by referring to the OHAT Risk of Bias Rating Tool for Human and Animal Studies. A total of 27 studies were considered eligible for the evaluation of tumor incidence; a meta-analysis was carried out on 23 studies to assess the possible increased risk of both malignant and benign tumors onset at the systemic level or in different organs/tissues. A significant association between exposure to RF and the increased/decreased risk of cancer does not result from the meta-analysis in most of considered tissues. A significant increased/decreased risk can be numerically observed only in heart, CNS/brain, and intestine for malignant tumors. Nevertheless, the assessment of the body of evidence attributes low or inadequate evidence for an association between RF exposure and the onset of neoplasm in all tissues.
Collapse
Affiliation(s)
- Rosanna Pinto
- Division Health Protection Technology at ENEA, Italian National Agency for New Technologies, Energy, Environment and Sustainable Economic Development, 00123 Rome, Italy
| | | | | | | |
Collapse
|
4
|
Selmaoui B, Touitou Y. Association Between Mobile Phone Radiation Exposure and the Secretion of Melatonin and Cortisol, Two Markers of the Circadian System: A Review. Bioelectromagnetics 2020; 42:5-17. [PMID: 33238059 DOI: 10.1002/bem.22310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022]
Abstract
The extremely important use of mobile phones in the world, at all ages of life, including children and adolescents, leads to significant exposure of these populations to electromagnetic waves of radiofrequency. The question, therefore, arises as to whether exposure to these radiofrequencies (RFs) could lead to deleterious effects on the body's biological systems and health. In the current article, we review the effects, in laboratory animals and humans, of exposure to RF on two hormones considered as endocrine markers: melatonin, a neurohormone produced by the pineal gland and cortisol, a glucocorticosteroid synthesized by the adrenal glands. These two hormones are also considered as markers of the circadian system. The literature search was performed using PubMed, Medline, Web of Sciences (ISI Web of Knowledge), Google Scholar, and EMF Portal. From this review on RF effects on cortisol and melatonin, it appears that scientific papers in the literature are conflicting, showing effects, no effects, or inconclusive data. This implies the need for additional research on higher numbers of subjects and with protocols perfectly controlled with follow-up studies to better determine whether the chronic effect of RF on the biological functioning and health of users exists (or not). Bioelectromagnetics. 2021;42:5-17. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Brahim Selmaoui
- Department of Experimental Toxicology, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France.,PériTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Yvan Touitou
- Fondation Ophtalmologique A. de Rothschild, Unité de Chronobiologie, Paris, France
| |
Collapse
|
5
|
Ahmed NA, Radwan NM, Aboul Ezz HS, Khadrawy YA, Salama NA. The chronic effect of pulsed 1800 MHz electromagnetic radiation on amino acid neurotransmitters in three different areas of juvenile and young adult rat brain. Toxicol Ind Health 2018; 34:860-872. [DOI: 10.1177/0748233718798975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The extensive use of mobile phones worldwide has raised increasing concerns about the effects of electromagnetic radiation (EMR) on the brain due to the proximity of the mobile phone to the head and the appearance of several adverse neurological effects after mobile phone use. It has been hypothesized that the EMR-induced neurological effects may be mediated by amino acid neurotransmitters. Thus, the present study investigated the effect of EMR (frequency 1800 MHz, specific absorption rate 0.843 W/kg, power density 0.02 mW/cm2, modulated at 217 Hz) on the concentrations of amino acid neurotransmitters (glutamic acid, aspartic acid, gamma aminobutyric acid, glycine, taurine, and the amide glutamine) in the hippocampus, striatum, and hypothalamus of juvenile and young adult rats. The juvenile and young adult animals were each divided into two groups: control rats and rats exposed to EMR 1 h daily for 1, 2, and 4 months. A subgroup of rats were exposed daily to EMR for 4 months and then left without exposure for 1 month to study the recovery from EMR exposure. Amino acid neurotransmitters were measured in the hippocampus, striatum, and hypothalamus using high-performance liquid chromatography. Exposure to EMR induced significant changes in amino acid neurotransmitters in the studied brain areas of juvenile and young adult rats, being more prominent in juvenile animals. It could be concluded that the alterations in amino acid neurotransmitters induced by EMR exposure of juvenile and young adult rats may underlie many of the neurological effects reported after EMR exposure including cognitive and memory impairment and sleep disorders. Some of these effects may persist for some time after stopping exposure.
Collapse
Affiliation(s)
- Nawal A Ahmed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Nasr M Radwan
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Heba S Aboul Ezz
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Division, Department of Medical Physiology, National Research Center, Giza, Egypt
| | - Noha A Salama
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Godina-Nava JJ, Torres-Vega G, López-Riquelme GO, López-Sandoval E, Samana AR, García Velasco F, Hernández-Aguilar C, Domínguez-Pacheco A. Quantum mechanical model for the anticarcinogenic effect of extremely-low-frequency electromagnetic fields on early chemical hepatocarcinogenesis. Phys Rev E 2017; 95:022416. [PMID: 28297882 DOI: 10.1103/physreve.95.022416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 11/07/2022]
Abstract
Using the conventional Haberkorn approach, it is evaluated the recombination of the radical pair (RP) singlet spin state to study theoretically the cytoprotective effect of an extremely-low-frequency electromagnetic field (ELF-EMF) on early stages of hepatic cancer chemically induced in rats. The proposal is that ELF-EMF modulates the interconversion rate of singlet and triplet spin states of the RP populations modifying the products from the metabolization of carcinogens. Previously, we found that the daily treatment with ELF-EMF 120 Hz inhibited the number and area of preneoplastic lesions in chemical carcinogenesis. The singlet spin population is evaluated diagonalizing the spin density matrix through the Lanczos method in a radical pair mechanism (RPM). Using four values of the interchange energy, we have studied the variations over the singlet population. The low magnetic field effect as a test of the influence over the enzymatic chemical reaction is evaluated calculating the quantum yield. Through a bootstrap technique the range is found for the singlet decay rate for the process. Applying the quantum measurements concept, we addressed the impact toward hepatic cells. The result contributes to improving our understanding of the chemical carcinogenesis process affected by charged particles that damage the DNA.
