1
|
Jha SS, Songachan LS. Influence of arbuscular mycorrhizal fungi on morpho-biochemical characteristics, nutrient uptake, and transcriptomic profile of Solanum melongena L. plant. 3 Biotech 2025; 15:84. [PMID: 40078569 PMCID: PMC11893938 DOI: 10.1007/s13205-025-04247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
The present study was carried out to observe the interaction between Solanum melongena L. with AMF treatments at morphological, biochemical, and molecular levels. The S. melongena plant was inoculated with Funneliformis mosseae, Glomus macrocarpum, Glomus monosporum, Acaulospora koskei, Acaulospora mellea and Rhizophagus irregularis, and also two consortia of F. mosseae + G. monosporum and F. mosseae + G. macrocarpum. Morphological and biochemical parameters such as shoot height, root length, shoot fresh weight, shoot dry weight, fruit fresh weight, fruit dry weight, root fresh weigh, root dry weight, chlorophyll a and b, total soluble sugars, total soluble proteins were examined in this study. Uptake of some essential micronutrients was also analyzed in this study. In transcriptomics experiment, a total of 365 transcripts were commonly upregulated (≥ 1.5x) folds in S. melongena in response to both the AMF isolates, while 44 transcripts were upregulated only in response to G. Macrocarpum and 28 transcripts were upregulated only in response to F. mosseae. KEGG pathway analysis of S. melongena treated with G. macrocarpum revealed carbon metabolism, cofactor biosynthesis and endocytosis as the dominant metabolic pathway, while analysis of F. mosseae treatment revealed glycerophospholipid and endocytosis metabolism as dominant metabolic pathways. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04247-z.
Collapse
Affiliation(s)
- Subhesh Saurabh Jha
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - L. S. Songachan
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh India
| |
Collapse
|
2
|
Jaiswal R, Braud B, Hernandez-Ramirez K, Santosh V, Washington A, Escalante C. Cryo-EM structure of AAV2 Rep68 bound to integration site AAVS1: insights into the mechanism of DNA melting. Nucleic Acids Res 2025; 53:gkaf033. [PMID: 39883011 PMCID: PMC11780844 DOI: 10.1093/nar/gkaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states. In the nucleotide-free state, Rep68 forms a heptameric complex around DNA, with three origin-binding domains (OBDs) bound to the Rep-binding element sequence, while three remaining OBDs form transient dimers with them. The AAA+ domains form an open ring without interactions between subunits and DNA. We hypothesize that the heptameric structure is crucial for loading Rep68 onto double-stranded DNA. The ATPγS complex shows that only three subunits associate with the nucleotide, leading to a conformational change that promotes the formation of both intersubunit and DNA interactions. Moreover, three phenylalanine residues in the AAA+ domain induce a steric distortion in the DNA. Our study provides insights into how an SF3 helicase assembles on DNA and provides insights into the DNA melting process.
Collapse
Affiliation(s)
- Rahul Jaiswal
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Brandon Braud
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Karen C Hernandez-Ramirez
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Vishaka Santosh
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Alexander Washington
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Carlos R Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| |
Collapse
|
3
|
Codutti L, Kirkpatrick JP, Zur Lage S, Carlomagno T. Long-range conformational changes in the nucleotide-bound states of the DEAD-box helicase Vasa. Biophys J 2024; 123:3884-3897. [PMID: 39367603 PMCID: PMC11617632 DOI: 10.1016/j.bpj.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/06/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024] Open
Abstract
DEAD-box helicases use ATP to unwind short double-stranded RNA (dsRNA). The helicase core consists of two discrete domains, termed RecA_N and RecA_C. The nucleotide binding site is harbored in RecA_N, while both RecA_N and RecA_C are involved in RNA recognition and ATP hydrolysis. In the absence of nucleotides or RNA, RecA_N and RecA_C do not interact ("open" form of the enzyme). In the presence of both RNA and ATP the two domains come together ("closed" form), building the composite RNA binding site and stimulating ATP hydrolysis. Because of the different roles and thermodynamic properties of the ADP-bound and ATP-bound states in the catalytic cycle, the conformations of DEAD-box helicases in complex with ATP and ADP are assumed to be different. However, the available crystal structures do not recapitulate these supposed differences and show identical conformations of DEAD-box helicases independent of the identity of the bound nucleotide. Here, we use NMR to demonstrate that the conformations of the ATP- and ADP-bound forms of the DEAD-box helicase Vasa are indeed different, contrary to the results from x-ray crystallography. These differences do not relate to the populations of the open and closed forms, but are intrinsic to the RecA_N domain. NMR chemical shift analysis reveals the regions of RecA_N where the average conformations of Vasa-ADP and Vasa-ATP are most different and indicates that these differences may contribute to modulating the affinity of the two nucleotide-bound complexes for RNA substrates.
