1
|
Pathak S, Tan N, Vambutas A. A pilot study on the effect of SARS-CoV-2 spike protein on IL-1β-mediated inflammation in peripheral blood immune cells from AIED patients. Mol Med 2025; 31:174. [PMID: 40329195 PMCID: PMC12056982 DOI: 10.1186/s10020-025-01227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Immune-mediated hearing loss (IMHL) patients (comprised of autoimmune inner ear disease (AIED) and sudden sensorineural hearing loss (SSNHL)) may be at higher risk for hearing loss following Coronavirus disease (COVID-19) infection and/or vaccination. METHODS We compared inflammatory cytokine expression in response to SARS-CoV2 spike protein between two groups of patients with IMHL: IMHL patients that temporally demonstrated worsening SNHL following COVID vaccination or infection as compared to IMHL patients with worsening SNHL unrelated to COVID exposure: (IMHL-COVID ( +)) (n = 11) (IMHL-COVID (-)) (n = 10). In these two groups, we treated isolated PBMCs with increasing amounts of SARS-CoV-2 spike protein and compared responses to stimulation with positive and negative controls. RESULTS Peripheral Blood Mononuclear Cells (PBMC) from IMHL-COVID ( +) patients had increased expression and release of both IL-1β and IL-6 in response to spike protein as compared to IMHL-COVID (-) patients. However, when the IMHL-COVID ( +) group was broken down into AIED patients compared to SSNHL, it became apparent that the greatest responses were from the AIED patients (p < 0.005 for IL-6 mRNA expression and p < 0.003 for IL-6 release when compared between any two similar groups using Wilcoxon Rank-Sum Test). When we broke down the COVID ( +) group to infection versus vaccination, the immune responses in the infection group (N = 3 AIED, 1 SSNHL) were stronger. CONCLUSIONS COVID-19 exposure with reported changes in hearing sensitivity in IMHL patients resulted in pro-inflammatory responses in response to spike protein. The inflammatory responses were greatest in AIED patients, and greater following infection rather than vaccination. Therefore, based on these studies, we would recommend AIED patients take additional precautions to avoid COVID exposure. Furthermore, we do recommend COVID vaccination during periods of hearing stability, as the immune responses are even more robust in response to infection in this vulnerable group.
Collapse
Affiliation(s)
- Shresh Pathak
- Northwell Health, 2000 Marcus Avenue, New Hyde Park, New York, NY, 11042, USA
- Feinstein Institutes for Medical Research, Manhasset, New York, NY, USA
- Department of Otolaryngology, Donald and Barbara Zucker, School of Medicine, Hofstra/Northwell, Hempstead, New York, NY, USA
| | - Natalie Tan
- Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Andrea Vambutas
- Northwell Health, 2000 Marcus Avenue, New Hyde Park, New York, NY, 11042, USA.
- Feinstein Institutes for Medical Research, Manhasset, New York, NY, USA.
- Department of Otolaryngology, Donald and Barbara Zucker, School of Medicine, Hofstra/Northwell, Hempstead, New York, NY, USA.
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, 350 Community Drive, Manhasset, New York, NY, 11030, USA.
| |
Collapse
|
2
|
Rhind SG, Shiu MY, Vartanian O, Tenn C, Nakashima A, Jetly R, Yang Z, Wang KK. Circulating Brain-Reactive Autoantibody Profiles in Military Breachers Exposed to Repetitive Occupational Blast. Int J Mol Sci 2024; 25:13683. [PMID: 39769446 PMCID: PMC11728191 DOI: 10.3390/ijms252413683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Military breachers are routinely exposed to repetitive low-level blast overpressure, placing them at elevated risk for long-term neurological sequelae. Mounting evidence suggests that circulating brain-reactive autoantibodies, generated following CNS injury, may serve as both biomarkers of cumulative damage and drivers of secondary neuroinflammation. In this study, we compared circulating autoantibody profiles in military breachers (n = 18) with extensive blast exposure against unexposed military controls (n = 19). Using high-sensitivity immunoassays, we quantified IgG and IgM autoantibodies targeting glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and pituitary (PIT) antigens. Breachers exhibited significantly elevated levels of anti-GFAP IgG (p < 0.001) and anti-PIT IgG (p < 0.001) compared to controls, while anti-MBP autoantibody levels remained unchanged. No significant differences were observed for any IgM autoantibody measurements. These patterns suggest that repetitive blast exposure induces a chronic, adaptive immune response rather than a short-lived acute phase. The elevated IgG autoantibodies highlight the vulnerability of astrocytes, myelin, and the hypothalamic-pituitary axis to ongoing immune-mediated injury following repeated blast insults, likely reflecting sustained blood-brain barrier disruption and neuroinflammatory processes. Our findings underscore the potential of CNS-targeted IgG autoantibodies as biomarkers of cumulative brain injury and immune dysregulation in blast-exposed populations. Further research is warranted to validate these markers in larger, more diverse cohorts, and to explore their utility in guiding interventions aimed at mitigating neuroinflammation, neuroendocrine dysfunction, and long-term neurodegenerative risks in military personnel and similarly exposed groups.
Collapse
Affiliation(s)
- Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Maria Y. Shiu
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
- Department of Psychology, University of Toronto, Toronto, ON M5S 2E5, Canada
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB T1A 8K6, Canada;
| | - Ann Nakashima
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
| | - Rakesh Jetly
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, ON K1Z 7K4, Canada;
| | - Zhihui Yang
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (Z.Y.); (K.K.W.)
| | - Kevin K. Wang
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (Z.Y.); (K.K.W.)
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, The Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA 30033, USA
| |
Collapse
|
3
|
Hernlem B, Rasooly R. Abrin Toxin Paradoxically Increases Protein Synthesis in Stimulated CD4 + T-Cells While Decreasing Protein Synthesis in Kidney Cells. Curr Issues Mol Biol 2024; 46:13970-13978. [PMID: 39727963 PMCID: PMC11727306 DOI: 10.3390/cimb46120835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Abrin, a toxin of the rosary pea plant (Abras precatorius), has been implicated as causing an autoimmune demyelinating disease in humans, but the exact mechanisms responsible for the induction of these demyelinating conditions are still unknown. Certain superantigen microbial toxins such as Staphylococcus enterotoxin type A, type D, type E or streptococcal pyrogenic exotoxin type C also lead to various diseases including autoimmune disorders of the nervous system. Here, the effect of abrin toxin on the immune reaction was studied in human CD4+ T-cell lines, and its inhibition of protein synthesis in kidney cells. It is shown for the first time that low concentrations of abrin toxin up to as high as 1 to 10 ng/mL amplifies superantigen activity in stimulated T-cells, leading to excessive NFAT pathway activation and secretion of cytokines, e.g., interleukin-2 (IL-2) and interferon-γ (INFγ), in a dose-dependent manner. This behavior, except at high concentration, is contrary to the effect on other cell types. Abrin's inhibition of protein synthesis was demonstrated with Vero (kidney) cells and milk was observed to competitively reduce this effect. This new concept in the behavior of abrin in amplifying superantigen activity may explain the mechanism by which abrin toxin triggers autoimmune demyelinating disease in people exposed to low doses of the toxin via the excessive secretion of cytokines which may create excessive inflammation leading to loss of immune tolerance and triggering an immune response against self-antigens.
Collapse
Affiliation(s)
| | - Reuven Rasooly
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| |
Collapse
|
4
|
Serin M, Kara P. Aptamer-based electrochemical nanobiosensor for research and monitoring of multiple sclerosis in mice models. Bioelectrochemistry 2024; 160:108744. [PMID: 38852383 DOI: 10.1016/j.bioelechem.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/16/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Multiple sclerosis (MS) is a severe progressive autoimmune-inflammatory, demyelinating process in the central nervous system (CNS) with heterogeneous neurological symptoms appearing as a consequence of myelin break down. Myelin basic protein (MBP) makes up to 30 % of the CNS myelin [1] and it is known to be released into the cerebrospinal fluid (CSF) as a bioindicator of MS. Autoimmune encephalomyelitis (EAE) is a mice model of MS widely used for research and development of new treatments [2]. Herein, MBP specific aptamer developed for possible therapeutic purposes in mouse model [3] was applied as a bioreceptor for MBP recognition. A nanobiosensor for MBP detection and monitoring was developed by using graphene oxide (GO) nanoparticles integrated onto the screen-printed carbon electrodes (SPCE) and aptamer immobilized to create a bioactive layer on the sensor surface for MBP binding. The measurements were carried out using electrochemical impedance spectrometry (EIS). Validation studies were carried out in a biological matrix (artificial CSF) containing MBP, and MSA. The aptasensor had LOD in artificial CSF 0.01 ng/mL and showed its usability in the concentration range of 0.01 … 64 ng/mL.
Collapse
Affiliation(s)
- Marina Serin
- Faculty of Pharmacy, Department of Analytical Chemistry, Ege University, 35100 Izmir, Bornova, Turkey; Graduate School of Natural and Applied Sciences, Department of Biomedical Technologies, Ege University, 35100 Izmir, Bornova, Turkey
| | - Pınar Kara
- Faculty of Pharmacy, Department of Analytical Chemistry, Ege University, 35100 Izmir, Bornova, Turkey.
| |
Collapse
|
5
|
Jensen MA, Dafoe ML, Wilhelmy J, Cervantes L, Okumu AN, Kipp L, Nemat-Gorgani M, Davis RW. Catalytic Antibodies May Contribute to Demyelination in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Biochemistry 2024; 63:9-18. [PMID: 38011893 PMCID: PMC10765373 DOI: 10.1021/acs.biochem.3c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Here we report preliminary data demonstrating that some patients with myalgic encephalomyelitis/chronic fatiguesyndrome (ME/CFS) may have catalytic autoantibodies that cause the breakdown of myelin basic protein (MBP). We propose that these MBP-degradative antibodies are important to the pathophysiology of ME/CFS, particularly in the occurrence of white matter disease/demyelination. This is supported by magnetic resonance imagining studies that show these findings in patients with ME/CFS and could explain symptoms of nerve pain and muscle weakness. In this work, we performed a series of experiments on patient plasma samples where we isolated and characterized substrate-specific antibodies that digest MBP. We also tested glatiramer acetate (copaxone), an FDA approved immunomodulator to treat multiple sclerosis, and found that it inhibits ME/CFS antibody digestion of MBP. Furthermore, we found that aprotinin, which is a specific serine protease inhibitor, specifically prevents breakdown of MBP while the other classes of protease inhibitors had no effect. This coincides with the published literature describing catalytic antibodies as having serine protease-like activity. Postpandemic research has also provided several reports of demyelination in COVID-19. Because COVID-19 has been described as a trigger for ME/CFS, demyelination could play a bigger role in patient symptoms for those recently diagnosed with ME/CFS. Therefore, by studying proteolytic antibodies in ME/CFS, their target substrates, and inhibitors, a new mechanism of action could lead to better treatment and a possible cure for the disease.