Collapse
Affiliation(s)
| | - Gabino Torres-Vega
- Departamento de Física CINVESTAV-IPN, Ap. Postal 14-740, CdMex, C.P. 07000, Mexico
| | | | - Eduardo López-Sandoval
- Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Bairro Salobrinho, 45662-900 Ilhéus, BA, Brazil
| | - Arturo Rodolfo Samana
- Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Bairro Salobrinho, 45662-900 Ilhéus, BA, Brazil
| | - Fermín García Velasco
- Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Bairro Salobrinho, 45662-900 Ilhéus, BA, Brazil
| | - Claudia Hernández-Aguilar
- National Polytechnic Institute, Sepi-ESIME, Zacatenco, Professional Unit Adolfo López Mateos, Col. Lindavista, Cd Mex, C.P. 07738, Mexico
| | - Arturo Domínguez-Pacheco
- National Polytechnic Institute, Sepi-ESIME, Zacatenco, Professional Unit Adolfo López Mateos, Col. Lindavista, Cd Mex, C.P. 07738, Mexico
| |
Collapse
|
7
|
DASDAG SULEYMAN, AKDAG MZULKUF, ULUKAYA ENGIN, UZUNLAR ALIKEMAL, OCAK ALIRIZA. Effect of Mobile Phone Exposure on Apoptotic Glial Cells and Status of Oxidative Stress in Rat Brain. Electromagn Biol Med 2009; 28:342-54. [DOI: 10.3109/15368370903206556] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Yilmaz F, Dasdag S, Akdag MZ, Kilinc N. Whole-Body Exposure of Radiation Emitted from 900 MHz Mobile Phones Does Not Seem to Affect the Levels of Anti-Apoptotic bcl-2 Protein. Electromagn Biol Med 2009; 27:65-72. [DOI: 10.1080/15368370701878978] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Huang TQ, Lee JS, Kim TH, Pack JK, Jang JJ, Seo JS. Effect of radiofrequency radiation exposure on mouse skin tumorigenesis initiated by 7,12-dimethybenz[α]anthracene. Int J Radiat Biol 2009; 81:861-7. [PMID: 16524842 DOI: 10.1080/09553000600568093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Although radiofrequency (RF) radiation is not considered mutagenic, it has been suggested as a promoter of tumorigenesis. To study if RF radiation has a tumor promoting effect, we exposed mice with skin tumorigenesis initiated by 7,12-dimethybenz[a]anthracene (DMBA) to RF radiation. MATERIALS AND METHODS Eighty male ICR mice were subjected to a single DMBA application (100 microg/100 microl acetone/mouse) on shaved dorsal skin at the age of 7 weeks. After one week, the mice were randomized into four equal groups of 20 mice each: i.e., sham-, 849 MHz-, 1,763 MHz-exposed, and 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated groups. The RF exposure was conducted at a whole body average specific absorption rate (SAR) of 0.4 W/Kg, for 2 cycles of 45 min exposure with a 15 min interval each day, 5 days a week for 19 weeks. The TPA-treated group served as a positive control for skin tumorigenesis and were administered TPA (4 microg/100 microl acetone/mouse) twice weekly without RF exposure. RESULTS All mice were examined weekly at a macroscopic level. No skin tumors were observed in any groups except in the TPA-treated positive control group. TPA is known tumor promoter in DMBA-induced skin carcinogenesis and tumor incidence in the TPA treated group was 95%. At week 20 after DMBA initiation, skin tissues were analyzed immunohistochemically using anti-proliferating cell nuclear antigen (PCNA) antibody. No differences were observed by pathological examination or by PCNA staining between the sham- and the RF-exposed groups. The expression of cyclin D1 and c-fos were detected only in the tumorous skin tissues of the TPA-treated group. CONCLUSION No evidence was found that RF radiation serves as a tumor promoter for skin tumors. Our data suggests that 849 MHz and 1,763 MHz RF radiations, similar to those emitted from mobile phones, do not have any promoting effect on skin tumor development in DMBA-initiated mice.
Collapse
Affiliation(s)
- Tai-Qin Huang
- ILCHUN Molecular Medicine Institute MRC, and Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul
| | | | | | | | | | | |
Collapse
|
10
|
Studying the effects of mobile phone use on the auditory system and the central nervous system: a review of the literature and future directions. Eur Arch Otorhinolaryngol 2008; 265:1011-9. [DOI: 10.1007/s00405-008-0703-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
|
11
|
Shirai T, Ichihara T, Wake K, Watanabe SI, Yamanaka Y, Kawabe M, Taki M, Fujiwara O, Wang J, Takahashi S, Tamano S. Lack of promoting effects of chronic exposure to 1.95-GHz W-CDMA signals for IMT-2000 cellular system on development of N-ethylnitrosourea-induced central nervous system tumors in F344 rats. Bioelectromagnetics 2007; 28:562-72. [PMID: 17516507 DOI: 10.1002/bem.20324] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The present study was performed to evaluate effects of a 2-year exposure to an electromagnetic near-field (EMF) equivalent to that generated by cellular phones on tumor development in the central nervous system (CNS) of rats. For this purpose, pregnant F344 rats were given a single administration of N-ethylnitrosourea (ENU) on gestational day 18. A total of 500 pups were divided into five groups, each composed of 50 males and 50 females: Group 1, untreated controls; Group 2, ENU alone; Groups 3 to 5, ENU + EMF (sham exposure and two exposure levels). A 1.95-GHz wide-band code division multiple access (W-CDMA) signal, which is a feature of the International Mobile Telecommunication 2000 (IMT-2000) cellular system was employed for exposure of the rat head starting from 5 weeks of age, 90 min a day, 5 days a week, for 104 weeks. Brain average specific absorption rates (SARs) were designed to be .67 and 2.0 W/kg for low and high exposures, respectively. The incidence and numbers of brain tumors in female rats exposed to 1.95-GHz W-CDMA signals showed tendencies to increase but without statistical significance. Overall, no significant increase in incidences or numbers, either in the males or females, was detected in the EMF-exposed groups. In addition, no clear changes in tumor types in the brain were evident. Thus, under the present experimental conditions, exposure of heads of rats to 1.95-GHz W-CDMA signals for IMT-2000 for a 2-year period was not demonstrated to accelerate or otherwise affect ENU-initiated brain tumorigenesis.