Collapse
Affiliation(s)
- Luca Codutti
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Hannover, Germany
| | - John P Kirkpatrick
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Susanne Zur Lage
- Helmholtz Centre for Infection Research, Group of Structural Chemistry, Braunschweig, Germany
| | - Teresa Carlomagno
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom; Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
4
|
Jaiswal R, Santosh V, Braud B, Washington A, Escalante CR. Cryo-EM Structure of AAV2 Rep68 bound to integration site AAVS1: Insights into the mechanism of DNA melting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587759. [PMID: 38617369 PMCID: PMC11014581 DOI: 10.1101/2024.04.02.587759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions required for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin and catalyzes the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. Here, we report the Cryo-EM structures of Rep68 bound to double-stranded DNA (dsDNA) containing the sequence of the AAVS1 integration site in different nucleotide-bound states. In the apo state, Rep68 forms a heptameric complex around DNA, with three Origin Binding Domains (OBDs) bound to the Rep Binding Site (RBS) sequence and three other OBDs forming transient dimers with them. The AAA+ domains form an open ring with no interactions between subunits and with DNA. We hypothesize the heptameric quaternary structure is necessary to load onto dsDNA. In the ATPγS-bound state, a subset of three subunits binds the nucleotide, undergoing a large conformational change, inducing the formation of intersubunit interactions interaction and interaction with three consecutive DNA phosphate groups. Moreover, the induced conformational change positions three phenylalanine residues to come in close contact with the DNA backbone, producing a distortion in the DNA. We propose that the phenylalanine residues can potentially act as a hydrophobic wedge in the DNA melting process.
Collapse
Affiliation(s)
- R. Jaiswal
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
- Current address: Department of Biochemistry and Molecular Biology, University of Arkansas for the Medical Sciences, Little Rock AR 72205
| | - V. Santosh
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
- Current address: US Army DEVCOM Chemical Biological Center, Gunpowder MD
| | - B. Braud
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
| | - A. Washington
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
- Current address: Mayo Clinic Graduate School of Biomedical Research, Department of Biochemistry and Molecular Biology, Rochester, MN 55905
| | - Carlos R. Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
| |
Collapse
|
5
|
Mu F, Zheng H, Zhao Q, Zhu M, Dong T, Kai L, Li Z. Genome-wide systematic survey and analysis of the RNA helicase gene family and their response to abiotic stress in sweetpotato. BMC PLANT BIOLOGY 2024; 24:193. [PMID: 38493089 PMCID: PMC10944623 DOI: 10.1186/s12870-024-04824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/14/2024] [Indexed: 03/18/2024]
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.
Collapse
Affiliation(s)
- Fangfang Mu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Hao Zheng
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Qiaorui Zhao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingku Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tingting Dong
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
6
|
Meir A, Raina VB, Rivera CE, Marie L, Symington LS, Greene EC. The separation pin distinguishes the pro- and anti-recombinogenic functions of Saccharomyces cerevisiae Srs2. Nat Commun 2023; 14:8144. [PMID: 38065943 PMCID: PMC10709652 DOI: 10.1038/s41467-023-43918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Srs2 is an Sf1a helicase that helps maintain genome stability in Saccharomyces cerevisiae through its ability to regulate homologous recombination. Srs2 downregulates HR by stripping Rad51 from single-stranded DNA, and Srs2 is also thought to promote synthesis-dependent strand annealing by unwinding D-loops. However, it has not been possible to evaluate the relative contributions of these two distinct activities to any aspect of recombination. Here, we used a structure-based approach to design an Srs2 separation-of-function mutant that can dismantle Rad51-ssDNA filaments but is incapable of disrupting D-loops, allowing us to assess the relative contributions of these pro- and anti-recombinogenic functions. We show that this separation-of-function mutant phenocopies wild-type SRS2 in vivo, suggesting that the ability of Srs2 to remove Rad51 from ssDNA is its primary role during HR.
Collapse
Affiliation(s)
- Aviv Meir
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Vivek B Raina
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Carly E Rivera
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Léa Marie
- Department of Microbiology & Immunology, Columbia University, New York, NY, 10032, USA
- Institute of Pharmacology and Structural Biology (IPBS), French National Centre for Scientific Research (CNRS), Université Toulouse III, Toulouse, France
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University, New York, NY, 10032, USA
- Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Becker RA, Hub JS. Molecular simulations of DEAH-box helicases reveal control of domain flexibility by ligands: RNA, ATP, ADP, and G-patch proteins. Biol Chem 2023; 404:867-879. [PMID: 37253384 DOI: 10.1515/hsz-2023-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
DEAH-box helicases use the energy from ATP hydrolysis to translocate along RNA strands. They are composed of tandem RecA-like domains and a C-terminal domain connected by flexible linkers, and the activity of several DEAH-box helicases is regulated by cofactors called G-patch proteins. We used all-atom molecular dynamics simulations of the helicases Prp43, Prp22, and DHX15 in various liganded states to investigate how RNA, ADP, ATP, or G-patch proteins influence their conformational dynamics. The simulations suggest that apo helicases are highly flexible, whereas binding of RNA renders the helicases more rigid. ATP and ADP control the stability of the RecA1-RecA2 interface, but they have only a smaller effect on domain flexibility in absence of a RecA1-RecA2 interface. Binding of a G-patch protein to DHX15 imposes a more structured conformational ensemble, characterized by more defined relative domain arrangements and by an increased conformational stability of the RNA tunnel. However, the effect of the G-patch protein on domain dynamics is far more subtle as compared to the effects of RNA or ATP/ADP. The simulations characterize DEAH-box helicase as dynamic machines whose conformational ensembles are strongly defined by the presence of RNA, ATP, or ADP and only fine-tuned by the presence of G-patch proteins.