Collapse
Affiliation(s)
- Michael Anthony Jensen
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Miranda Lee Dafoe
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Julie Wilhelmy
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Layla Cervantes
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Anna N Okumu
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Lucas Kipp
- Department
of Neurology and Neurological Sciences, Stanford University, Palo Alto, California 94304, United States
| | - Mohsen Nemat-Gorgani
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Ronald Wayne Davis
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
- Department
of Genetics, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
6
|
Khodanovich M, Svetlik M, Naumova A, Kamaeva D, Usova A, Kudabaeva M, Anan’ina T, Wasserlauf I, Pashkevich V, Moshkina M, Obukhovskaya V, Kataeva N, Levina A, Tumentceva Y, Yarnykh V. Age-Related Decline in Brain Myelination: Quantitative Macromolecular Proton Fraction Mapping, T2-FLAIR Hyperintensity Volume, and Anti-Myelin Antibodies Seven Years Apart. Biomedicines 2023; 12:61. [PMID: 38255168 PMCID: PMC10812983 DOI: 10.3390/biomedicines12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Age-related myelination decrease is considered one of the likely mechanisms of cognitive decline. The present preliminary study is based on the longitudinal assessment of global and regional myelination of the normal adult human brain using fast macromolecular fraction (MPF) mapping. Additional markers were age-related changes in white matter (WM) hyperintensities on FLAIR-MRI and the levels of anti-myelin autoantibodies in serum. Eleven healthy subjects (33-60 years in the first study) were scanned twice, seven years apart. An age-related decrease in MPF was found in global WM, grey matter (GM), and mixed WM-GM, as well as in 48 out of 82 examined WM and GM regions. The greatest decrease in MPF was observed for the frontal WM (2-5%), genu of the corpus callosum (CC) (4.0%), and caudate nucleus (5.9%). The age-related decrease in MPF significantly correlated with an increase in the level of antibodies against myelin basic protein (MBP) in serum (r = 0.69 and r = 0.63 for global WM and mixed WM-GM, correspondingly). The volume of FLAIR hyperintensities increased with age but did not correlate with MPF changes and the levels of anti-myelin antibodies. MPF mapping showed high sensitivity to age-related changes in brain myelination, providing the feasibility of this method in clinics.
Collapse
Affiliation(s)
- Marina Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Mikhail Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Anna Naumova
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Department of Radiology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Daria Kamaeva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia;
| | - Anna Usova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 12/1 Savinykh St., Tomsk 634009, Russia;
| | - Marina Kudabaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Tatyana Anan’ina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Irina Wasserlauf
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Valentina Pashkevich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Marina Moshkina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Victoria Obukhovskaya
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Department of Fundamental Psychology and Behavioral Medicine, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634050, Russia
| | - Nadezhda Kataeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634050, Russia
| | - Anastasia Levina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Medica Diagnostic and Treatment Center, 86 Sovetskaya st., Tomsk 634510, Russia
| | - Yana Tumentceva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Vasily Yarnykh
- Department of Radiology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
7
|
Miteva D, Vasilev GV, Velikova T. Role of Specific Autoantibodies in Neurodegenerative Diseases: Pathogenic Antibodies or Promising Biomarkers for Diagnosis. Antibodies (Basel) 2023; 12:81. [PMID: 38131803 PMCID: PMC10740538 DOI: 10.3390/antib12040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Neurodegenerative diseases (NDDs) affect millions of people worldwide. They develop due to the pathological accumulation and aggregation of various misfolded proteins, axonal and synaptic loss and dysfunction, inflammation, cytoskeletal abnormalities, defects in DNA and RNA, and neuronal death. This leads to the activation of immune responses and the release of the antibodies against them. Recently, it has become clear that autoantibodies (Aabs) can contribute to demyelination, axonal loss, and brain and cognitive dysfunction. This has significantly changed the understanding of the participation of humoral autoimmunity in neurodegenerative disorders. It is crucial to understand how neuroinflammation is involved in neurodegeneration, to aid in improving the diagnostic and therapeutic value of Aabs in the future. This review aims to provide data on the immune system's role in NDDs, the pathogenic role of some specific Aabs against molecules associated with the most common NDDs, and their potential role as biomarkers for monitoring and diagnosing NDDs. It is suggested that the autoimmune aspects of NDDs will facilitate early diagnosis and help to elucidate previously unknown aspects of the pathobiology of these diseases.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak str, 1407 Sofia, Bulgaria; (G.V.V.); (T.V.)
| | - Georgi V. Vasilev
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak str, 1407 Sofia, Bulgaria; (G.V.V.); (T.V.)
- Clinic of Neurology, Department of Emergency Medicine UMHAT “Sv. Georgi”, 4000 Plovdiv, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak str, 1407 Sofia, Bulgaria; (G.V.V.); (T.V.)
| |
Collapse
|
8
|
Martín Monreal MT, Hansen BE, Iversen PF, Enevold C, Ødum N, Sellebjerg F, Højrup P, Rode von Essen M, Nielsen CH. Citrullination of myelin basic protein induces a Th17-cell response in healthy individuals and enhances the presentation of MBP85-99 in patients with multiple sclerosis. J Autoimmun 2023; 139:103092. [PMID: 37506490 DOI: 10.1016/j.jaut.2023.103092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The post-translational modification citrullination has been proposed to play a role in the pathogenesis of multiple sclerosis (MS). Myelin basic protein (MBP) is a candidate autoantigen which is citrullinated to a minor extent under physiological conditions and hypercitrullinated in MS. We examined immune cell responses elicited by hypercitrullinated MBP (citMBP) in cultures of mononuclear cells from 18 patients with MS and 42 healthy donors (HDs). The immunodominant peptide of MBP, MBP85-99, containing citrulline in position 99, outcompeted the binding of native MBP85-99 to HLA-DR15, which is strongly linked to MS. Moreover, using the monoclonal antibody MK16 as probe, we observed that B cells and monocytes from HLA-DR15+ patients with MS presented MBP85-99 more efficiently after challenge with citMBP than with native MBP. Both citMBP and native MBP induced proliferation of CD4+ T cells from patients with MS as well as TNF-α production by their B cells and CD4+ T cells, and citrullination of MBP tended to enhance TNF-α secretion by CD4+ T cells from HLA-DR15+ patients. Unlike native MBP, citMBP induced differentiation into Th17 cells in cultures from HDs, while neither form of MBP induced Th17-cell differentiation in cultures from patients with MS. These data suggest a role for citrullination in the breach of tolerance to MBP in healthy individuals and in maintenance of the autoimmune response to MBP in patients with MS.
Collapse
Affiliation(s)
- María Teresa Martín Monreal
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Pernille F Iversen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marina Rode von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Claus H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Sahlolbei M, Azangou-Khyavy M, Khanali J, Khorsand B, Shiralipour A, Ahmadbeigi N, Madjd Z, Ghanbarian H, Ardjmand A, Hashemi SM, Kiani J. Engineering chimeric autoantibody receptor T cells for targeted B cell depletion in multiple sclerosis model: An in-vitro study. Heliyon 2023; 9:e19763. [PMID: 37809446 PMCID: PMC10559048 DOI: 10.1016/j.heliyon.2023.e19763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Background Recent evidence suggests that B cells and autoantibodies have a substantial role in the pathogenesis of Multiple sclerosis. T cells could be engineered to express chimeric autoantibody receptors (CAARs), which have an epitope of autoantigens in their extracellular domain acting as bait for trapping autoreactive B cells. This study aims to assess the function of designed CAAR T cells against B cell clones reactive to the myelin basic protein (MBP) autoantigen. Methods T cells were transduced to express a CAAR consisting of MBP as the extracellular domain. experimental autoimmune encephalomyelitis (EAE) was induced by injecting MBP into mice. The cytotoxicity, proliferation, and cytokine production of the MBP-CAAR T cells were investigated in co-culture with B cells. Results MBP-CAAR T cells showed higher cytotoxic activity against autoreactive B cells in all effector-to-target ratios compared to Mock T cell (empty vector-transduced T cell) and Un-T cells (un-transduced T cell). In co-cultures containing CAAR T cells, there was more proliferation and inflammatory cytokine release as compared to Un-T and Mock T cell groups. Conclusion Based on these findings, CAAR T cells are promising for curing or modulating autoimmunity and can be served as a new approach for clone-specific B cell depletion therapy in multiple sclerosis.
Collapse
Affiliation(s)
- Maryam Sahlolbei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Javad Khanali
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Khorsand
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Computer Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Aref Shiralipour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13:996469. [PMID: 36211343 PMCID: PMC9539795 DOI: 10.3389/fimmu.2022.996469] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by destruction of the myelin sheath structure. The loss of myelin leads to damage of a neuron’s axon and cell body, which is identified as brain lesions on magnetic resonance image (MRI). The pathogenesis of MS remains largely unknown. However, immune mechanisms, especially those linked to the aberrant lymphocyte activity, are mainly responsible for neuronal damage. Th1 and Th17 populations of lymphocytes were primarily associated with MS pathogenesis. These lymphocytes are essential for differentiation of encephalitogenic CD8+ T cell and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath in the CNS. B-lymphocytes could also contribute to MS pathogenesis by producing anti-myelin basic protein antibodies. In later studies, aberrant function of Treg and Th9 cells was identified as contributing to MS. This review summarizes the aberrant function and count of lymphocyte, and the contributions of these cell to the mechanisms of MS. Additionally, we have outlined the novel MS therapeutics aimed to amend the aberrant function or counts of these lymphocytes.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shushu Du
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lili Zhao
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Albert Rizvanov
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Vera Lezhnyova
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Timur Khaibullin
- Neurological Department, Republican Clinical Neurological Center, Kazan, Russia
| | | | - Svetlana Khaiboullina
- Gene and cell Department, Kazan Federal University, Kazan, Russia
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| |
Collapse
|
11
|
Mollasalehi N, Francois-Moutal L, Porciani D, Burke DH, Khanna M. Aptamers Targeting Hallmark Proteins of Neurodegeneration. Nucleic Acid Ther 2022; 32:235-250. [PMID: 35452303 DOI: 10.1089/nat.2021.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurodegeneration is a progressive deterioration of neural structures leading to cognitive or motor impairment of the affected patient. There is still no effective therapy for any of the most common neurodegenerative diseases (NDs) such as Alzheimer's or Parkinson's disease. Although NDs exhibit distinct clinical characteristics, many are characterized by the accumulation of misfolded proteins or peptide fragments in the brain and/or spinal cord. The presence of similar inclusion bodies in patients with diverse NDs provides a rationale for developing therapies directed at overlapping disease mechanisms. A novel targeting strategy involves the use of aptamers for therapeutic development. Aptamers are short nucleic acid ligands able to recognize molecular targets with high specificity and high affinity. Despite the fact that several academic groups have shown that aptamers have the potential to be used in therapeutic and diagnostic applications, their clinical translation is still limited. In this study, we describe aptamers that have been developed against proteins relevant to NDs, including prion protein and amyloid beta (Aβ), cell surface receptors and other cytoplasmic proteins. This review also describes advances in the application of these aptamers in imaging, protein detection, and protein quantification, and it provides insights about their accelerated clinical use for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Niloufar Mollasalehi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA.,Center for Innovation in Brain Science, Tucson, Arizona, USA
| | - Liberty Francois-Moutal
- Center for Innovation in Brain Science, Tucson, Arizona, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - David Porciani
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA.,MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Donald H Burke
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA.,MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - May Khanna
- Center for Innovation in Brain Science, Tucson, Arizona, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
12
|
Wang KK, Munoz Pareja JC, Mondello S, Diaz-Arrastia R, Wellington C, Kenney K, Puccio AM, Hutchison J, McKinnon N, Okonkwo DO, Yang Z, Kobeissy F, Tyndall JA, Büki A, Czeiter E, Pareja Zabala MC, Gandham N, Berman R. Blood-based traumatic brain injury biomarkers - Clinical utilities and regulatory pathways in the United States, Europe and Canada. Expert Rev Mol Diagn 2021; 21:1303-1321. [PMID: 34783274 DOI: 10.1080/14737159.2021.2005583] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major global health issue, resulting in debilitating consequences to families, communities, and health-care systems. Prior research has found that biomarkers aid in the pathophysiological characterization and diagnosis of TBI. Significantly, the FDA has recently cleared both a bench-top assay and a rapid point-of-care assays of tandem biomarker (UCH-L1/GFAP)-based blood test to aid in the diagnosis mTBI patients. With the global necessity of TBI biomarkers research, several major consortium multicenter observational studies with biosample collection and biomarker analysis have been created in the USA, Europe, and Canada. As each geographical region regulates its data and findings, the International Initiative for Traumatic Brain Injury Research (InTBIR) was formed to facilitate data integration and dissemination across these consortia. AREAS COVERED This paper covers heavily investigated TBI biomarkers and emerging non-protein markers. Finally, we analyze the regulatory pathways for converting promising TBI biomarkers into approved in-vitro diagnostic tests in the United States, European Union, and Canada. EXPERT OPINION TBI biomarker research has significantly advanced in the last decade. The recent approval of an iSTAT point of care test to detect mild TBI has paved the way for future biomarker clearance and appropriate clinical use across the globe.