Collapse
Affiliation(s)
- Tomoyuki Shirai
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Heikkinen P, Ernst H, Huuskonen H, Komulainen H, Kumlin T, Mäki-Paakkanen J, Puranen L, Juutilainen J. No Effects of Radiofrequency Radiation on 3-Chloro-4-(dichloromethyl)-5-hydroxy-2( 5H)-furanone-Induced Tumorigenesis in Female Wistar Rats. Radiat Res 2006; 166:397-408. [PMID: 16881741 DOI: 10.1667/rr3588.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study evaluated possible effects of radiofrequency (RF) radiation on tumorigenesis induced by the mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) given in drinking water. Female Wistar rats aged 7 weeks at the beginning of the experiments were randomly divided into four groups of 72 animals: a cage-control group and three MX-exposed groups (a daily average dose of 1.7 mg MX/kg body weight for 104 weeks), of which two were exposed to 900 MHz pulsed RF radiation and the third served as a sham-RF-radiation group. The RF-radiation groups were exposed 2 h per day, 5 days per week for 104 weeks at nominal whole-body average SARs of 0.3 W/kg and 0.9 W/kg. Complete histopathology was performed on the rats of the three MX-exposed groups. The tumor types and incidences observed in the MX-exposed animals were similar to those reported earlier in MX-exposed female Wistar rats. RF radiation did not statistically significantly affect mortality or organ-specific incidence of any tumor type. The only statistically significant difference was an increase in the combined frequency of vascular tumors of the mesenteric lymph nodes in the high-RF-radiation group compared to the sham-RF-radiation group. However, additional histopathological analysis of the cage-control animals suggested that this difference was due to unusually low frequency of this type of tumor in the sham-RF-radiation group rather than a high frequency in the high-RF-radiation group. With respect to non-neoplastic findings, statistically significant differences between the RF-radiation groups and the sham-RF-radiation group were observed only for single findings in the lacrimal glands, lungs, liver and skin. Such changes are commonly seen in aged rats and were considered to be unrelated to RF radiation. The results of the present study do not support co-carcinogenic effects of low-level long-term RF-radiation exposure in rats.
Collapse
Affiliation(s)
- Päivi Heikkinen
- University of Kuopio, Department of Environmental Sciences, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zook BC, Simmens SJ. The Effects of Pulsed 860 MHz Radiofrequency Radiation on the Promotion of Neurogenic Tumors in Rats. Radiat Res 2006; 165:608-15. [PMID: 16669743 DOI: 10.1667/rr3551.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In a previous study, this laboratory reported a statistically nonsignificant trend for shortened latency of ethylnitrosourea (ENU)-induced brain tumors in Sprague-Dawley rats exposed to an 860 MHz pulsed radiofrequency (RF) signal. The present study was designed to investigate further any promoting effect of the pulsed RF signal on latency and other characteristics of neurogenic tumors in the progeny of pregnant rats treated with 6.25 or 10 mg/kg ENU. The resulting 1080 offspring were randomized equally by number, sex and ENU dose into pulsed RF, sham and cage control groups. The rats were exposed to the pulsed RF signal 6 h per day 5 days per week; the sham-exposed group was similarly confined for the same periods, and the cage controls were housed in standard cages. An essentially equal number of rats from each group were killed humanely every 30 days between the ages of 171 and 325 days; 32 rats died and 225 rats were killed when they were moribund. Postmortem examinations on the 1080 rats revealed 38 spinal cord tumors, 191 spinal nerve tumors, 232 cranial nerve tumors, and 823 brain tumors. A methodical study of the tumor characteristics disclosed no evidence that exposure to the pulsed RF signal affected the incidence, malignancy, volume, multiplicity, latency or fatality associated with any kind of neurogenic tumor.
Collapse
Affiliation(s)
- Bernard C Zook
- Department of Pathology, The George Washington University Medical Center, Washington DC 20037, USA.
| | | |
Collapse
|
14
|
Kuribayashi M, Wang J, Fujiwara O, Doi Y, Nabae K, Tamano S, Ogiso T, Asamoto M, Shirai T. Lack of effects of 1439 MHz electromagnetic near field exposure on the blood-brain barrier in immature and young rats. Bioelectromagnetics 2006; 26:578-88. [PMID: 16142770 DOI: 10.1002/bem.20138] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Possible effects of 1439 MHz electromagnetic near field (EMF) exposure on the blood-brain barrier (BBB) were investigated using immature (4 weeks old) and young (10 weeks old) rats, equivalent in age to the time when the BBB development is completed and the young adult, respectively. Alteration of BBB related genes, such as those encoding p-glycoprotein, aquaporin-4, and claudin-5, was assessed at the protein and mRNA levels in the brain after local exposure of the head to EMF at 0, 2, and 6 W/kg specific energy absorption rates (SARs) for 90 min/day for 1 or 2 weeks. Although expression of the 3 genes was clearly decreased after administration of 1,3-dinitrobenzene (DNB) as a positive control, when compared with the control values, there were no pathologically relevant differences with the EMF at any exposure levels at either age. Vascular permeability, monitored with reference to transfer of FITC-dextran, FD20, was not affected by EMF exposure. Thus, these findings suggest that local exposure of the head to 1439 MHz EMF exerts no adverse effects on the BBB in immature and young rats.
Collapse
Affiliation(s)
- Masanori Kuribayashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Radiofrequency Biology: In vivo. ELECTROMAGNETICS IN BIOLOGY 2006. [PMCID: PMC7120720 DOI: 10.1007/978-4-431-27914-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Ardoino L, Lopresto V, Mancini S, Marino C, Pinto R, Lovisolo GA. A radio-frequency system for in vivo pilot experiments aimed at the studies on biological effects of electromagnetic fields. Phys Med Biol 2005; 50:3643-54. [PMID: 16030388 DOI: 10.1088/0031-9155/50/15/011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An exposure system consisting of two long transversal electromagnetic (TEM) cells, operating at a frequency of 900 MHz, is presented and discussed. The set-up allows simultaneous exposure of a significant number of animals (up to 12 mice per cell) in a blind way to a uniform plane wave at a frequency of 900 MHz, for investigating possible biological effects of exposure to electromagnetic fields produced by wireless communication systems. A heating/refrigerating system has also been designed for maintaining comfortable environmental conditions within the TEM cells during experiments. An accurate dosimetric study has been performed both numerically and by means of direct measurements on phantoms and living mice. The results have shown that good homogeneity of exposure and adequate power efficiency, in terms of whole-body specific absorption rate (SAR) per 1 W of input power, are achievable for the biological target.