Collapse
Affiliation(s)
- Robert A Becker
- Theoretical Physics and Center for Biophysics, Saarland University, Campus E2 6, 66123 Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Campus E2 6, 66123 Saarbrücken, Germany
| |
Collapse
|
8
|
Becker RA, Hub JS. Continuous millisecond conformational cycle of a DEAH box helicase reveals control of domain motions by atomic-scale transitions. Commun Biol 2023; 6:379. [PMID: 37029280 PMCID: PMC10082070 DOI: 10.1038/s42003-023-04751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
Helicases are motor enzymes found in every living organism and viruses, where they maintain the stability of the genome and control against false recombination. The DEAH-box helicase Prp43 plays a crucial role in pre-mRNA splicing in unicellular organisms by translocating single-stranded RNA. The molecular mechanisms and conformational transitions of helicases are not understood at the atomic level. We present a complete conformational cycle of RNA translocation by Prp43 in atomic detail based on molecular dynamics simulations. To enable the sampling of such complex transition on the millisecond timescale, we combined two enhanced sampling techniques, namely simulated tempering and adaptive sampling guided by crystallographic data. During RNA translocation, the center-of-mass motions of the RecA-like domains followed the established inchworm model, whereas the domains crawled along the RNA in a caterpillar-like movement, suggesting an inchworm/caterpillar model. However, this crawling required a complex sequence of atomic-scale transitions involving the release of an arginine finger from the ATP pocket, stepping of the hook-loop and hook-turn motifs along the RNA backbone, and several others. These findings highlight that large-scale domain dynamics may be controlled by complex sequences of atomic-scale transitions.
Collapse
Affiliation(s)
- Robert A Becker
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
9
|
Sather LM, Zamani M, Muhammed Z, Kearsley JVS, Fisher GT, Jones KM, Finan TM. A broadly distributed predicted helicase/nuclease confers phage resistance via abortive infection. Cell Host Microbe 2023; 31:343-355.e5. [PMID: 36893733 DOI: 10.1016/j.chom.2023.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 03/11/2023]
Abstract
There is strong selection for the evolution of systems that protect bacterial populations from viral attack. We report a single phage defense protein, Hna, that provides protection against diverse phages in Sinorhizobium meliloti, a nitrogen-fixing alpha-proteobacterium. Homologs of Hna are distributed widely across bacterial lineages, and a homologous protein from Escherichia coli also confers phage defense. Hna contains superfamily II helicase motifs at its N terminus and a nuclease motif at its C terminus, with mutagenesis of these motifs inactivating viral defense. Hna variably impacts phage DNA replication but consistently triggers an abortive infection response in which infected cells carrying the system die but do not release phage progeny. A similar host cell response is triggered in cells containing Hna upon expression of a phage-encoded single-stranded DNA binding protein (SSB), independent of phage infection. Thus, we conclude that Hna limits phage spread by initiating abortive infection in response to a phage protein.
Collapse
Affiliation(s)
- Leah M Sather
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Maryam Zamani
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Zahed Muhammed
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Jason V S Kearsley
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Gabrielle T Fisher
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
10
|
Osorio Garcia MA, Satyshur KA, Cox MM, Keck JL. X-ray crystal structure of the Escherichia coli RadD DNA repair protein bound to ADP reveals a novel zinc ribbon domain. PLoS One 2022; 17:e0266031. [PMID: 35482735 PMCID: PMC9049331 DOI: 10.1371/journal.pone.0266031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/11/2022] [Indexed: 11/19/2022] Open
Abstract
Genome maintenance is an essential process in all cells. In prokaryotes, the RadD protein is important for survival under conditions that include DNA-damaging radiation. Precisely how RadD participates in genome maintenance remains unclear. Here we present a high-resolution X-ray crystal structure of ADP-bound Escherichia coli RadD, revealing a zinc-ribbon element that was not modelled in a previous RadD crystal structure. Insights into the mode of nucleotide binding and additional structure refinement afforded by the new RadD model will help to drive investigations into the activity of RadD as a genome stability and repair factor.