Collapse
Affiliation(s)
- Kevin K Wang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Jennifer C Munoz Pareja
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cheryl Wellington
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Kimbra Kenney
- Department of Neurology, Uniformed Service University, Bethesda, Maryland, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jamie Hutchison
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nicole McKinnon
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - J Adrian Tyndall
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Endre Czeiter
- Department of Neurosurgery, Pecs University, Pecs, Hungary
| | | | - Nithya Gandham
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rebecca Berman
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | | |
Collapse
|
13
|
Mostafa GA, Meguid NA, Shehab AAS, Elsaeid A, Maher M. Plasma levels of nerve growth factor in Egyptian autistic children: Relation to hyperserotonemia and autoimmunity. J Neuroimmunol 2021; 358:577638. [PMID: 34214954 DOI: 10.1016/j.jneuroim.2021.577638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/20/2021] [Indexed: 12/22/2022]
Abstract
Hyperserotonemia and brain-specific autoantibodies are detected in some autistic children. Nerve growth factor (NGF) stimulates the proliferation of B lymphocytes with production of antibodies and also increases mast cell serotonin release. This work was the first to investigate the relationship between plasma NGF and both hyperserotonemia and the frequency of serum anti-myelin basic protein (anti-MBP) auto-antibodies in 22 autistic children aged between 4 and 12 years and 22 healthy-matched controls. Levels of NGF, serotonin and anti-MBP were significantly higher in autistic children than healthy control children (P < 0.001). There was a significant positive correlation between NGF and serotonin levels in autistic patients (P < 0.01). In contrast, there was a non-significant correlation between NGF and anti-MBP levels (P > 0.05). In conclusions, serum NGF levels were elevated and significantly correlated to hyperserotonemia found in many autistic children.
Collapse
Affiliation(s)
- Gehan Ahmed Mostafa
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Nagwa Abdel Meguid
- Research on Children with Special Needs Department, National Research Centre, Cairo, Egypt
| | - Abeer Al Sayed Shehab
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amal Elsaeid
- Research on Children with Special Needs Department, National Research Centre, Cairo, Egypt
| | - Mahmoud Maher
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Autoantibodies to myelin basic protein and histone H1 as immune biomarkers of neuropsychological disorders in patients with multiple sclerosis. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.06.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
A literature review of biosensors for multiple sclerosis: Towards personalized medicine and point-of-care testing. Mult Scler Relat Disord 2020; 48:102675. [PMID: 33326907 DOI: 10.1016/j.msard.2020.102675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system that leads to severe motor and sensory deficits in patients. Although some biomolecules in serum or cerebrospinal fluid have been suggested as biomarkers for MS diagnosis, following disease activity and monitoring treatment response, most of these potential biomarkers are not currently in clinical use and available for all patients. The reasons behind this are generally related to insufficient robustness of biomarker or technical difficulties, high prices, and requirements for technical personnel for their detection. Point-of-care testing (POCT) is an emerging field of healthcare that can be applied at the hospital as well as at home without the need for a centralized laboratory. Biosensor devices offer a convenient means for POCT. A biosensor is a compact analytical device that uses a bioreceptor, such as an antibody, enzyme, or oligonucleotide, to capture the analyte of interest. The interaction between the analyte and the bioreceptor is sensed and transduced into a suitable signal by the signal transducer. The advantages of using a biosensor for detecting the biomolecule of interest include speed, simplicity, accuracy, relatively lower cost, and lack of requirements for highly qualified personnel to perform the testing. Owing to these advantages and with the help of innovations in biosensor development technologies, there has been a great interest in developing biosensor devices for MS in recent years. Hence, the purpose of this review was to provide researchers with an up-to-date summary of the literature as well as to highlight the challenges and opportunities in this translational research field. In addition, because this is a highly interdisciplinary field of study, potentially concerning MS specialists, neurologists, biomedical researchers, and engineers, another aim of this review was to bridge the gap between these disciplines.
Collapse
|
16
|
Knysh SV, Markelova EV, Simakova AI, Karaulov AV. Neuropeptide system parameters in acute herpes zoster. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2020. [DOI: 10.15789/2220-7619-tfo-1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The neuropeptides comprise an important part in the nervous system interacting with endocrine and immune systems. Peptide regulators are responsible for the continuity of communicating elements, which support homeostasis, however, despite abundant research examining neuropeptides, not all specific mechanisms and features of interacting proteins with cells and immune components have been uncovered. Objective: to perform a comprehensive assessment of neuropeptide system in patients with herpes zoster. Materials and methods: 106 in-hospital patients were examined diagnosed with herpes zoster within 2016–2019 period. Control group consisted of 30 healthy age- and sex-matched volunteers. Blood serum was collected after verifying diagnosis on day 1. After discharge, patients were monitored for signs of pain syndrome and overall state within 3 months. It allowed to divide patients into 3 groups retrospectively. Group 1 — patients with herpes zoster, accompanied by mild or moderate pain syndrome; group 2 — patients with herpes zoster, accompanied by severe pain; group 3 — patients with herpes zoster, complicated by postherpetic neuralgia. Level of serum protein s100B, myelin basic protein, nerve growth factor, brain-derived neurotrophic factor, neuron specific enolase was measured by using specific reagents purchased from “RD Diagnostics Inc.” (США). Results. it was found that level of serum protein S100B in all groups was significantly increased compared to control group, showing no inter-group differences. Amount of myelin basic protein in all study groups vs. control was significantly higher. Moreover, level of these parameters in group 2 vs. group 1 and 3 was significantly elevated. In addition, level of nerve growth factor was significantly increased in group 1 vs. groups 2 and 3, whereas in group 3 it was significantly lower than in control and group 2. Brain-derived neurotrophic factor was significantly decreased in all the study groups compared to control, showing no significant intergroup differences. Level of neuron-specific enolase was significantly increased in group 3 vs. control as well as group 1 and 2. The data obtained allowed to identify two parameters for assessing a risk of postherpetic neuralgia in acute herpes zoster, as well as provided deeper insights into the pathogenesis of neuroimmune disorders accompanying herpes zoster.
Collapse
|
17
|
Vijapur SM, Yang Z, Barton DJ, Vaughan L, Awan N, Kumar RG, Oh BM, Berga SL, Wang KK, Wagner AK. Anti-Pituitary and Anti-Hypothalamus Autoantibody Associations with Inflammation and Persistent Hypogonadotropic Hypogonadism in Men with Traumatic Brain Injury. J Neurotrauma 2020; 37:1609-1626. [PMID: 32111134 DOI: 10.1089/neu.2019.6780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) and can lead to persistent hypogonadotropic hypogonadism (PHH) and poor outcomes. We hypothesized that autoimmune and inflammatory mechanisms contribute to PHH pathogenesis. Men with moderate-to-severe TBI (n = 143) were compared with healthy men (n = 39). The TBI group provided blood samples 1-12 months post-injury (n = 1225). TBI and healthy control (n = 39) samples were assayed for testosterone (T) and luteinizing hormone (LH) to adjudicate PHH status. TBI samples 1-6 months post-injury and control samples were assayed for immunoglobulin M (IgM)/immunoglobulin G (IgG) anti-pituitary autoantibodies (APA) and anti-hypothalamus autoantibodies (AHA). Tissue antigen specificity for APA and AHA was confirmed via immunohistochemistry (IHC). IgM and IgG autoantibodies for glial fibrillary acid protein (GFAP) (AGA) were evaluated to gauge APA and AHA production as a generalized autoimmune response to TBI and to evaluate the specificity of APA and AHA to PHH status. An inflammatory marker panel was used to assess relationships to autoantibody profiles and PHH status. Fifty-one men with TBI (36%) had PHH. An age-related decline in T levels by both TBI and PHH status were observed. Injured men had higher APA IgM, APA IgG, AHA IgM, AHA IgG, AGA IgM, and AGA IgG than controls (p < 0.0001 all comparisons). However, only APA IgM (p = 0.03) and AHA IgM (p = 0.03) levels were lower in the PHH than in the non-PHH group in multivariate analysis. There were no differences in IgG levels by PHH status. Multiple inflammatory markers were positively correlated with IgM autoantibody production. PHH was associated with higher soluble tumor-necrosis-factor receptors I/II, (sTNFRI, sTNFRII), regulated on activation, normal T-cell expressed and secreted (RANTES) and soluble interleukin-2-receptor-alpha (sIL-2Rα) levels. Higher IgM APA, and AHA, but not AGA, in the absence of PHH may suggest a beneficial or reparative role for neuroendocrine tissue-specific IgM autoantibody production against PHH development post-TBI.