Collapse
Affiliation(s)
- Lucia Ardoino
- Section of Toxicology and Biomedical Sciences, ENEA (Ente Nuove tecnologie, Energia e Ambiente), 00060 Rome, Italy
| | | | | | | | | | | |
Collapse
|
17
|
No effects of GSM-modulated 900 MHz electromagnetic fields on survival rate and spontaneous development of lymphoma in female AKR/J mice. BMC Cancer 2004; 4:77. [PMID: 15538947 PMCID: PMC533879 DOI: 10.1186/1471-2407-4-77] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 11/11/2004] [Indexed: 11/10/2022] Open
Abstract
Background Several reports indicated that non-thermal electromagnetic radiation such as from mobile phones and base stations may promote cancer. Therefore, it was investigated experimentally, whether 900 MHz electromagnetic field exposure influences lymphoma development in a mouse strain that is genetically predisposed to this disease. The AKR/J mice genome carries the AK-virus, which leads within one year to spontaneous development of thymic lymphoblastic lymphoma. Methods 320 unrestrained female mice were sham-exposed or exposed (each n = 160 animals) to GSM like 900 MHz electromagnetic fields for 24 hours per day, 7 days per week, at an average whole body specific absorption rate (SAR) value of 0.4 W/kg. Animals were visually checked daily and were weighed and palpated weekly. Starting with an age of 6 months, blood samples were taken monthly from the tail. Animals with signs of disease or with an age of about 46 weeks were sacrificed and a gross necropsy was performed. Results Electromagnetic field exposure had a significant effect on body weight gain, with higher values in exposed than in sham-exposed animals. However, survival rate and lymphoma incidence did not differ between exposed and sham-exposed mice. Conclusion These data do not support the hypothesis that exposure to 900 MHz electromagnetic fields is a significant risk factor for developing lymphoma in a genetically predisposed species, even at a relatively high exposure level.
Collapse
|
18
|
Kundi M, Mild K, Hardell L, Mattsson MO. Mobile telephones and cancer--a review of epidemiological evidence. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2004; 7:351-384. [PMID: 15371240 DOI: 10.1080/10937400490486258] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
There is considerable public concern about possible long-term adverse health effects of mobile phones. While there is scientific controversy about long-term health effects of high-frequency electromagnetic fields lasting for at least 50 yr, the rise and success of mobile telecommunication made it necessary to investigate the problem more comprehensively and assess the possible risk cautiously because never before in history has a substantial proportion of the population been exposed to microwaves in the near field and at comparably high levels. Because the mostly localized exposure target region is the head, most epidemiological studies focus on brain tumors. Overall nine epidemiological studies have been published, four from the United States, two from Sweden, and one each from Denmark, Finland, and Germany. Seven studies were mainly on brain tumors, with one investigating in addition to brain tumors salivary gland cancer and another cancer of the hematopoietic and lymphatic tissues, and one examining intraocular melanoma. All studies have some methodological deficiencies: (1) too short duration of mobile phone use to be helpful in risk assessment, (2) exposure was not rigorously determined, and (3) there is a possibility of recall and response error in some studies. Nevertheless, all studies approaching reasonable latencies found an increased cancer risk associated with mobile phone use. Estimates of relative risk in these studies vary between 1.3 and 4.6 with highest overall risk for acoustic neuroma (3.5) and uveal melanoma (4.2), and there is evidence for enhanced cancer risk with increasing latency and duration of mobile phone use.
Collapse
Affiliation(s)
- Michael Kundi
- Institute of Environmental Health, Department for Occupational and Social Hygiene, Medical Faculty, University of Vienna Kinderspitalgasse 15 A-1095 Vienna Austria.
| | | | | | | |
Collapse
|
19
|
Anderson LE, Sheen DM, Wilson BW, Grumbein SL, Creim JA, Sasser LB. Two-Year Chronic Bioassay Study of Rats Exposed to a 1.6 GHz Radiofrequency Signal. Radiat Res 2004; 162:201-10. [PMID: 15387148 DOI: 10.1667/rr3208] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The purpose of this study was to determine whether long-term exposure to a 1.6 GHz radiofrequency (RF) field would affect the incidence of cancer in Fischer 344 rats. Thirty-six timed-pregnant rats were randomly assigned to each of three treatment groups: two groups exposed to a far-field RF Iridium signal and a third group that was sham exposed. Exposures were chosen such that the brain SAR in the fetuses was 0.16 W/kg. Whole-body far-field exposures were initiated at 19 days of gestation and continued at 2 h/day, 7 days/week for dams and pups after parturition until weaning (approximately 23 days old). The offspring (700) of these dams were selected, 90 males and 90 females for each near-field treatment group, with SAR levels in the brain calculated to be as follows: (1) 1.6 W/kg, (2) 0.16 W/kg and (3) near-field sham controls, with an additional 80 males and 80 females as shelf controls. Confining, head-first, near-field exposures of 2 h/day, 5 days/week were initiated when the offspring were 36 +/- 1 days old and continued until the rats were 2 years old. No statistically significant differences were observed among treatment groups for number of live pups/litter, survival index, and weaning weights, nor were there differences in clinical signs or neoplastic lesions among the treatment groups. The percentages of animals surviving at the end of the near-field exposure were not different among the male groups. In females a significant decrease in survival time was observed for the cage control group.
Collapse
|
20
|
Affiliation(s)
- M Kundi
- Institute of Environmental Health, Medical Faculty, University of Vienna, Kinderspitalgasse 15, 1095 Vienna, Austria.
| |
Collapse
|
21
|
Simşek V, Sahin H, Akay AF, Kaya H, Bircan MK. The effects of cellular telephone use on serum PSA levels in men. Int Urol Nephrol 2004; 35:193-6. [PMID: 15072492 DOI: 10.1023/b:urol.0000020295.92477.c4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The increasing use of cellular telephones is known to have harmful effects on human health. The aim of this prospective study was to determine whether cellular telephone use affected serum PSA levels in men. METHODS Participants included 20 men with ages ranging from 22 to 65 years who had never previously used cellular telephones. Blood samples were taken prior to and 30 days after the beginning of cellular telephone use. Serum was separated from the blood samples and stored in a deep freezer until the end of the study, at which time serum free and total PSA levels were determined by tandem radioimmunoassay. The results were statistically analyzed by the Wilcoxon Paired Signed Rank Test. RESULTS Average free and total PSA values were 2.070 ng/ml and 0.500 ng/ml before the study, and 2.0 ng/ml and 0.505 ng/ml at the end of the study, respectively. No significant difference was determined between the initial and final values (p > 0.05). CONCLUSIONS The results indicate that cellular telephone use does not significantly affect PSA values in the short term. Nevertheless, we think that there is a need for longer-term studies on this subject.