Collapse
Affiliation(s)
- Miguel A. Osorio Garcia
- Department of Biochemistry, University of Wisconsin, Madison, Madison, WI, United States of America
- * E-mail: (MMC); (JLK); (MAOG)
| | - Kenneth A. Satyshur
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin, Madison, Madison, WI, United States of America
- * E-mail: (MMC); (JLK); (MAOG)
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- * E-mail: (MMC); (JLK); (MAOG)
| |
Collapse
|
11
|
Abstract
Flaviviruses such as dengue, Japanese encephalitis, West Nile, Yellow Fever and Zika virus, cause viral hemorrhagic fever and encephalitis in humans. However, antiviral therapeutics to treat or prevent flavivirus infections are not yet available. Thus, there is pressing need to develop therapeutics and vaccines that target flavivirus infections. All flaviviruses carry a positive-sense single-stranded RNA genome, which encodes ten proteins; three structural proteins form the virus shell, and seven nonstructural (NS) proteins are involved in replication of the viral genome. While all NS proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) are part of a functional membrane-bound replication complex, enzymatic activities required for flaviviral replication reside in only two NS proteins, NS3 and NS5. NS3 functions as a protease, helicase, and triphosphatase, and NS5 as a capping enzyme, methyltransferase, and RNA-dependent RNA polymerase. In this chapter, we provide an overview of viral replication focusing on the structure and function of NS3 and NS5 replicases. We further describe strategies and examples of current efforts to identify potential flavivirus inhibitors against NS3 and NS5 enzymatic activities that can be developed as therapeutic agents to combat flavivirus infections.
Collapse
Affiliation(s)
- Ekaterina Knyazhanskaya
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
12
|
Meir A, Greene EC. Srs2 and Pif1 as Model Systems for Understanding Sf1a and Sf1b Helicase Structure and Function. Genes (Basel) 2021; 12:1319. [PMID: 34573298 PMCID: PMC8469786 DOI: 10.3390/genes12091319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
Helicases are enzymes that convert the chemical energy stored in ATP into mechanical work, allowing them to move along and manipulate nucleic acids. The helicase superfamily 1 (Sf1) is one of the largest subgroups of helicases and they are required for a range of cellular activities across all domains of life. Sf1 helicases can be further subdivided into two classes called the Sf1a and Sf1b helicases, which move in opposite directions on nucleic acids. The results of this movement can range from the separation of strands within duplex nucleic acids to the physical remodeling or removal of nucleoprotein complexes. Here, we describe the characteristics of the Sf1a helicase Srs2 and the Sf1b helicase Pif1, both from the model organism Saccharomyces cerevisiae, focusing on the roles that they play in homologous recombination, a DNA repair pathway that is necessary for maintaining genome integrity.
Collapse
Affiliation(s)
| | - Eric C. Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
13
|
Disassembly of intermolecular hydrogen bond induced by cations on self-assembled monolayer. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Zhao MM, Wang RS, Zhou YL, Yang ZG. Emerging relationship between RNA helicases and autophagy. J Zhejiang Univ Sci B 2020; 21:767-778. [PMID: 33043643 PMCID: PMC7606199 DOI: 10.1631/jzus.b2000245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/10/2020] [Indexed: 01/15/2023]
Abstract
RNA helicases, the largest family of proteins that participate in RNA metabolism, stabilize the intracellular environment through various processes, such as translation and pre-RNA splicing. These proteins are also involved in some diseases, such as cancers and viral diseases. Autophagy, a self-digestive and cytoprotective trafficking process in which superfluous organelles and cellular garbage are degraded to stabilize the internal environment or maintain basic cellular survival, is associated with human diseases. Interestingly, similar to autophagy, RNA helicases play important roles in maintaining cellular homeostasis and are related to many types of diseases. According to recent studies, RNA helicases are closely related to autophagy, participate in regulating autophagy, or serve as a bridge between autophagy and other cellular activities that widely regulate some pathophysiological processes or the development and progression of diseases. Here, we summarize the most recent studies to understand how RNA helicases function as regulatory proteins and determine their association with autophagy in various diseases.
Collapse
Affiliation(s)
- Miao-miao Zhao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Ru-sha Wang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Yan-lin Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zheng-gang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
15
|
Hu B, Yu L, Zhu N, Xie J. Cellular UAP56 interacts with the HBx protein of the hepatitis B virus and is involved in viral RNA nuclear export in hepatocytes. Exp Cell Res 2020; 390:111929. [DOI: 10.1016/j.yexcr.2020.111929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 01/29/2023]
|
16
|
Brosh RM, Matson SW. History of DNA Helicases. Genes (Basel) 2020; 11:genes11030255. [PMID: 32120966 PMCID: PMC7140857 DOI: 10.3390/genes11030255] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.
Collapse
Affiliation(s)
- Robert M. Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| | - Steven W. Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| |
Collapse
|
17
|
Yasmin R, Chauhan M, Sourabh S, Tuteja R. Plasmodium falciparum DDX31 is DNA helicase localized in nucleolus. Heliyon 2019; 5:e02905. [PMID: 31872112 PMCID: PMC6911875 DOI: 10.1016/j.heliyon.2019.e02905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/24/2019] [Accepted: 11/19/2019] [Indexed: 11/03/2022] Open
Abstract
Malaria is a major infectious disease and is responsible for millions of infections every year. As drug resistance strains of Plasmodium species are emerging, there is an urgent need to understand the parasite biology and identify new drug targets. Helicases are very important enzymes that participate in various nucleic acid metabolic processes. Previously we have reported several putative DEAD box helicases in the genome of Plasmodium falciparum 3D7 strain. In this study, we present biochemical characterization of one of the members of Has1 (Helicase associated with SET1) family of DEAD box proteins from P. falciparum 3D7 strain. PfDDX31 is a homologue of human DDX31 helicase and contains all the conserved characteristics motifs. The core PfDDX31C exhibits DNA and RNA dependent ATPase activity and unwinds partially duplex DNA by utilizing ATP or dATP only. The immunofluorescence assay results show that PfDDX31 is expressed throughout all the intraerythrocytic developmental stages in P. falciparum 3D7 strain. The co-localization with nucleolar marker PfNop1 further suggests that PfDDX31 is mostly present in nucleolus, a discrete nuclear compartment.