Collapse
Affiliation(s)
- Sushupta M Vijapur
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhihui Yang
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida / South Georgia Veterans Health System, Gainesville, Florida, USA.,Department of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - David J Barton
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Leah Vaughan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nabil Awan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Raj G Kumar
- Mount Sinai, Icahn School of Medicine, New York, New York, USA
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University, Seoul, South Korea
| | - Sarah L Berga
- Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Kevin K Wang
- Department of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA.,Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy K Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Clinical and Translational Science Institute, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Repić-Buličić A, Filipović-Grčić P, Jadrijević E, Jurinović P, Titlić M. SUCCESSFUL TREATMENT OF ACUTE DISSEMINATED ENCEPHALOMYELITIS (ADEM) BY PROMPT USAGE OF IMMUNOGLOBULINS - CASE REPORT AND REVIEW OF THE LITERATURE. Acta Clin Croat 2019; 58:173-179. [PMID: 31363340 PMCID: PMC6629195 DOI: 10.20471/acc.2019.58.01.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acute disseminated encephalomyelitis (ADEM) is an inflammatory demyelinating disease of the central nervous system that usually affects children and young adults. It most commonly has a monophasic course, although relapses are reported. Clinical presentation of the disease includes encephalopathy and multifocal neurological deficits. There are no established reliable criteria for diagnosis of ADEM and sometimes it is difficult to distinguish it from first attack of multiple sclerosis, especially in adults. The diagnosis of ADEM is based on clinical, radiological and laboratory findings. In the treatment of ADEM, high doses of corticosteroids, plasmapheresis and immunoglobulins are used. We report a case of a young adult female patient with ADEM who fully recovered after prompt administration of high dose methylprednisolone and immunoglobulins.
Collapse
Affiliation(s)
| | | | - Eni Jadrijević
- Department of Neurology, Split University Hospital Centre, Split, Croatia
| | - Pavao Jurinović
- Department of Neurology, Split University Hospital Centre, Split, Croatia
| | - Marina Titlić
- Department of Neurology, Split University Hospital Centre, Split, Croatia
| |
Collapse
|
19
|
Abstract
Autoimmune diseases are very diverse and include many common diseases of unknown etiology.Diagnosis can be challenging but can be facilitated by the identification of characteristic autoantibodies (AuAbs), which are present in varying frequencies. Identification of such AuAbs requires a range of different techniques, depending on the autoantigens in question. Each individual AuAb assay is characterized by analytical sensitivity and specificity, which in turn determines clinical sensitivity and specificity in relation to diseases. Clinical sensitivities and specificities vary much, but many AuAb analyses can be of significant help in establishing correct diagnoses. It remains unsettled whether AuAbs are generally pathogenic, but it is generally agreed that autoimmune diseases are caused by a combination of genetic and environmental factors, and that early and correct diagnosis facilitates treatment.
Collapse
|
20
|
Remacle AG, Dolkas J, Angert M, Hullugundi SK, Chernov AV, Jones RCW, Shubayev VI, Strongin AY. A sensitive and selective ELISA methodology quantifies a demyelination marker in experimental and clinical samples. J Immunol Methods 2018; 455:80-87. [PMID: 29428829 PMCID: PMC5886741 DOI: 10.1016/j.jim.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/05/2018] [Indexed: 12/29/2022]
Abstract
Sciatic nerve chronic constriction injury (CCI) in rodents produces nerve demyelination via proteolysis of myelin basic protein (MBP), the major component of myelin sheath. Proteolysis releases the cryptic MBP epitope, a demyelination marker, which is hidden in the native MBP fold. It has never been established if the proteolytic release of this cryptic MBP autoantigen stimulates the post-injury increase in the respective circulating autoantibodies. To measure these autoantibodies, we developed the ELISA that employed the cryptic 84-104 MBP sequence (MBP84-104) as bait. This allowed us, for the first time, to quantify the circulating anti-MBP84-104 autoantibodies in rat serum post-CCI. The circulating IgM (but not IgG) autoantibodies were detectable as soon as day 7 post-CCI. The IgM autoantibody level continually increased between days 7 and 28 post-injury. Using the rat serum samples, we established that the ELISA intra-assay (precision) and inter-assay (repeatability) variability parameters were 2.87% and 4.58%, respectively. We also demonstrated the ELISA specificity by recording the autoantibodies to the liberated MBP84-104 epitope alone, but not to intact MBP in which the 84-104 region is hidden. Because the 84-104 sequence is conserved among mammals, we tested if the ELISA was applicable to detect demyelination and quantify the respective autoantibodies in humans. Our limited pilot study that involved 16 female multiple sclerosis and fibromyalgia syndrome patients demonstrated that the ELISA was efficient in measuring both the circulating IgG- and IgM-type autoantibodies in patients exhibiting demyelination. We believe that the ELISA measurements of the circulating autoantibodies against the pathogenic MBP84-104 peptide may facilitate the identification of demyelination in both experimental and clinical settings. In clinic, these measurements may assist neurologists to recognize patients with painful neuropathy and demyelinating diseases, and as a result, to personalize their treatment regimens.
Collapse
Affiliation(s)
- Albert G Remacle
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Mila Angert
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Swathi K Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Andrei V Chernov
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - R Carter W Jones
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; Center for Pain Medicine, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA.
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Wang KK, Yang Z, Zhu T, Shi Y, Rubenstein R, Tyndall JA, Manley GT. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 2018; 18:165-180. [PMID: 29338452 PMCID: PMC6359936 DOI: 10.1080/14737159.2018.1428089] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major worldwide neurological disorder of epidemic proportions. To date, there are still no FDA-approved therapies to treat any forms of TBI. Encouragingly, there are emerging data showing that biofluid-based TBI biomarker tests have the potential to diagnose the presence of TBI of different severities including concussion, and to predict outcome. Areas covered: The authors provide an update on the current knowledge of TBI biomarkers, including protein biomarkers for neuronal cell body injury (UCH-L1, NSE), astroglial injury (GFAP, S100B), neuronal cell death (αII-spectrin breakdown products), axonal injury (NF proteins), white matter injury (MBP), post-injury neurodegeneration (total Tau and phospho-Tau), post-injury autoimmune response (brain antigen-targeting autoantibodies), and other emerging non-protein biomarkers. The authors discuss biomarker evidence in TBI diagnosis, outcome prognosis and possible identification of post-TBI neurodegernative diseases (e.g. chronic traumatic encephalopathy and Alzheimer's disease), and as theranostic tools in pre-clinical and clinical settings. Expert commentary: A spectrum of biomarkers is now at or near the stage of formal clinical validation of their diagnostic and prognostic utilities in the management of TBI of varied severities including concussions. TBI biomarkers could serve as a theranostic tool in facilitating drug development and treatment monitoring.
Collapse
Affiliation(s)
- Kevin K Wang
- a Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry , University of Florida , Gainesville , Florida , USA
| | - Zhihui Yang
- a Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry , University of Florida , Gainesville , Florida , USA
| | - Tian Zhu
- a Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry , University of Florida , Gainesville , Florida , USA
| | - Yuan Shi
- b Department Of Pediatrics, Daping Hospital, Chongqing , Third Military Medical University , Chongqing , China
| | - Richard Rubenstein
- c Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/Pharmacology , SUNY Downstate Medical Center , Brooklyn , NY , USA
| | - J Adrian Tyndall
- d Department of Emergency Medicine , University of Florida , Gainesville , Florida , USA
| | - Geoff T Manley
- e Brain and Spinal Injury Center , San Francisco General Hospital , San Francisco , CA , USA
- f Department of Neurological Surgery , University of California, San Francisco , San Francisco , CA , USA
| |
Collapse
|
22
|
Tolpeeva OA, Zakharova MN. The diagnostic significance of antibodies to myelin proteins in demyelinating diseases of the central nervous system. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417010135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
|
24
|
Effects of environmental enrichment and regrouping on natural autoantibodies-binding danger and neural antigens in healthy pigs with different individual characteristics. Animal 2017; 11:2019-2026. [DOI: 10.1017/s1751731117000635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
25
|
Lovelace MD, Varney B, Sundaram G, Franco NF, Ng ML, Pai S, Lim CK, Guillemin GJ, Brew BJ. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. Front Immunol 2016; 7:246. [PMID: 27540379 PMCID: PMC4972824 DOI: 10.3389/fimmu.2016.00246] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson’s disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington’s disease, and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS) has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic cells), are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood–brain barrier, even if transient, allows the entry of blood monocytes into the brain parenchyma. Similar to microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid. These metabolites circulate systemically or are released locally in the brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic acid receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several KP inhibitors are currently in clinical trials for other neurological diseases, and hence may make suitable candidates for MS patients. Underpinning these drug discovery endeavors, in recent years, several advances have been made in how KP metabolites are assayed in various biological fluids, and tremendous advancements have been made in how specimens are imaged to determine disease progression and involvement of various cell types and molecules in MS.
Collapse
Affiliation(s)
- Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Bianca Varney
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Gayathri Sundaram
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Nunzio F Franco
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Mei Li Ng
- Faculty of Medicine, Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Saparna Pai
- Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Chai K Lim
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, St Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
26
|
Hecker M, Fitzner B, Wendt M, Lorenz P, Flechtner K, Steinbeck F, Schröder I, Thiesen HJ, Zettl UK. High-Density Peptide Microarray Analysis of IgG Autoantibody Reactivities in Serum and Cerebrospinal Fluid of Multiple Sclerosis Patients. Mol Cell Proteomics 2016; 15:1360-80. [PMID: 26831522 DOI: 10.1074/mcp.m115.051664] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 11/06/2022] Open
Abstract
Intrathecal immunoglobulin G (IgG) synthesis and oligoclonal IgG bands in cerebrospinal fluid (CSF) are hallmarks of multiple sclerosis (MS), but the antigen specificities remain enigmatic. Our study is the first investigating the autoantibody repertoire in paired serum and CSF samples from patients with relapsing-remitting MS (RRMS), primary progressive MS (PPMS), and other neurological diseases by the use of high-density peptide microarrays. Protein sequences of 45 presumed MS autoantigens (e.g.MOG, MBP, and MAG) were represented on the microarrays by overlapping 15mer peptides. IgG reactivities were screened against a total of 3991 peptides, including also selected viral epitopes. The measured antibody reactivities were highly individual but correlated for matched serum and CSF samples. We found 54 peptides to be recognized significantly more often by serum or CSF antibodies from MS patients compared with controls (pvalues <0.05). The results for RRMS and PPMS clearly overlapped. However, PPMS patients presented a broader peptide-antibody signature. The highest signals were detected for a peptide mapping to a region of the Epstein-Barr virus protein EBNA1 (amino acids 392-411), which is homologous to the N-terminal part of human crystallin alpha-B. Our data confirmed several known MS-associated antigens and epitopes, and they delivered additional potential linear epitopes, which await further validation. The peripheral and intrathecal humoral immune response in MS is polyspecific and includes antibodies that are also found in serum of patients with other diseases. Further studies are required to assess the pathogenic relevance of autoreactive and anti-EBNA1 antibodies as well as their combinatorial value as biomarkers for MS.