Collapse
Affiliation(s)
- Veli Simşek
- School of Medicine, Department of Urology, Dicle University, Diyarbakir, Turkey
| | | | | | | | | |
Collapse
|
22
|
Shirai T, Kawabe M, Ichihara T, Fujiwara O, Taki M, Watanabe SI, Wake K, Yamanaka Y, Imaida K, Asamoto M, Tamano S. Chronic exposure to a 1.439 GHz electromagnetic field used for cellular phones does not promote N-ethylnitrosourea induced central nervous system tumors in F344 rats. Bioelectromagnetics 2004; 26:59-68. [PMID: 15605402 DOI: 10.1002/bem.20079] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study was designed to evaluate whether a 2 year exposure to an electromagnetic field (EMF) equivalent to that generated by cellular phones can accelerate tumor development in the central nervous system (CNS) of rats. Brain tumorigenesis was initiated by an intrauterine exposure to N-ethylnitrosourea (ENU) on gestational day 18. A total of 500 pups were divided into five groups, each composed of 50 males and 50 females: Group 1, untreated control; Group 2, ENU alone; Groups 3-5, ENU + EMF (sham exposure and 2 exposure levels). A 1.439 GHz time division multiple access (TDMA) signal for the Personal Digital Cellular (PDC), Japanese standard cellular system was used for the exposure of the rat head starting from 5 weeks of age, 90 min a day, 5 days a week, for 104 weeks. Brain average specific absorption rate (SAR) was 0.67 and 2.0 W/kg for low and high exposures, respectively: whole body average SAR was less than 0.4 W/kg. There were no inter-group differences in body weights, food consumption, and survival rates. No increase in the incidences or numbers per group of brain and/or spinal cord tumors, either in the males or females, was detected in the EMF exposed groups. In addition, no clear changes in tumor types were evident. Thus, under the present experimental conditions, 1.439 GHz EMF exposure to the heads of rats for a 2 year period was not demonstrated to accelerate or affect ENU initiated brain tumorigenesis.
Collapse
Affiliation(s)
- Tomoyuki Shirai
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hata K, Yamaguchi H, Tsurita G, Watanabe S, Wake K, Taki M, Ueno S, Nagawa H. Short term exposure to 1439 MHz pulsed TDMA field does not alter melatonin synthesis in rats. Bioelectromagnetics 2004; 26:49-53. [PMID: 15605405 DOI: 10.1002/bem.20080] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The widespread use of the mobile phone has initiated many studies on the possible adverse effects of a high frequency electromagnetic field (EMF), which is used in mobile phones. A low frequency EMF is reported to suppress melatonin synthesis. The aim of this study was to clarify the effects on melatonin synthesis in rats after short term exposure to a 1439 MHz time division multiple access (TDMA) EMF. The average specific absorption ratio (SAR) of the brain was 7.5 W/kg, and the average SARs of the whole body were 1.9 and 2.0 W/kg for male and female rats, respectively. A total of 208 male and female rats were investigated. After acclimatization to a 12 h light-dark (LD) cycle, serum and pineal melatonin levels together with pineal serotonin level under a dark condition (less than 1 lux) were examined by radioimmunoassay. No significant differences in melatonin and serotonin levels were observed between the exposure, sham, and cage control groups. These results suggest that short term exposure to a 1439 MHz TDMA EMF, which is about four times stronger than that emitted by mobile phones, does not alter melatonin and serotonin synthesis in rats. Further investigations on the effects of long term exposure are warranted.
Collapse
Affiliation(s)
- Keisuke Hata
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Heynick LN, Johnston SA, Mason PA. Radio frequency electromagnetic fields: Cancer, mutagenesis, and genotoxicity. Bioelectromagnetics 2003; Suppl 6:S74-100. [PMID: 14628308 DOI: 10.1002/bem.10162] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We present critiques of epidemiologic studies and experimental investigations, published mostly in peer-reviewed journals, on cancer and related effects from exposure to nonionizing electromagnetic fields in the nominal frequency range of 3 kHz to 300 GHz of interest to Subcommittee 4 (SC4) of the International Committee on Electromagnetic Safety (ICES). The major topics discussed are presented under the headings Epidemiologic and Other Findings on Human Exposure, Mammals Exposed In Vivo, Mammalian Live Tissues and Cell Preparations Exposed In Vitro, and Mutagenesis and Genotoxicity in Microorganisms and Fruit Flies. Under each major topic, we present minireviews of papers on various specific endpoints investigated. The section on Epidemiologic and Other Findings on Human Exposure is divided into two subsections, the first on possible carcinogenic effects of exposure from emitters not in physical contact with the populations studied, for example, transmitting antennas and other devices. Discussed in the second subsection are studies of postulated carcinogenic effects from use of mobile phones, with prominence given to brain tumors from use of cellular and cordless telephones in direct physical contact with an ear of each subject. In both subsections, some investigations yielded positive findings, others had negative findings, including papers directed toward experimentally verifying positive findings, and both were reported in a few instances. Further research on various important aspects may resolve such differences. Overall, however, the preponderance of published epidemiologic and experimental findings do not support the supposition that in vivo or in vitro exposures to such fields are carcinogenic.