Collapse
Affiliation(s)
| | | | | | - Renu Tuteja
- Parasite Biology Group, ICGEB, P. O. 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
18
|
Toliusis P, Tamulaitiene G, Grigaitis R, Tuminauskaite D, Silanskas A, Manakova E, Venclovas C, Szczelkun MD, Siksnys V, Zaremba M. The H-subunit of the restriction endonuclease CglI contains a prototype DEAD-Z1 helicase-like motor. Nucleic Acids Res 2019; 46:2560-2572. [PMID: 29471489 PMCID: PMC5861437 DOI: 10.1093/nar/gky107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/08/2018] [Indexed: 11/13/2022] Open
Abstract
CglI is a restriction endonuclease from Corynebacterium glutamicum that forms a complex between: two R-subunits that have site specific-recognition and nuclease domains; and two H-subunits, with Superfamily 2 helicase-like DEAD domains, and uncharacterized Z1 and C-terminal domains. ATP hydrolysis by the H-subunits catalyses dsDNA translocation that is necessary for long-range movement along DNA that activates nuclease activity. Here, we provide biochemical and molecular modelling evidence that shows that Z1 has a fold distantly-related to RecA, and that the DEAD-Z1 domains together form an ATP binding interface and are the prototype of a previously undescribed monomeric helicase-like motor. The DEAD-Z1 motor has unusual Walker A and Motif VI sequences those nonetheless have their expected functions. Additionally, it contains DEAD-Z1-specific features: an H/H motif and a loop (aa 163–aa 172), that both play a role in the coupling of ATP hydrolysis to DNA cleavage. We also solved the crystal structure of the C-terminal domain which has a unique fold, and demonstrate that the Z1-C domains are the principal DNA binding interface of the H-subunit. Finally, we use small angle X-ray scattering to provide a model for how the H-subunit domains are arranged in a dimeric complex.
Collapse
Affiliation(s)
- Paulius Toliusis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Rokas Grigaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Donata Tuminauskaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Arunas Silanskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Elena Manakova
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Ceslovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Mindaugas Zaremba
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
19
|
Plasmodium falciparum specific helicase 2 is a dual, bipolar helicase and is crucial for parasite growth. Sci Rep 2019; 9:1519. [PMID: 30728406 PMCID: PMC6365506 DOI: 10.1038/s41598-018-38032-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
Human malaria infection is a major challenge across the globe and is responsible for millions of deaths annually. Rapidly emerging drug resistant strains against the new class of anti-malarial drugs are major threat to control the disease burden worldwide. Helicases are present in every organism and have important role in various nucleic acid metabolic processes. Previously we have reported the presence of three parasite specific helicases (PSH) in Plasmodium falciparum 3D7 strain. Here we present the detailed biochemical characterization of PfPSH2. PfPSH2 is DNA and RNA stimulated ATPase and is able to unwind partially duplex DNA and RNA substrates. It can translocate in both 3' to 5' and 5' to 3' directions. PfPSH2 is expressed in all the stages of intraerythrocytic development and it is localized in cytoplasm in P. falciparum 3D7 strain. The dsRNA mediated inhibition study suggests that PfPSH2 is important for the growth and survival of the parasite. This study presents the detailed characterization of PfPSH2 and lays the foundation for future development of PfPSH2 as drug target.
Collapse
|
20
|
Budzinski IGF, de Moraes FE, Cataldi TR, Franceschini LM, Labate CA. Network Analyses and Data Integration of Proteomics and Metabolomics From Leaves of Two Contrasting Varieties of Sugarcane in Response to Drought. FRONTIERS IN PLANT SCIENCE 2019; 10:1524. [PMID: 31850025 PMCID: PMC6892781 DOI: 10.3389/fpls.2019.01524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 11/01/2019] [Indexed: 05/11/2023]
Abstract
Uncovering the molecular mechanisms involved in the responses of crops to drought is crucial to understand and enhance drought tolerance mechanisms. Sugarcane (Saccharum spp.) is an important commercial crop cultivated mainly in tropical and subtropical areas for sucrose and ethanol production. Usually, drought tolerance has been investigated by single omics analysis (e.g. global transcripts identification). Here we combine label-free quantitative proteomics and metabolomics data (GC-TOF-MS), using a network-based approach, to understand how two contrasting commercial varieties of sugarcane, CTC15 (tolerant) and SP90-3414 (susceptible), adjust their leaf metabolism in response to drought. To this aim, we propose the utilization of regularized canonical correlation analysis (rCCA), which is a modification of classical CCA, and explores the linear relationships between two datasets of quantitative variables from the same experimental units, with a threshold set to 0.99. Light curves revealed that after 4 days of drought, the susceptible variety had its photosynthetic capacity already significantly reduced, while the tolerant variety did not show major reduction. Upon 12 days of drought, photosynthesis in the susceptible plants was completely reduced, while the tolerant variety was at a third of its rate under control conditions. Network analysis of proteins and metabolites revealed that different biological process had a stronger impact in each variety (e.g. translation in CTC15, generation of precursor metabolites, response to stress and energy in SP90-3414). Our results provide a reference data set and demonstrate that rCCA can be a powerful tool to infer experimentally metabolite-protein or protein-metabolite associations to understand plant biology.