Collapse
Affiliation(s)
- Michael Hecker
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany; §Steinbeis Transfer Center for Proteome Analysis, Schillingallee 70, 18057 Rostock, Germany;
| | - Brit Fitzner
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany; §Steinbeis Transfer Center for Proteome Analysis, Schillingallee 70, 18057 Rostock, Germany
| | - Matthias Wendt
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Peter Lorenz
- ¶University of Rostock, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany
| | - Kristin Flechtner
- ¶University of Rostock, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany
| | - Felix Steinbeck
- ¶University of Rostock, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany; ‖Gesellschaft für Individualisierte Medizin mbH (IndyMED), Lessingstr. 17, 18055 Rostock, Germany
| | - Ina Schröder
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Hans-Jürgen Thiesen
- §Steinbeis Transfer Center for Proteome Analysis, Schillingallee 70, 18057 Rostock, Germany; ¶University of Rostock, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany; ‖Gesellschaft für Individualisierte Medizin mbH (IndyMED), Lessingstr. 17, 18055 Rostock, Germany
| | - Uwe Klaus Zettl
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| |
Collapse
|
27
|
Wang KKW, Yang Z, Yue JK, Zhang Z, Winkler EA, Puccio AM, Diaz-Arrastia R, Lingsma HF, Yuh EL, Mukherjee P, Valadka AB, Gordon WA, Okonkwo DO, Manley GT, Cooper SR, Dams-O'Connor K, Hricik AJ, Inoue T, Maas AIR, Menon DK, Schnyer DM, Sinha TK, Vassar MJ. Plasma Anti-Glial Fibrillary Acidic Protein Autoantibody Levels during the Acute and Chronic Phases of Traumatic Brain Injury: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study. J Neurotrauma 2016; 33:1270-7. [PMID: 26560343 DOI: 10.1089/neu.2015.3881] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We described recently a subacute serum autoantibody response toward glial fibrillary acidic protein (GFAP) and its breakdown products 5-10 days after severe traumatic brain injury (TBI). Here, we expanded our anti-GFAP autoantibody (AutoAb[GFAP]) investigation to the multicenter observational study Transforming Research and Clinical Knowledge in TBI Pilot (TRACK-TBI Pilot) to cover the full spectrum of TBI (Glasgow Coma Scale 3-15) by using acute (<24 h) plasma samples from 196 patients with acute TBI admitted to three Level I trauma centers, and a second cohort of 21 participants with chronic TBI admitted to inpatient TBI rehabilitation. We find that acute patients self-reporting previous TBI with loss of consciousness (LOC) (n = 43) had higher day 1 AutoAb[GFAP] (mean ± standard error: 9.11 ± 1.42; n = 43) than healthy controls (2.90 ± 0.92; n = 16; p = 0.032) and acute patients reporting no previous TBI (2.97 ± 0.37; n = 106; p < 0.001), but not acute patients reporting previous TBI without LOC (8.01 ± 1.80; n = 47; p = 0.906). These data suggest that while exposure to TBI may trigger the AutoAb[GFAP] response, circulating antibodies are elevated specifically in acute TBI patients with a history of TBI. AutoAb[GFAP] levels for participants with chronic TBI (average post-TBI time 176 days or 6.21 months) were also significantly higher (15.08 ± 2.82; n = 21) than healthy controls (p < 0.001). These data suggest a persistent upregulation of the autoimmune response to specific brain antigen(s) in the subacute to chronic phase after TBI, as well as after repeated TBI insults. Hence, AutoAb[GFAP] may be a sensitive assay to study the dynamic interactions between post-injury brain and patient-specific autoimmune responses across acute and chronic settings after TBI.
Collapse
Affiliation(s)
- Kevin K W Wang
- 1 Departments of Psychiatry and Neuroscience, University of Florida , Gainesville, Florida
| | - Zhihui Yang
- 1 Departments of Psychiatry and Neuroscience, University of Florida , Gainesville, Florida
| | - John K Yue
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California
| | - Zhiqun Zhang
- 1 Departments of Psychiatry and Neuroscience, University of Florida , Gainesville, Florida
| | - Ethan A Winkler
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California
| | - Ava M Puccio
- 4 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Ramon Diaz-Arrastia
- 5 Department of Neurology, Uniformed Services University of the Health Sciences , and Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland
| | - Hester F Lingsma
- 6 Department of Public Health, Erasmus Medical Center , Rotterdam, The Netherlands
| | - Esther L Yuh
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,7 Department of Radiology, University of California , San Francisco, San Francisco, California
| | - Pratik Mukherjee
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,7 Department of Radiology, University of California , San Francisco, San Francisco, California
| | | | - Wayne A Gordon
- 9 Department of Rehabilitation Medicine, Mount Sinai School of Medicine , New York, New York
| | - David O Okonkwo
- 4 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Geoffrey T Manley
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California
| | - Shelly R Cooper
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,6 Department of Public Health, Erasmus Medical Center , Rotterdam, The Netherlands
| | - Kristen Dams-O'Connor
- 9 Department of Rehabilitation Medicine, Mount Sinai School of Medicine , New York, New York
| | - Allison J Hricik
- 4 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Tomoo Inoue
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California
| | - Andrew I R Maas
- 10 Department of Neurosurgery, Antwerp University Hospital , Edegem, Belgium
| | - David K Menon
- 11 Division of Anaesthesia, University of Cambridge and Addenbrooke's Hospital , Cambridge, United Kingdom
| | - David M Schnyer
- 12 Department of Psychology, University of Texas , Austin, Texas
| | - Tuhin K Sinha
- 7 Department of Radiology, University of California , San Francisco, San Francisco, California
| | - Mary J Vassar
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California
| |
Collapse
|
28
|
Nielsen CH, Börnsen L, Sellebjerg F, Brimnes MK. Myelin Basic Protein-Induced Production of Tumor Necrosis Factor-α and Interleukin-6, and Presentation of the Immunodominant Peptide MBP85-99 by B Cells from Patients with Relapsing-Remitting Multiple Sclerosis. PLoS One 2016; 11:e0146971. [PMID: 26756931 PMCID: PMC4710535 DOI: 10.1371/journal.pone.0146971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/23/2015] [Indexed: 11/18/2022] Open
Abstract
B cells are involved in driving relapsing-remitting multiple sclerosis (RRMS), as demonstrated by the positive effect of therapeutic B-cell depletion. Aside from producing antibodies, B cells are efficient antigen-presenting and cytokine-secreting cells. Diverse polyclonal stimuli have been used to study cytokine production by B cells, but here we used the physiologically relevant self-antigen myelin basic protein (MBP) to stimulate B cells from untreated patients with RRMS and healthy donors. Moreover, we took advantage of the unique ability of the monoclonal antibody MK16 to recognize the immunodominant peptide MBP85-99 presented on HLA-DR15, and used it as a probe to directly study B-cell presentation of self-antigenic peptide. The proportions of B cells producing TNF-α or IL-6 after stimulation with MBP were higher in RRMS patients than in healthy donors, indicating a pro-inflammatory profile for self-reactive patient B cells. In contrast, polyclonal stimulation with PMA + ionomycin and MBP revealed no difference in cytokine profile between B cells from RRMS patients and healthy donors. Expanded disability status scale (EDSS) as well as multiple sclerosis severity score (MSSS) correlated with reduced ability of B cells to produce IL-10 after stimulation with MBP, indicative of diminished B-cell immune regulatory function in patients with the most severe disease. Moreover, EDSS correlated positively with the frequencies of TNF-α, IL-6 and IL-10 producing B cells after polyclonal stimulation. Patient-derived, IL-10-producing B cells presented MBP85-99 poorly, as did IL-6-producing B cells, particulary in the healthy donor group. B cells from MS patients thus present antigen to T cells in a pro-inflammatory context. These findings contribute to understanding the therapeutic effects of B-cell depletion in human autoimmune diseases, including MS.
Collapse
Affiliation(s)
- Claus H. Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| | - Lars Börnsen
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Danish Multiple Sclerosis Center, Copenhagen, Denmark
| | - Finn Sellebjerg
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Danish Multiple Sclerosis Center, Copenhagen, Denmark
| | - Marie K. Brimnes
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
29
|
Claes N, Fraussen J, Stinissen P, Hupperts R, Somers V. B Cells Are Multifunctional Players in Multiple Sclerosis Pathogenesis: Insights from Therapeutic Interventions. Front Immunol 2015; 6:642. [PMID: 26734009 PMCID: PMC4685142 DOI: 10.3389/fimmu.2015.00642] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/07/2015] [Indexed: 01/07/2023] Open
Abstract
Multiple sclerosis (MS) is a severe disease of the central nervous system (CNS) characterized by autoimmune inflammation and neurodegeneration. Historically, damage to the CNS was thought to be mediated predominantly by activated pro-inflammatory T cells. B cell involvement in the pathogenesis of MS was solely attributed to autoantibody production. The first clues for the involvement of antibody-independent B cell functions in MS pathology came from positive results in clinical trials of the B cell-depleting treatment rituximab in patients with relapsing-remitting (RR) MS. The survival of antibody-secreting plasma cells and decrease in T cell numbers indicated the importance of other B cell functions in MS such as antigen presentation, costimulation, and cytokine production. Rituximab provided us with an example of how clinical trials can lead to new research opportunities concerning B cell biology. Moreover, analysis of the antibody-independent B cell functions in MS has gained interest since these trials. Limited information is present on the effects of current immunomodulatory therapies on B cell functions, although effects of both first-line (interferon, glatiramer acetate, dimethyl fumarate, and teriflunomide), second-line (fingolimod, natalizumab), and even third-line (monoclonal antibody therapies) treatments on B cell subtype distribution, expression of functional surface markers, and secretion of different cytokines by B cells have been studied to some extent. In this review, we summarize the effects of different MS-related treatments on B cell functions that have been described up to now in order to find new research opportunities and contribute to the understanding of the pathogenesis of MS.
Collapse
Affiliation(s)
- Nele Claes
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| | - Judith Fraussen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| | - Piet Stinissen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| | - Raymond Hupperts
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; Department of Neurology, Academic MS Center Limburg, Zuyderland Medisch Centrum, Sittard, Netherlands
| | - Veerle Somers
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| |
Collapse
|
30
|
Mostafa GA, El-Khashab HY, Al-Ayadhi LY. A possible association between elevated serum levels of brain-specific auto-antibodies and reduced plasma levels of docosahexaenoic acid in autistic children. J Neuroimmunol 2015; 280:16-20. [PMID: 25773150 DOI: 10.1016/j.jneuroim.2015.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 12/05/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are not only essential for energy production, but they also exhibit a range of immunomodulatory properties that progress through T cell mediated events. Autoimmunity may have a pathogenic role in a subgroup of autistic children. This study is the first to investigate the relationship between serum levels of anti-myelin basic protein (anti-MBP) brain-specific auto-antibodies and reduced plasma levels of PUFAs in autistic children. Plasma levels of PUFAs (including linoleic, alphalinolenic, arachidonic "AA" and docosahexaenoic "DHA" acids) and serum anti-MBP were measured in 80 autistic children, aged between 4 and 12 years, and 80 healthy-matched children. Autistic patients had significantly lower plasma levels of PUFAs than healthy children. On the other hand, ω6/ω3 ratio (AA/DHA) was significantly higher in autistic patients than healthy children. Low plasma DHA, AA, linolenic and linoleic acids were found in 67.5%, 50%, 40% and 35%, respectively of autistic children. On the other hand, 70% of autistic patients had elevated ω6/ω3 ratio. Autistic patients with increased serum levels of anti-MBP auto-antibodies (75%) had significantly lower plasma DHA (P<0.5) and significantly higher ω6/ω3 ratio (P<0.5) than patients who were seronegative for these antibodies. In conclusions, some autistic children have a significant positive association between reduced levels of plasma DHA and increased serum levels of anti-MBP brain-specific auto-antibodies. However, replication studies of larger samples are recommended to validate whether reduced levels of plasma PUFAs are a mere association or have a role in the induction of the production of anti-MBP in some autistic children.