Collapse
|
25
|
Rahman KMW, Sugie S, Watanabe T, Tanaka T, Mori H. Chemopreventive Effects of Melatonin on Diethylnitrosamine and Phenobarbital-Induced Hepatocarcinogenesis in Male F344 Rats. Nutr Cancer 2003; 47:148-55. [PMID: 15087267 DOI: 10.1207/s15327914nc4702_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The antitumor effects of melatonin on diethylnitrosamine (DEN)-initiated and/or phenobarbital (PB)-promoted hepatocarcinogenesis were investigated in male F344 rats. Five-week-old male F344 rats were divided into eight groups. Rats in groups 1-5 were given DEN (100 mg/kg body weight, i.p.) once a week for 3 wk, whereas those in groups 6-8 received vehicle treatment. Groups 1-3 and 7 were given 500 ppm PB in drinking water for 20 wk after DEN or vehicle treatment. Group 2 was given 400 ppm melatonin-containing diet during the initiation phase. Groups 3 and 5 were fed melatonin-containing diet for 20 wk, starting 1 wk after the last dosing of DEN. Group 6 was given melatonin-containing diet alone throughout the experiment (24 wk). Group 8 was treated with vehicle alone. Liver neoplasms were recognized only in DEN-treated groups. The incidences and multiplicities of hepatocellular adenoma and hepatocellular carcinoma (HCC) in group 3 were significantly smaller when compared with group 1 (P < 0.001 or P < 0.002). The average and unit areas of glutathione S-transferase placental form (GST-P)-positive foci of groups 2 and 3 were significantly smaller than those of group 1 (P < 0.001 or P < 0.01). The density and average area of these preneoplastic lesions of group 5 were also smaller than those of group 4 (P < 0.001 or P < 0.005). In addition, the ornithine decarboxylase activity in nonneoplastic liver tissue was reduced by melatonin treatment in both the initiation and postinitiation phases. These results suggest that melatonin has an antitumor-promoting ability in DEN-initiated and PB-promoted hepatocarcinogenesis in rats.
Collapse
Affiliation(s)
- K M Wahidur Rahman
- First Department of Pathology, Gifu University School of Medicine, Gifu City 500-8705, Japan.
| | | | | | | | | |
Collapse
|
26
|
La Regina M, Moros EG, Pickard WF, Straube WL, Baty J, Roti Roti JL. The effect of chronic exposure to 835.62 MHz FDMA or 847.74 MHz CDMA radiofrequency radiation on the incidence of spontaneous tumors in rats. Radiat Res 2003; 160:143-51. [PMID: 12859224 DOI: 10.1667/rr3028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study was designed to determine whether chronic exposure to radiofrequency (RF) radiation from cellular phones increased the incidence of spontaneous tumors in F344 rats. Eighty male and 80 female rats were randomly placed in each of three irradiation groups. The sham group received no irradiation; the Frequency Division Multiple Access (FDMA) group was exposed to 835.62 MHz FDMA RF radiation; and the Code Division Multiple Access (CDMA) group was exposed to 847.74 MHz CDMA RF radiation. Rats were irradiated 4 h per day, 5 days per week over 2 years. The nominal time-averaged specific absorption rate (SAR) in the brain for the irradiated animals was 0.85 +/- 0.34 W/kg (mean +/- SD) per time-averaged watt of antenna power. Antennas were driven with a time-averaged power of 1.50 +/- 0.25 W (range). That is, the nominal time-averaged brain SAR was 1.3 +/- 0.5 W/kg (mean +/- SD). This number was an average from several measurement locations inside the brain, and it takes into account changes in animal weight and head position during irradiation. All major organs were evaluated grossly and histologically. The number of tumors, tumor types and incidence of hyperplasia for each organ were recorded. There were no significant differences among final body weights or survival days for either males or females in any group. No significant differences were found between treated and sham-exposed animals for any tumor in any organ. We conclude that chronic exposure to 835.62 MHz FDMA or 847.74 MHz CDMA RF radiation had no significant effect on the incidence of spontaneous tumors in F344 rats.
Collapse
Affiliation(s)
- Marie La Regina
- Division of Comparative Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Ito N, Tamano S, Shirai T. A medium-term rat liver bioassay for rapid in vivo detection of carcinogenic potential of chemicals. Cancer Sci 2003; 94:3-8. [PMID: 12708466 PMCID: PMC11160283 DOI: 10.1111/j.1349-7006.2003.tb01343.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Revised: 11/15/2002] [Accepted: 11/18/2002] [Indexed: 11/30/2022] Open
Abstract
A reliable medium-term bioassay system for rapid detection of carcinogenic potential of chemicals in the human environment has been developed. The 8-week-protocol consists of 2 stages; male F344 rats are given a single intraperitoneal injection of diethylnitrosamine (200 mg/kg) for initiation of liver carcinogenesis, followed by a 6-week test chemical treatment starting 2 weeks thereafter. Test chemicals are usually given in the diet or the drinking water and in the 2nd week of test chemical treatment, all rats are subjected to two-thirds partial hepatectomy in order to induce regenerative cell replication. The end-point marker is the glutathione S-transferase placental form (GST-P)-positive hepatic focus, the numbers and sizes of which are analyzed using an image-analyzer and expressed as values per unit liver section (1 cm2). When the yield of GST-P-positive foci is significantly enhanced (P<0.05) over the control value, a chemical is judged to possess carcinogenic or promotion potential for the liver. Among 313 chemicals already tested in this system in our laboratory, 30/31 (97%) mutagenic hepatocarcinogens and 29/33 (88%) non-mutagenic hepatocarcinogens gave positive results. Ten out of 43 (23%) agents known to be carcinogenic in organs other than the liver were also positive. It is particularly important that only one of 48 non-carcinogens gave a very weak positive result, so that the system has a very low false-positivity rate. It is now well documented that the assay system is highly effective for detecting hepatocarcinogens, bridging the gap between traditional long-term carcinogenicity tests and short-term screening assays. At the Fourth International Conference on Harmonization, our medium-term liver bioassay based on an initiation and promotion protocol was recommended in the guidelines as an acceptable alternative to the long-term rodent carcinogenicity test.