Collapse
|
21
|
Karthik S, Tuteja N, Ganapathi A, Manickavasagam M. Pea p68, a DEAD-box helicase, enhances salt tolerance in marker-free transgenic plants of soybean [ Glycine max (L.) Merrill]. 3 Biotech 2019; 9:10. [PMID: 30622848 PMCID: PMC6314947 DOI: 10.1007/s13205-018-1553-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/22/2018] [Indexed: 01/24/2023] Open
Abstract
Protein p68 is a prototype constituent of DEAD-box protein family, which is involved in RNA metabolism, induced during abiotic stress conditions. In order to address the salinity stress faced by economically important soybean crop, we have transformed soybean cv. PUSA 9712 via direct organogenesis with marker free construct of p68 gene by Agrobacterium-mediated genetic transformation. The putative transgenic plants were screened by Polymerase chain reaction (PCR), Dot blot analysis and Southern blot hybridization. Reverse transcriptase-PCR (RT-PCR) and Quantitative real-time PCR (qRT-PCR) established that the p68 gene expressed in three out of five southern positive (T1) plants. The transformed (T1) soybean plants survived irrigation upto 200 mM of NaCl whereas the non-transformed (NT) plants could not survive even 150 mM NaCl. The transgenic soybean (T1) plants showed a higher accumulation of chlorophyll, proline, CAT, APX, SOD, RWC, DHAR and MDHAR than the NT plants under salinity stress conditions. The transformed (T1) soybean plants also retained a higher net photosynthetic rate, stomatal conductance and CO2 assimilation as compared to NT plants. Further analysis revealed that (T1) soybean plants accumulated higher K+ and lower Na+ levels than NT plants. Yield performance of transformed soybean plants was estimated in the transgenic green house under salinity stress conditions. The transformed (T1) soybean plants expressing the p68 gene were morphologically similar to non-transformed plants and produced 22-24 soybean pods/plant containing 8-9 g (dry weight) of seeds at 200 mM NaCl concentration. The present investigation evidenced the role of the p68 gene against salinity, by enhancing the tolerance towards salinity stress in soybean plants.
Collapse
Affiliation(s)
- Sivabalan Karthik
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110 067 India
| | - Andy Ganapathi
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Markandan Manickavasagam
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| |
Collapse
|
22
|
Nasko DJ, Chopyk J, Sakowski EG, Ferrell BD, Polson SW, Wommack KE. Family A DNA Polymerase Phylogeny Uncovers Diversity and Replication Gene Organization in the Virioplankton. Front Microbiol 2018; 9:3053. [PMID: 30619142 PMCID: PMC6302109 DOI: 10.3389/fmicb.2018.03053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Shotgun metagenomics, which allows for broad sampling of viral diversity, has uncovered genes that are widely distributed among virioplankton populations and show linkages to important biological features of unknown viruses. Over 25% of known dsDNA phage carry the DNA polymerase I (polA) gene, making it one of the most widely distributed phage genes. Because of its pivotal role in DNA replication, this enzyme is linked to phage lifecycle characteristics. Previous research has suggested that a single amino acid substitution might be predictive of viral lifestyle. In this study Chesapeake Bay virioplankton were sampled by shotgun metagenomic sequencing (using long and short read technologies). More polA sequences were predicted from this single viral metagenome (virome) than from 86 globally distributed virome libraries (ca. 2,100, and 1,200, respectively). The PolA peptides predicted from the Chesapeake Bay virome clustered with 69% of PolA peptides from global viromes; thus, remarkably the Chesapeake Bay virome captured the majority of known PolA peptide diversity in viruses. This deeply sequenced virome also expanded the diversity of PolA sequences, increasing the number of PolA clusters by 44%. Contigs containing polA sequences were also used to examine relationships between phylogenetic clades of PolA and other genes within unknown viral populations. Phylogenic analysis revealed five distinct groups of phages distinguished by the amino acids at their 762 (Escherichia coli IAI39 numbering) positions and replication genes. DNA polymerase I sequences from Tyr762 and Phe762 groups were most often neighbored by ring-shaped superfamily IV helicases and ribonucleotide reductases (RNRs). The Leu762 groups had non-ring shaped helicases from superfamily II and were further distinguished by an additional helicase gene from superfamily I and the lack of any identifiable RNR genes. Moreover, we found that the inclusion of ribonucleotide reductase associated with PolA helped to further differentiate phage diversity, chiefly within lytic podovirus populations. Altogether, these data show that DNA Polymerase I is a useful marker for observing the diversity and composition of the virioplankton and may be a driving factor in the divergence of phage replication components.