Collapse
Affiliation(s)
- Gehan A Mostafa
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Heba Y El-Khashab
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Singh I, Yadav AR, Mohanty KK, Katoch K, Sharma P, Mishra B, Bisht D, Gupta UD, Sengupta U. Molecular mimicry between Mycobacterium leprae proteins (50S ribosomal protein L2 and Lysyl-tRNA synthetase) and myelin basic protein: a possible mechanism of nerve damage in leprosy. Microbes Infect 2015; 17:247-57. [PMID: 25576930 DOI: 10.1016/j.micinf.2014.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/23/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
Autoantibodies against various components of host are known to occur in leprosy. Nerve damage is the primary cause of disability associated with leprosy. The aim of this study was to detect the level of autoantibodies and lympho-proliferative response against myelin basic protein (MBP) in leprosy patients (LPs) and their correlation with clinical phenotypes of LPs. Further, probable role of molecular mimicry in nerve damage of LPs was investigated. We observed significantly high level of anti-MBP antibodies in LPs across the spectrum and a positive significant correlation between the level of anti-MBP antibodies and the number of nerves involved in LPs. We report here that 4 B cell epitopes of myelin A1 and Mycobacterium leprae proteins, 50S ribosomal L2 and lysyl tRNA synthetase are cross-reactive. Further, M. leprae sonicated antigen hyperimmunization was responsible for induction of autoantibody response in mice which could be adoptively transferred to naive mice. For the first time our findings suggest the role of molecular mimicry in nerve damage in leprosy.
Collapse
Affiliation(s)
- Itu Singh
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra, India.
| | - Asha Ram Yadav
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra, India
| | - Keshar Kunja Mohanty
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra, India.
| | - Kiran Katoch
- Clinical Division, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra, India
| | - Prashant Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra, India.
| | - Bishal Mishra
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra, India.
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra, India.
| | - U D Gupta
- Animal Experimentation Laboratory, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra, India
| | - Utpal Sengupta
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra, India.
| |
Collapse
|
32
|
|
33
|
Raphael I, Webb J, Stuve O, Haskins W, Forsthuber T. Body fluid biomarkers in multiple sclerosis: how far we have come and how they could affect the clinic now and in the future. Expert Rev Clin Immunol 2014; 11:69-91. [PMID: 25523168 DOI: 10.1586/1744666x.2015.991315] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system, which affects over 2.5 million people worldwide. Although MS has been extensively studied, many challenges still remain in regards to treatment, diagnosis and prognosis. Typically, prognosis and individual responses to treatment are evaluated by clinical tests such as the expanded disability status scale, MRI and presence of oligoclonal bands in the cerebrospinal fluid. However, none of these measures correlates strongly with treatment efficacy or disease progression across heterogeneous patient populations and subtypes of MS. Numerous studies over the past decades have attempted to identify sensitive and specific biomarkers for diagnosis, prognosis and treatment efficacy of MS. The objective of this article is to review and discuss the current literature on body fluid biomarkers in MS, including research on potential biomarker candidates in the areas of miRNA, mRNA, lipids and proteins.
Collapse
Affiliation(s)
- Itay Raphael
- University of Texas San Antonio - Biology, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
34
|
Identification of biomarkers in cerebrospinal fluid and serum of multiple sclerosis patients by immunoproteomics approach. Int J Mol Sci 2014; 15:23269-82. [PMID: 25517032 PMCID: PMC4284765 DOI: 10.3390/ijms151223269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system. At present, the molecular mechanisms causing the initiation, development and progression of MS are poorly understood, and no reliable proteinaceous disease markers are available. In this study, we used an immunoproteomics approach to identify autoreactive antibodies in the cerebrospinal fluid of MS patients to use as candidate markers with potential diagnostic value. We identified an autoreactive anti-transferrin antibody that may have a potential link with the development and progression of MS. We found this antibody at high levels also in the serum of MS patients and created an immunoenzymatic assay to detect it. Because of the complexity and heterogeneity of multiple sclerosis, it is difficult to find a single marker for all of the processes involved in the origin and progression of the disease, so the development of a panel of biomarkers is desirable, and anti-transferrin antibody could be one of these.
Collapse
|
35
|
Zhang Z, Zoltewicz JS, Mondello S, Newsom KJ, Yang Z, Yang B, Kobeissy F, Guingab J, Glushakova O, Robicsek S, Heaton S, Buki A, Hannay J, Gold MS, Rubenstein R, Lu XCM, Dave JR, Schmid K, Tortella F, Robertson CS, Wang KKW. Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One 2014; 9:e92698. [PMID: 24667434 PMCID: PMC3965455 DOI: 10.1371/journal.pone.0092698] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/24/2014] [Indexed: 01/15/2023] Open
Abstract
The role of systemic autoimmunity in human traumatic brain injury (TBI) and other forms of brain injuries is recognized but not well understood. In this study, a systematic investigation was performed to identify serum autoantibody responses to brain-specific proteins after TBI in humans. TBI autoantibodies showed predominant immunoreactivity against a cluster of bands from 38-50 kDa on human brain immunoblots, which were identified as GFAP and GFAP breakdown products. GFAP autoantibody levels increased by 7 days after injury, and were of the IgG subtype predominantly. Results from in vitro tests and rat TBI experiments also indicated that calpain was responsible for removing the amino and carboxyl termini of GFAP to yield a 38 kDa fragment. Additionally, TBI autoantibody staining co-localized with GFAP in injured rat brain and in primary rat astrocytes. These results suggest that GFAP breakdown products persist within degenerating astrocytes in the brain. Anti-GFAP autoantibody also can enter living astroglia cells in culture and its presence appears to compromise glial cell health. TBI patients showed an average 3.77 fold increase in anti-GFAP autoantibody levels from early (0-1 days) to late (7-10 days) times post injury. Changes in autoantibody levels were negatively correlated with outcome as measured by GOS-E score at 6 months, suggesting that TBI patients with greater anti-GFAP immune-responses had worse outcomes. Due to the long lasting nature of IgG, a test to detect anti-GFAP autoantibodies is likely to prolong the temporal window for assessment of brain damage in human patients.
Collapse
Affiliation(s)
- Zhiqun Zhang
- Banyan Biomarkers Inc., Alachua, Florida, United States of America
| | - J. Susie Zoltewicz
- Department of Psychiatry, Center for Neuroproteomics and Biomarker Research, University of Florida, Gainesville, Florida, United States of America
| | | | - Kimberly J. Newsom
- Department of Psychiatry, Center for Neuroproteomics and Biomarker Research, University of Florida, Gainesville, Florida, United States of America
| | - Zhihui Yang
- Banyan Biomarkers Inc., Alachua, Florida, United States of America
| | - Boxuan Yang
- Department of Psychiatry, Center for Neuroproteomics and Biomarker Research, University of Florida, Gainesville, Florida, United States of America
| | - Firas Kobeissy
- Banyan Biomarkers Inc., Alachua, Florida, United States of America
| | - Joy Guingab
- Department of Psychiatry, Center for Neuroproteomics and Biomarker Research, University of Florida, Gainesville, Florida, United States of America
| | - Olena Glushakova
- Department of Psychiatry, Center for Neuroproteomics and Biomarker Research, University of Florida, Gainesville, Florida, United States of America
| | - Steven Robicsek
- Department of Anesthesiology, University of Florida, Gainesville, Florida, United States of America
| | - Shelley Heaton
- Clinical and Health Psychology, University of Florida, Gainesville, Florida, United States of America
| | - Andras Buki
- Department of Neurosurgery, University of Pécs and Clinical Neuroscience Image Center of Hungarian Academy of Sciences (HAS) Pécs, Hungary
| | - Julia Hannay
- Department of Psychology, University of Houston, Houston, Texas, United States of America
| | | | - Richard Rubenstein
- Laboratory of Neurodegenerative Disease and CNS Biomarkers, Departments of Neurology and Physiology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Xi-chun May Lu
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jitendra R. Dave
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Kara Schmid
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Frank Tortella
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Claudia S. Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kevin K. W. Wang
- Banyan Biomarkers Inc., Alachua, Florida, United States of America
| |
Collapse
|
36
|
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in reciprocal social interactions as well as restricted, repetitive and stereotyped patterns of behavior. The etiology of ASD is not well understood, although many factors have been associated with its pathogenesis, such genetic, neurological, environmental and immunological factors. Several studies have reported the production of numerous autoantibodies that react with specific brain proteins and brain tissues in autistic children and alter the function of the attacked brains tissue. In addition, the potential role of maternal autoantibodies to the fatal brain in the etiology of some cases of autism has also been reported. Identification and understanding of the role of brain autoantibodies as biological biomarkers may allow earlier detection of ASD, lead to a better understanding of the pathogenesis of ASD and have important therapeutic implications.
Collapse
Affiliation(s)
- Nadra E Elamin
- Autism Research & Treatment Center, Shaik AL-Amodi Autism Research Chair, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research & Treatment Center, Shaik AL-Amodi Autism Research Chair, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, PO Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
37
|
Dagley LF, Croft NP, Isserlin R, Olsen JB, Fong V, Emili A, Purcell AW. Discovery of novel disease-specific and membrane-associated candidate markers in a mouse model of multiple sclerosis. Mol Cell Proteomics 2013; 13:679-700. [PMID: 24361864 DOI: 10.1074/mcp.m113.033340] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Multiple sclerosis is a chronic demyelinating disorder characterized by the infiltration of auto-reactive immune cells from the periphery into the central nervous system resulting in axonal injury and neuronal cell death. Experimental autoimmune encephalomyelitis represents the best characterized animal model as common clinical, histological, and immunological features are recapitulated. A label-free mass spectrometric proteomics approach was used to detect differences in protein abundance within specific fractions of disease-affected tissues including the soluble lysate derived from the spinal cord and membrane protein-enriched peripheral blood mononuclear cells. Tissues were harvested from actively induced experimental autoimmune encephalomyelitis mice and sham-induced ("vehicle" control) counterparts at the disease peak followed by subsequent analysis by nanoflow liquid chromatography tandem mass spectrometry. Relative protein quantitation was performed using both intensity- and fragmentation-based approaches. After statistical evaluation of the data, over 500 and 250 differentially abundant proteins were identified in the spinal cord and peripheral blood mononuclear cell data sets, respectively. More than half of these observations have not previously been linked to the disease. The biological significance of all candidate disease markers has been elucidated through rigorous literature searches, pathway analysis, and validation studies. Results from comprehensive targeted mass spectrometry analyses have confirmed the differential abundance of ∼ 200 candidate markers (≥ twofold dysregulated expression) at a 70% success rate. This study is, to our knowledge, the first to examine the cell-surface proteome of peripheral blood mononuclear cells in experimental autoimmune encephalomyelitis. These data provide a unique mechanistic insight into the dynamics of peripheral immune cell infiltration into CNS-privileged sites at a molecular level and has identified several candidate markers, which represent promising targets for future multiple sclerosis therapies. The mass spectrometry proteomics data associated with this manuscript have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000255.