Collapse
Affiliation(s)
- Nobuyuki Ito
- Nagoya City University, 1 Kawasumi, Mizuho-ku, Nagoya 467-8601
| | | | | |
Collapse
|
28
|
McNamee JP, Bellier PV, Gajda GB, Miller SM, Lemay EP, Lavallée BF, Marro L, Thansandote A. DNA damage and micronucleus induction in human leukocytes after acute in vitro exposure to a 1.9 GHz continuous-wave radiofrequency field. Radiat Res 2002; 158:523-33. [PMID: 12236820 DOI: 10.1667/0033-7587(2002)158[0523:ddamii]2.0.co;2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Human blood cultures were exposed to a 1.9 GHz continuous-wave (CW) radiofrequency (RF) field for 2 h using a series of six circularly polarized, cylindrical waveguides. Mean specific absorption rates (SARs) of 0.0, 0.1, 0.26, 0.92, 2.4 and 10 W/kg were achieved, and the temperature within the cultures during a 2-h exposure was maintained at 37.0 +/- 0.5 degrees C. Concurrent negative (incubator) and positive (1.5 Gy (137)Cs gamma radiation) control cultures were run for each experiment. DNA damage was quantified immediately after RF-field exposure using the alkaline comet assay, and four parameters (tail ratio, tail moment, comet length and tail length) were used to assess DNA damage for each comet. No evidence of increased primary DNA damage was detected by any parameter for RF-field-exposed cultures at any SAR tested. The formation of micronuclei in the RF-field-exposed blood cell cultures was assessed using the cytokinesis-block micronucleus assay. There was no significant difference in the binucleated cell frequency, incidence of micronucleated binucleated cells, or total incidence of micronuclei between any of the RF-field-exposed cultures and the sham-exposed controls at any SAR tested. These results do not support the hypothesis that acute, nonthermalizing 1.9 GHz CW RF-field exposure causes DNA damage in cultured human leukocytes.
Collapse
Affiliation(s)
- J P McNamee
- Consumer and Clinical Radiation Protection Bureau, Product Safety Programme, Health Canada, 775 Brookfield Road, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Heikkinen P, Kosma VM, Hongisto T, Huuskonen H, Hyysalo P, Komulainen H, Kumlin T, Lahtinen T, Lang S, Puranen L, Juutilainen J. Effects of mobile phone radiation on X-ray-induced tumorigenesis in mice. Radiat Res 2001; 156:775-85. [PMID: 11741502 DOI: 10.1667/0033-7587(2001)156[0775:eompro]2.0.co;2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increased use of mobile phones has raised the question of possible health effects of such devices, particularly the risk of cancer. It seems unlikely that the low-level radiofrequency (RF) radiation emitted by them would damage DNA directly, but its ability to act as a tumor promoter is less well characterized. In the current study, we evaluated the effect of low-level RF radiation on the development of cancer initiated in mice by ionizing radiation. Two hundred female CBA/S mice were randomized into four equal groups at the age of 3 to 5 weeks. The mice in all groups except the cage-control group were exposed to ionizing radiation at the beginning of the study and then to RF radiation for 1.5 h per day, 5 days a week for 78 weeks. One group was exposed to continuous NMT (Nordic Mobile Telephones)-type frequency-modulated RF radiation at a frequency of 902.5 MHz and a nominal average specific absorption rate (SAR) of 1.5 W/kg. Another group was exposed to pulsed GSM (Global System for Mobile)-type RF radiation (carrier-wave frequency 902.4 MHz, pulse frequency 217 Hz) at a nominal average SAR of 0.35 W/kg. The control animals were sham-exposed. Body weight, clinical signs, and food and water consumption were recorded regularly. Hematological examinations and histopathological analyses of all lesions and major tissues were performed on all animals. The RF-radiation exposures did not increase the incidence of any neoplastic lesion significantly. We conclude that the results do not provide evidence for cancer promotion by RF radiation emitted by mobile phones.
Collapse
Affiliation(s)
- P Heikkinen
- Department of Environmental Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Imaida K, Kuzutani K, Wang J, Fujiwara O, Ogiso T, Kato K, Shirai T. Lack of promotion of 7,12-dimethylbenz[a]anthracene-initiated mouse skin carcinogenesis by 1.5 GHz electromagnetic near fields. Carcinogenesis 2001; 22:1837-41. [PMID: 11698347 DOI: 10.1093/carcin/22.11.1837] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effects of 1.5 GHz electromagnetic near fields of time division multiple access (TDMA) signal for the Personal Digital Cellular, Japanese cellular telephone standard (PDC) used for cellular phones, on mouse skin carcinogenesis initiated by 7,12-dimethylbenz[a]anthracene (DMBA) were examined. Ten-week-old ICR female mice were treated with a single application of DMBA on shaved dorsal skin by painting at a concentration of 100 microg/100 microl acetone per mouse. One week later, mice were divided into four groups, receiving electromagnetic near fields exposure (DMBA-EMF), sham-exposure (DMBA-Sham), 12-O-tetradecanoylphorbol-13-acetate (TPA, 4 microg /200 microl acetone/mouse), as a positive control (DMBA-TPA), and no-treatment (DMBA-Control). EMF near fields exposure conditions were as follows: skin local peak specific absorption rate (SAR) 2.0 W/kg, whole body average SAR 0.084 W/kg (ratio of peak to average SAR is 24), 90 min a day, 5 days a week, for 19 weeks. At week 20, animals were killed and skin tumors were analyzed histopathologically. The incidences of skin tumors in DMBA-EMF, DMBA-Sham, DMBA-TPA and DMBA-Control groups were 0/48 (0%), 0/48 (0%), 29/30 (96.6%) and 1/30 (3.3%), respectively. Histopathologically, papilloma and squamous cell carcinoma (SCC) were observed in the DMBA-TPA group and only papilloma observed in the DMBA-Control group. The incidences of squamous cell papillomas and squamous cell carcinomas in DMBA-TPA and DMBA-Control groups were 29/30 (96.6%) and 1/30 (3.3%), respectively, numbers of tumors per mouse (tumor multiplicity) being 18.8 +/- 13.4 and 0.1 +/- 0.5. These data clearly demonstrated that near fields exposure to 1.5 GHz EMF, used for cellular phones, does not exert any enhancing effect on skin tumorigenesis initiated by DMBA.