Collapse
Affiliation(s)
- Daniel J Nasko
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Jessica Chopyk
- School of Public Health, University of Maryland, College Park, MD, United States
| | - Eric G Sakowski
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Barbra D Ferrell
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Shawn W Polson
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - K Eric Wommack
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| |
Collapse
|
23
|
Geronimo CL, Singh SP, Galletto R, Zakian VA. The signature motif of the Saccharomyces cerevisiae Pif1 DNA helicase is essential in vivo for mitochondrial and nuclear functions and in vitro for ATPase activity. Nucleic Acids Res 2018; 46:8357-8370. [PMID: 30239884 PMCID: PMC6144861 DOI: 10.1093/nar/gky655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022] Open
Abstract
Pif1 family DNA helicases are conserved from bacteria to humans and have critical and diverse functions in vivo that promote genome integrity. Pif1 family helicases share a 23 amino acid region, called the Pif1 signature motif (SM) that is unique to this family. To determine the importance of the SM, we did mutational and functional analysis of the SM from the Saccharomyces cerevisiae Pif1 (ScPif1). The mutations deleted portions of the SM, made one or multiple single amino acid changes in the SM, replaced the SM with its counterpart from a bacterial Pif1 family helicase and substituted an α-helical domain from another helicase for the part of the SM that forms an α helix. Mutants were tested for maintenance of mitochondrial DNA, inhibition of telomerase at telomeres and double strand breaks, and promotion of Okazaki fragment maturation. Although certain single amino acid changes in the SM can be tolerated, the presence and sequence of the ScPif1 SM were essential for all tested in vivo functions. Consistent with the in vivo analyses, in vitro studies showed that the presence and sequence of the ScPif1 SM were critical for ATPase activity but not substrate binding.
Collapse
Affiliation(s)
- Carly L Geronimo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| |
Collapse
|
24
|
Xin BG, Chen WF, Rety S, Dai YX, Xi XG. Crystal structure of Escherichia coli DEAH/RHA helicase HrpB. Biochem Biophys Res Commun 2018; 504:334-339. [PMID: 30190128 DOI: 10.1016/j.bbrc.2018.08.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 11/28/2022]
Abstract
RNA helicases are almost ubiquitous important enzymes that take part in multiple aspects of RNA metabolism. Prokaryotes encode fewer RNA helicases than eukaryotes, suggesting that individual prokaryotic RNA helicases may take on multiple roles. The specific functions and molecular mechanisms of bacterial DEAH/RHA helicases are poorly understood, and no structures are available of these bacterial enzymes. Here, we report the first crystal structure of the DEAH/RHA helicase HrpB of Escherichia coli in a complex with ADP•AlF4. It showed an atypical globular structure, consisting of two RecA domains, an HA2 domain and an OB domain, similar to eukaryotic DEAH/RHA helicases. Notably, it showed a unique C-terminal extension that has never been reported before. Activity assays indicated that EcHrpB binds RNA but not DNA, and does not exhibit unwinding activity in vitro. Thus, within cells, the EcHrpB may function in helicase activity-independent RNA metabolic processes.
Collapse
Affiliation(s)
- Ben-Ge Xin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei-Fei Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Yang-Xue Dai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; LBPA, ENS de Cachan, Université Paris-Saclay, Centre National de la Recherche Scientifique, 61 Avenue du Président Wilson, 94235, Cachan, France.
| |
Collapse
|
25
|
Hunt EA, Evans TC, Tanner NA. Single-stranded binding proteins and helicase enhance the activity of prokaryotic argonautes in vitro. PLoS One 2018; 13:e0203073. [PMID: 30157272 PMCID: PMC6114923 DOI: 10.1371/journal.pone.0203073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Prokaryotic argonautes are a unique class of nucleic acid-guided endonucleases putatively involved in cellular defense against foreign genetic elements. While their eukaryotic homologs and Cas protein counterparts require single-stranded RNAs as guides, some prokaryotic argonautes are able to utilize short single-stranded DNAs as guides for sequence-specific endonuclease activity. Many complications currently prevent the use of prokaryotic argonautes for in vivo gene-editing applications; however, they do exhibit potential as a new class of in vitro molecular tools if certain challenges can be overcome, specifically the limitations on substrate accessibility which leads to unequal levels of activity across a broad palate of substrates and the inability to act on double-stranded DNA substrates. Here we demonstrate the use of accessory factors, including thermostable single-stranded DNA binding proteins and UvrD-like helicase, in conjunction with prokaryotic argonautes to significantly improve enzymatic activity and enable functionality with a broader range of substrates, including linear double-stranded DNA substrates. We also demonstrate the use of Thermus thermophilus argonaute with accessory factors as a programmable restriction enzyme to generate long, unique single-stranded overhangs from linear double-stranded substrates compatible with downstream ligation.