Collapse
Affiliation(s)
- Laura F Dagley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
Levin MC, Lee S, Gardner LA, Shin Y, Douglas JN, Cooper C. Autoantibodies to Non-myelin Antigens as Contributors to the Pathogenesis of Multiple Sclerosis. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2013; 4:10.4172/2155-9899.1000148. [PMID: 24363960 PMCID: PMC3866957 DOI: 10.4172/2155-9899.1000148] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For years, investigators have sought to prove that myelin antigens are the primary targets of autoimmunity in multiple sclerosis (MS). Recent experiments have begun to challenge this assumption, particularly when studying the neurodegenerative phase of MS. T-lymphocyte responses to myelin antigens have been extensively studied, and are likely early contributors to the pathogenesis of MS. Antibodies to myelin antigens have a much more inconstant association with the pathogenesis of MS. Recent studies indicate that antibodies to non-myelin antigens such as neurofilaments, neurofascin, RNA binding proteins and potassium channels may contribute to the pathogenesis of MS. The purpose of this review is to analyze recent studies that examine the role that autoantibodies to non-myelin antigens might play in the pathogenesis of MS.
Collapse
Affiliation(s)
- Michael C. Levin
- Veterans Administration Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neuroscience, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sangmin Lee
- Veterans Administration Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lidia A. Gardner
- Veterans Administration Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yoojin Shin
- Veterans Administration Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joshua N. Douglas
- Veterans Administration Medical Center, Memphis, TN, USA
- Department of Neuroscience, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chelsea Cooper
- Veterans Administration Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
39
|
Mostafa GA, Al-Ayadhi LY. The possible relationship between allergic manifestations and elevated serum levels of brain specific auto-antibodies in autistic children. J Neuroimmunol 2013; 261:77-81. [PMID: 23726766 DOI: 10.1016/j.jneuroim.2013.04.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/25/2013] [Accepted: 04/03/2013] [Indexed: 11/27/2022]
Abstract
Etiology of autism has become an area of a significant controversy. Allergy induced autism is an area of research wherein immune responses to some allergens may play a pathogenic role in autism. Allergy may induce the production of brain specific auto-antibodies in a subgroup of autistic children. We are the first to investigate the possible link between allergic manifestations and serum levels of both anti-myelin basic protein (anti-MBP) and anti-myelin associated glycoprotein (anti-MAG) brain-specific auto-antibodies, which were measured by ELISA method, in 42 autistic children in comparison to 42 healthy-matched children. Allergic manifestations (bronchial asthma, atopic dermatitis and/or allergic rhinitis) were found in 47.6% of autistic patients. Increased serum levels of anti-MBP and anti-MAG auto-antibodies were found in 57.1% and 66.7%, respectively of autistic children. In addition, 78.5% of autistic children had increased serum levels of both anti-MBP and/or anti-MAG auto-antibodies. Autistic patients with allergic manifestations had significantly higher serum levels of anti-MBP and anti-MAG auto-antibodies than those without these manifestations (P<0.001 and P=0.001, respectively). In conclusion, allergy may be a contributing factor to the increased serum levels of anti-MBP and anti-MAG auto-antibodies in some autistic children. Indeed, we need to know more about the links between allergy, immune system and brain in autism for finding new therapeutic modalities in autism.
Collapse
Affiliation(s)
- Gehan Ahmed Mostafa
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | |
Collapse
|
40
|
Van Haren K, Tomooka BH, Kidd BA, Banwell B, Bar-Or A, Chitnis T, Tenembaum SN, Pohl D, Rostasy K, Dale RC, O'Connor KC, Hafler DA, Steinman L, Robinson WH. Serum autoantibodies to myelin peptides distinguish acute disseminated encephalomyelitis from relapsing-remitting multiple sclerosis. Mult Scler 2013; 19:1726-33. [PMID: 23612879 DOI: 10.1177/1352458513485653] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Acute disseminated encephalomyelitis (ADEM) and relapsing-remitting multiple sclerosis (RRMS) share overlapping clinical, radiologic and laboratory features at onset. Because autoantibodies may contribute to the pathogenesis of both diseases, we sought to identify autoantibody biomarkers that are capable of distinguishing them. METHODS We used custom antigen arrays to profile anti-myelin-peptide autoantibodies in sera derived from individuals with pediatric ADEM (n = 15), pediatric multiple sclerosis (Ped MS; n = 11) and adult MS (n = 15). Using isotype-specific secondary antibodies, we profiled both IgG and IgM reactivities. We used Statistical Analysis of Microarrays software to confirm the differences in autoantibody reactivity profiles between ADEM and MS samples. We used Prediction Analysis of Microarrays software to generate and validate prediction algorithms, based on the autoantibody reactivity profiles. RESULTS ADEM was characterized by IgG autoantibodies targeting epitopes derived from myelin basic protein, proteolipid protein, myelin-associated oligodendrocyte basic glycoprotein, and alpha-B-crystallin. In contrast, MS was characterized by IgM autoantibodies targeting myelin basic protein, proteolipid protein, myelin-associated oligodendrocyte basic glycoprotein and oligodendrocyte-specific protein. We generated and validated prediction algorithms that distinguish ADEM serum (sensitivity 62-86%; specificity 56-79%) from MS serum (sensitivity 40-87%; specificity 62-86%) on the basis of combined IgG and IgM anti-myelin autoantibody reactivity to a small number of myelin peptides. CONCLUSIONS Combined profiles of serum IgG and IgM autoantibodies identified myelin antigens that may be useful for distinguishing MS from ADEM. Further studies are required to establish clinical utility. Further biological assays are required to delineate the pathogenic potential of these antibodies.
Collapse
Affiliation(s)
- Keith Van Haren
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Biomarkers in Multiple Sclerosis: An Up-to-Date Overview. Mult Scler Int 2013; 2013:340508. [PMID: 23401777 PMCID: PMC3564381 DOI: 10.1155/2013/340508] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 12/16/2022] Open
Abstract
During the last decades, the effort of establishing satisfactory biomarkers for multiple sclerosis has been proven to be very difficult, due to the clinical and pathophysiological complexities of the disease. Recent knowledge acquired in the domains of genomics-immunogenetics and neuroimmunology, as well as the evolution in neuroimaging, has provided a whole new list of biomarkers. This variety, though, leads inevitably to confusion in the effort of decision making concerning strategic and individualized therapeutics. In this paper, our primary goal is to provide the reader with a list of the most important characteristics that a biomarker must possess in order to be considered as reliable. Additionally, up-to-date biomarkers are further divided into three subgroups, genetic-immunogenetic, laboratorial, and imaging. The most important representatives of each category are presented in the text and for the first time in a summarizing workable table, in a critical way, estimating their diagnostic potential and their efficacy to correlate with phenotypical expression, neuroinflammation, neurodegeneration, disability, and therapeutical response. Special attention is given to the "gold standards" of each category, like HLA-DRB1∗ polymorphisms, oligoclonal bands, vitamin D, and conventional and nonconventional imaging techniques. Moreover, not adequately established but quite promising, recently characterized biomarkers, like TOB-1 polymorphisms, are further discussed.
Collapse
|
42
|
Nielsen CH, Bendtzen K. Immunoregulation by naturally occurring and disease-associated autoantibodies : binding to cytokines and their role in regulation of T-cell responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:116-32. [PMID: 22903670 PMCID: PMC7123141 DOI: 10.1007/978-1-4614-3461-0_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of naturally occurring autoantibodies (NAbs) in homeostasis and in disease manifestations is poorly understood. In the present chapter, we review how NAbs may interfere with the cytokine network and how NAbs, through formation of complement-activating immune complexes with soluble self-antigens, may promote the uptake and presentation of self-molecules by antigen-presenting cells. Both naturally occurring and disease-associated autoantibodies against a variety of cytokines have been reported, including NAbs against interleukin (IL)-1α, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, interferon (IFN)-α, IFN-β, IFN-γ, macrophage chemotactic protein-1 and IL-21. NAbs against a variety of other self-antigens have also been reported, and using thyroglobulin as an example we discuss how NAbs are capable of promoting uptake of immune complexes via complement receptors and Fc-receptors on antigen-presenting cells and thereby regulate T-cell activity. Knowledge of the influence of NAbs against cytokines on immune homeostasis is likely to have wide-ranging implications both in understanding pathogenesis and in treatment of many immunoinflammatory disorders, including a number of autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Claus H Nielsen
- Institute for Inflammation Research, Department of Rheumatology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | |
Collapse
|
43
|
Rosenling T, Stoop MP, Attali A, Aken HV, Suidgeest E, Christin C, Stingl C, Suits F, Horvatovich P, Hintzen RQ, Tuinstra T, Bischoff R, Luider TM. Profiling and Identification of Cerebrospinal Fluid Proteins in a Rat EAE Model of Multiple Sclerosis. J Proteome Res 2012; 11:2048-60. [DOI: 10.1021/pr201244t] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Therese Rosenling
- Department
of Analytical Biochemistry,
Centre for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marcel P. Stoop
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Amos Attali
- Abbott Healthcare Products B.V., Weesp, The Netherlands
| | - Hans van Aken
- Abbott Healthcare Products B.V., Weesp, The Netherlands
| | | | - Christin Christin
- Department
of Analytical Biochemistry,
Centre for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Christoph Stingl
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank Suits
- IBM TJ Watson Research Center, Yorktown Heights, New York, United States
| | - Peter Horvatovich
- Department
of Analytical Biochemistry,
Centre for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rogier Q. Hintzen
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Rainer Bischoff
- Department
of Analytical Biochemistry,
Centre for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Theo M. Luider
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Bar-Or A, Rieckmann P, Traboulsee A, Yong VW. Targeting progressive neuroaxonal injury: lessons from multiple sclerosis. CNS Drugs 2011; 25:783-99. [PMID: 21870889 DOI: 10.2165/11587820-000000000-00000] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), are characterized by progressive neuroaxonal injury, suggesting a common pathophysiological pathway. Identification and development of neuroprotective therapies for such diseases has proven a major challenge, particularly because of an already substantial neuroaxonal compromise at the time of initial onset of clinical symptoms. Methods for early identification of neurodegeneration are therefore vital to ensure that neuroprotective therapies are applied as early as possible. Recent investigations have enhanced our understanding of the role of neuroaxonal injury in multiple sclerosis (MS). As MS generally manifests earlier in life and can be diagnosed much earlier in the course of the disease than the above-mentioned 'classic' neurodegenerative diseases, it is possible that MS could be used as a model disease to study degeneration and regeneration of the CNS. The mechanism of neuroaxonal injury in MS is believed to be inflammation-led neurodegeneration; however, the reverse may also be true (i.e. neuroaxonal degeneration may precede inflammation). Animal models of PD, AD and ALS have shown that it is likely that most cases of disease are due to initial inflammation, followed by a degenerative process, providing a parallel between MS and the classic neurodegenerative diseases. Other common factors between MS and the neurodegenerative diseases include iron and mitochondrial dysregulation, abnormalities in α-synuclein and tau protein, and a number of immune mediators. Conventional MRI techniques, using markers such as T2-weighted lesions, gadolinium-enhancing lesions and T1-weighted hypointensities, are readily available and routinely used in clinical practice; however, the utility of these MRI measures to predict disease progression in MS is limited. More recently, MRI techniques that provide more pathology-specific data have been applied in MS studies, including magnetic resonance spectroscopy, magnetization transfer ratio and myelin water imaging. Optical coherence tomography (OCT) is a non-MRI technique that quantifies optic nerve integrity and retinal ganglion cell loss as markers of neuroaxonal injury; more research is needed to evaluate whether information obtained from OCT is a reliable marker of axonal injury and long-term disability in MS. Using these advanced techniques, it may become possible to follow degeneration and regeneration longitudinally in patients with MS and to better differentiate the effects of drugs under investigation. Currently available immune-directed therapies that are approved by the US FDA for the first-line treatment of MS (interferon-β and glatiramer acetate) have been shown to decelerate the inflammatory process in MS; however, such therapy is less effective in preventing the progression of the disease and neuroaxonal injury. The use of MS as a clinical model to study modulation of neuroaxonal injury in the brain could have direct implications for the development of treatment strategies in neurodegenerative diseases such as AD, PD and ALS.