Collapse
Affiliation(s)
- K Imaida
- 1st Department of Pathology, Nagoya City University Medical School, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Zook BC, Simmens SJ. The effects of 860 MHz radiofrequency radiation on the induction or promotion of brain tumors and other neoplasms in rats. Radiat Res 2001; 155:572-83. [PMID: 11260659 DOI: 10.1667/0033-7587(2001)155[0572:teomrr]2.0.co;2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sprague-Dawley rats were irradiated with a continuous- wave (CW) or a pulsed-wave (P) radiofrequency (RF) for 6 h/day, 5 days/week from 2 up to 24 months of age. The RFs emanated from dipole antennas (1 W average output) 2.0 +/- 0.5 cm from the tip of each rat's nose. The RFs had an 860 MHz frequency, and the specific absorption rate was 1.0 W/ kg averaged over the brain. Fifteen groups of 60 rats (900 total) were formed from offspring of females injected i.v. with 0 (groups 1, 2, 9, 10, 13), 2.5 (groups 5, 6, 7, 8, 11, 12, 14) or 10 mg/kg (groups 3, 4, 15) ethylnitrosourea (ENU) to induce brain tumors. Groups 1, 3, 5 and 7 received the PRF, and groups 9 and 11 the CWRF; groups 2, 4, 6, 8, 10 and 12 were sham-irradiated, and groups 13-15 were cage controls. All rats but 2, totaling 898, were necropsied, and major tissues were studied histopathologically. There was no statistically significant evidence that the PRF or CWRF induced neoplasia in any tissues. Additionally, there was no significant evidence of promotion of cranial or spinal nerve or spinal cord tumors. The PRF or CWRF had no statistically significant effect on the number, volume, location, multiplicity, histological type, malignancy or fatality of brain tumors. There was a trend for the group that received a high dose of ENU and was exposed to the PRF to develop fatal brain tumors at a higher rate than its sham group; however, the result was not significant using the log-rank test (P = 0.14, 2-tailed). No statistically significant differences were related to the PRF or CWRF compared to controls in the low- or zero-dose groups regarding tumors of any kind.
Collapse
Affiliation(s)
- B C Zook
- Department of Pathology, The George Washington University, Ross Hall B-12, 2300 I Street NW, Washington, D.C. 20037, USA
| | | |
Collapse
|
32
|
Malyapa RS, Bisht KS, Ahern EW, Moros EG, Pickard WF, Straube WL. Neoplastic transformation in C3H 10T(1/2) cells after exposure to 835.62 MHz FDMA and 847.74 MHz CDMA radiations. Radiat Res 2001; 155:239-247. [PMID: 11121241 DOI: 10.1667/0033-7587(2001)155[0239:nticca]2.0.co;2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The effect of radiofrequency (RF) radiation in the cellular phone communication range (835.62 MHz frequency division multiple access, FDMA; 847.74 MHz code division multiple access, CDMA) on neoplastic transformation frequency was measured using the in vitro C3H 10T(1/2) cell transformation assay system. To determine if 835.62 MHz FDMA or 847.74 MHz CDMA radiations have any genotoxic effects that induce neoplastic transformation, C3H 10T(1/2) cells were exposed at 37 degrees C to either of the above radiations [each at a specific absorption rate (SAR) of 0.6 W/kg] or sham-exposed at the same time for 7 days. After the culture medium was changed, the cultures were transferred to incubators and refed with fresh growth medium every 7 days. After 42 days, the cells were fixed and stained with Giemsa, and transformed foci were scored. To determine if exposure to 835.62 MHz FDMA or 847.74 MHz CDMA radiation has any epigenetic effects that can promote neoplastic transformation, cells were first exposed to 4.5 Gy of X rays to induce the transformation process and then exposed to the above radiations (SAR = 0.6 W/kg) in temperature-controlled irradiators with weekly refeeding for 42 days. After both the 7-day RF exposure and the 42-day RF exposure after X irradiation, no statistically significant differences in the transformation frequencies were observed between incubator controls, the sham-exposed (maintained in irradiators without power to the antenna), and the 835.62 MHz FDMA or 847.74 MHz CDMA-exposed groups.
Collapse
|
33
|
Imaida K, Hagiwara A, Yoshino H, Tamano S, Sano M, Futakuchi M, Ogawa K, Asamoto M, Shirai T. Inhibitory effects of low doses of melatonin on induction of preneoplastic liver lesions in a medium-term liver bioassay in F344 rats: relation to the influence of electromagnetic near field exposure. Cancer Lett 2000; 155:105-14. [PMID: 10814886 DOI: 10.1016/s0304-3835(00)00415-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have previously reported that exposures of F344 male rats to both 900 MHz and 1.5 GHz electro-magnetic near fields (EMFs) results in slightly decreased numbers and areas of glutathione S-transferase (GST-P)-positive liver foci, liver preneoplastic lesions in rats, in a medium-term liver bioassay (K. Imaida, M. Taki, T. Yamaguchi, T. Ito, S. Watanabe, K. Wake, A. Aimoto, Y. Kamimura, N. Ito, T. Shirai, Lack of promoting effects of the electromagnetic near-field used for cellular phones (929.2 MHz) on rat liver carcinogenesis in a medium-term liver bioassay, Carcinogenesis 19 (1998) 311-314; K. Imaida, M. Taki, S. Watanabe, Y. Kamimura, T. Ito, T. Yamaguchi, N. Ito, T. Shirai, The 1.5 GHz electromagnetic near-field used for cellular phones does not promote rat liver carcinogenesis in a medium-term liver bioassay, Jpn. J. Cancer Res. 89 (1998) 995-1002.). In both experiments, the melatonin serum levels were significantly decreased in both 900 MHz and 1.5 GHz exposed groups as compared with sham-exposed control group values. Therefore, changes of serum melatonin levels may modify the development of preneoplastic lesions in the livers of rats exposed by EMF. In order to clarify this question, the effects of different doses of melatonin (1, 5, 10 and 20 ppm in the drinking water) were analyzed in the same bioassay system employed for our previously reported EMF exposure studies. Six-week-old male F344 rats were given a single dose of diethylnitrosamine (DEN, 200 mg/kg b.w., i.p.). Starting 2 weeks later, they were treated with 0, 1, 5, 10 and 20 ppm melatonin in their drinking water for 6 weeks. Melatonin treatment were performed only during the night (between 18:00 to 09:00) in order to maintain their circadian rhythm, since serum melatonin levels are high at midnight. At week 3, all rats were subjected to a two-thirds partial hepatectomy. At week 8, the experiment was terminated and the animals were sacrificed. Serum hormone levels of melatonin, adrenocorticotropic hormone (ACTH), corticosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone at this time point were measured, only the first being elevated, while LH and testosterone were reduced. Although clear dose dependence was not apparent, both numbers and areas of GST-P-positive foci in the liver were decreased in the melatonin treated groups, this being significant for numbers in the 10 ppm melatonin group. Comparison of the current results with the previously reported findings for EMF exposure experiments, suggests that increase in melatonin serum levels is a possible reason for the associated tendency for decreased preneoplastic hepatocyte foci development.
Collapse
Affiliation(s)
- K Imaida
- 1st Department of Pathology, Nagoya City University Medical School, Nagoya, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|