Collapse
Affiliation(s)
- Amit Bar-Or
- Department of Neurology and Neurosurgery and Microbiology and Immunology, McGill University, Neuroimmunology Unit, Montreal, QC, Canada
| | | | | | | |
Collapse
|
45
|
A lack of association between hyperserotonemia and the increased frequency of serum anti-myelin basic protein auto-antibodies in autistic children. J Neuroinflammation 2011; 8:71. [PMID: 21696608 PMCID: PMC3142225 DOI: 10.1186/1742-2094-8-71] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One of the most consistent biological findings in autism is the elevated blood serotonin levels. Immune abnormalities, including autoimmunity with production of brain specific auto-antibodies, are also commonly observed in this disorder. Hyperserotonemia may be one of the contributing factors to autoimmunity in some patients with autism through the reduction of T-helper (Th) 1-type cytokines. We are the first to investigate the possible role of hyperserotonemia in the induction of autoimmunity, as indicated by serum anti-myelin-basic protein (anti-MBP) auto-antibodies, in autism. METHODS Serum levels of serotonin and anti-MBP auto-antibodies were measured, by ELISA, in 50 autistic patients, aged between 5 and 12 years, and 30 healthy-matched children. RESULTS Autistic children had significantly higher serum levels of serotonin and anti-MBP auto-antibodies than healthy children (P < 0.001 and P < 0.001, respectively). Increased serum levels of serotonin and anti-MBP auto-antibodies were found in 92% and 80%, respectively of autistic patients. Patients with severe autism had significantly higher serum serotonin levels than children with mild to moderate autism (P < 0.001). Serum serotonin levels had no significant correlations with serum levels of anti-MBP auto-antibodies in autistic patients (P = 0.39). CONCLUSIONS Hyperserotonemia may not be one of the contributing factors to the increased frequency of serum anti-MBP auto-antibodies in some autistic children. These data should be treated with caution until further investigations are performed. However, inclusion of serum serotonin levels as a correlate may be useful in other future immune studies in autism to help unravel the long-standing mystery of hyperserotonemia and its possible role in the pathophysiology of this disorder.
Collapse
|
46
|
Sauerborn M, van de Vosse E, Delawi D, van Dissel JT, Brinks V, Schellekens H. Natural antibodies against bone morphogenic proteins and interferons in healthy donors and in patients with infections linked to type-1 cytokine responses. J Interferon Cytokine Res 2011; 31:661-9. [PMID: 21612442 DOI: 10.1089/jir.2010.0075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In patients receiving recombinant therapeutic proteins, the production of antibodies against the therapeutics is a rising problem. The antibodies can neutralize and interfere with the efficacy and safety of drugs and even cause severe side effects if they cross-react against the natural, endogenous protein. Various factors have been identified to influence the immunogenic potential of recombinant human therapeutics, including several patients' characteristics. In recent years, so-called naturally occurring antibodies against cytokines and growth factors have been detected in naive patients before start of treatment with recombinant human therapeutics. The role of naturally occurring antibodies is not well understood and their influence on production of anti-drug antibodies is not known. One might speculate that the presence of naturally occurring antibodies increases the likelihood of eliciting anti-drug antibodies once treatment with the corresponding recombinant therapeutic protein is started. We screened serum samples from 410 healthy controls and patients for auto-antibodies against bone morphogenetic proteins (BMPs) 2 and 7 and interferon (IFN)-α, -β, and -γ in a new 3-step approach: rough initial screening, followed by competition and protein A/G depletion. Naturally occurring antibodies against these proteins were detected in 2% to 4% of the tested sera. Individuals who are 65 years or older had a slightly higher occurrence of naturally occurring antibodies. Auto-antibodies against BMP-7 and IFN-α were mainly comprised of IgM isotypes, and natural antibodies against BMP-2, IFN-β, and -γ were mainly IgG. To ensure assay specificity, assays were also used to detect antibodies against BMP-7 in patients being treated with rhBMP-7 before and after surgical procedure. Fifty percent of the treated patients had persistent anti-BMP-7 antibodies over time. The 3-step approach provides an attractive tool to identify naturally occurring antibodies in naive patients.
Collapse
Affiliation(s)
- Melody Sauerborn
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
47
|
Hedegaard CJ, Enevold C, Sellebjerg F, Bendtzen K, Nielsen CH. Variation in NOD2 augments Th2- and Th17 responses to myelin basic protein in multiple sclerosis. PLoS One 2011; 6:e20253. [PMID: 21625457 PMCID: PMC3098873 DOI: 10.1371/journal.pone.0020253] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/28/2011] [Indexed: 11/19/2022] Open
Abstract
Variations in the gene for the nucleotide-binding oligomerisation domain (NOD) 2 have been associated with Crohn's disease but not multiple sclerosis (MS). Here we investigate the effect of three polymorphisms in the NOD2 gene (rs5743277, rs2066842 and rs5743291) on cytokine production and CD4+ T cell proliferation elicited by human myelin basic protein (MBP) in blood mononuclear cell (MNC) cultures from 29 patients with MS. No polymorphism was observed at rs5743277. No associations with the rs2066842 polymorphism were found. Concerning rs5743291, none were homozygous for the minor allele. Seven of 29 (24%) patients were heterozygous, and five of these (71%) exhibited increased MBP-induced CD4+ T cell proliferation versus four of 22 (18%), who were homozygous for the major allele (p<0.04). Interleukin (IL)-5 was induced by MBP in MNC from the same five carriers versus two (9%) homozygotes (p<0.004); four carriers (57%) versus three non-carriers (14%) exhibited IL-17 responses to MBP (p<0.04). By contrast, we found no association between the polymorphisms investigated and interferon-gamma-, tumor necrosis factor-alpha-, IL-2, -4- or IL-10 responses to MBP. These results indicate that the rs5743291 polymorphism influences T helper (Th) cell 2- and Th17 cell responses in MNC from MS patients.
Collapse
Affiliation(s)
- Chris Juul Hedegaard
- Institute for Inflammation Research, Department of Rheumatology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Department of Rheumatology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Finn Sellebjerg
- Danish MS Research Centre, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Klaus Bendtzen
- Institute for Inflammation Research, Department of Rheumatology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Department of Rheumatology, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
48
|
Kala M, Miravalle A, Vollmer T. Recent insights into the mechanism of action of glatiramer acetate. J Neuroimmunol 2011; 235:9-17. [PMID: 21402415 DOI: 10.1016/j.jneuroim.2011.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 01/04/2023]
Abstract
Glatiramer acetate (GA, Copaxone®, co-polymer 1) is an immunomodulatory therapy approved in 1996 by the United States Food and Drug Administration for treatment of relapsing-remitting multiple sclerosis. GA has a good safety profile, moderate efficacy, and a unique mode of action. Recent evidence in an animal model of MS, experimental autoimmune encephalomyelitis (EAE), suggests that GA effects on NK cells and B cells may contribute to therapeutic efficacy. We review the mechanism of action of GA, with particular focus on recent data suggesting a role for regulatory B cells.
Collapse
Affiliation(s)
- Mrinalini Kala
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | | | | |
Collapse
|
49
|
The experimental autoimmune encephalomyelitis model for proteomic biomarker studies: from rat to human. Clin Chim Acta 2011; 412:812-22. [PMID: 21333641 DOI: 10.1016/j.cca.2011.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 01/13/2023]
Abstract
Multiple sclerosis (MScl) is defined by central nervous system (CNS) inflammation, demyelination and axonal damage. Some of the disease mechanisms are known but the cause of this complex disorder stays an enigma. Experimental autoimmune encephalomyelitis (EAE) is an animal model mimicking many aspects of MScl. This review aims to provide an overview over proteomic biomarker studies in the EAE model emphasizing the translational aspects with respect to MScl in humans.
Collapse
|
50
|
Hedegaard CJ, Sellebjerg F, Krakauer M, Hesse D, Bendtzen K, Nielsen CH. Interferon-beta increases systemic BAFF levels in multiple sclerosis without increasing autoantibody production. Mult Scler 2010; 17:567-77. [PMID: 21177756 DOI: 10.1177/1352458510393771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Treatment with interferon-beta (IFN-beta) increases B-cell activating factor of the TNF family (BAFF) expression in multiple sclerosis (MS), raising the concern that treatment of MS patients with IFN-beta may activate autoimmune B cells and stimulate the production of MS-associated autoantibodies. OBJECTIVE To investigate whether BAFF levels are associated with disease severity/activity in untreated MS patients, and to assess the effect of IFN-beta therapy on circulating BAFF and anti-myelin basic protein (MBP) autoantibody levels. RESULTS Twenty-three patients with relapsing-remitting MS (RRMS) were followed longitudinally from initiation of IFN-beta therapy. Their blood levels of BAFF correlated positively at baseline with the expanded disability status scale (p<0.009) and MS severity score (p<0.05), but not with disease activity as determined by the number of gadolinium-enhanced lesions. The patients were followed for up to 26 months, during which the BAFF levels remained elevated without association to increased disease activity. IFN-beta therapy caused an increase in plasma BAFF levels after both 3 and 6 months of therapy (p<0.002). However, an 11% decrease in IgM and a 33% decrease in IgG anti-MBP autoantibodies (p<0.09 and p<0.009, respectively) was observed after 6 months. CONCLUSION Pre-treatment BAFF levels correlate with high disability scores in MS, suggesting that high BAFF expression is a negative prognostic marker. Despite its known beneficial effects, IFN-beta therapy causes a sustained increase in plasma BAFF levels, which does not translate into increased levels of anti-MBP autoantibodies.
Collapse
Affiliation(s)
- Chris J Hedegaard
- Institute for Inflammation Research, Department of Rheumatology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | | | | | | | | |
Collapse
|