Collapse
Affiliation(s)
- Eric A. Hunt
- New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Thomas C. Evans
- New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Nathan A. Tanner
- New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| |
Collapse
|
26
|
Ilic S, Cohen S, Singh M, Tam B, Dayan A, Akabayov B. DnaG Primase-A Target for the Development of Novel Antibacterial Agents. Antibiotics (Basel) 2018; 7:E72. [PMID: 30104489 PMCID: PMC6163395 DOI: 10.3390/antibiotics7030072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022] Open
Abstract
The bacterial primase-an essential component in the replisome-is a promising but underexploited target for novel antibiotic drugs. Bacterial primases have a markedly different structure than the human primase. Inhibition of primase activity is expected to selectively halt bacterial DNA replication. Evidence is growing that halting DNA replication has a bacteriocidal effect. Therefore, inhibitors of DNA primase could provide antibiotic agents. Compounds that inhibit bacterial DnaG primase have been developed using different approaches. In this paper, we provide an overview of the current literature on DNA primases as novel drug targets and the methods used to find their inhibitors. Although few inhibitors have been identified, there are still challenges to develop inhibitors that can efficiently halt DNA replication and may be applied in a clinical setting.
Collapse
Affiliation(s)
- Stefan Ilic
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Shira Cohen
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Meenakshi Singh
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Benjamin Tam
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Adi Dayan
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
27
|
Induction of Apoptosis in Metastatic Breast Cancer Cells: XV. Downregulation of DNA Polymerase-α - Helicase Complex (Replisomes) and Glyco-Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:199-221. [PMID: 30637700 DOI: 10.1007/978-981-13-3065-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In normal and cancer cells, successful cell division requires accurate duplication of chromosomal DNA. All cells require a multiprotein DNA duplication system (replisomes) for their existence. However, death of normal cells in our body occurs through the apoptotic process. During apoptotic process several crucial genes are downregulated with the upregulation of caspase pathways, leading to ultimate degradation of genomic DNA. In metastatic cancer cells (SKBR-3, MCF -7, and MDA-462), this process is inhibited to achieve immortality as well as overexpression of the enzymes for the synthesis of marker molecules. It is believed that the GSL of the lacto family such as LeX, SA-LeX, LeY, Lea, and Leb are markers on the human colon and breast cancer cells. Recently, we have characterized that a few apoptotic chemicals (cis-platin, L-PPMP, D-PDMP, GD3 ganglioside, GD1b ganglioside, betulinic acid, tamoxifen, and melphalan) in low doses kill metastatic breast cancer cells. The apoptosis-inducing agent (e.g., cis-platin) showed inhibition of DNA polymerase/helicase (part of the replisomes) and also modulated (positively) a few glycolipid-glycosyltransferase (GSL-GLTs) transcriptions in the early stages (within 2 h after treatment) of apoptosis. These Lc-family GSLs are also present on the surfaces of human breast and colon carcinoma cells. It is advantageous to deliver these apoptotic chemicals through the metastatic cell surfaces containing high concentration of marker glycolipids (Lc-GSLs). Targeted application of apoptotic chemicals (in micro scale) to kill the cancer cells would be an ideal way to inhibit the metastatic growth of both breast and colon cancer cells. It was observed in three different breast cancer lines (SKBR-3, MDA-468, and MCF-7) that in 2 h very little apoptotic process had started, but predominant biochemical changes (including inactivation of replisomes) started between 6 and 24 h of the drug treatments. The contents of replisomes (replisomal complexes) during induction of apoptosis are not known. It is known that DNA helicase activities (major proteins catalyze the melting of dsDNA strands) change during apoptotic induction process. Previously DNA Helicase-III was characterized as a component of the replication complexes isolated from carcinoma cells and normal rapid growing embryonic chicken brain cells. Helicase activities were assayed by a novel method (combined immunoprecipitation-ROME assay), and DNA polymerase-alpha activities were determined by regular chain extension of nicked "ACT-DNA," by determining values obtained from +/- aphidicolin added to the incubation mixtures. Very little is known about the stability of the "replication complexes" (or replisomes) during the apoptotic process. DNA helicases are motor proteins that catalyze the melting of genomic DNA during replication, repair, and recombination processes. In all three breast carcinoma cell lines (SKBR-3, MCF-7, and MDA-468), a common trend, decrease of activities of DNA polymerase-alpha and Helicase-III (estimated and detected with a polyclonal antibody), was observed, after cis-platin- and L-PPMP-induced apoptosis. Previously our laboratory has documented downregulation (within 24-48 h) of several GSL-GLTs with these apoptotic reagents in breast and colon cancer cells also. Perhaps induced apoptosis would improve the prognosis in metastatic breast and colon cancer patients.
Collapse
|
28
|
Ito S, Koso H, Sakamoto K, Watanabe S. RNA helicase DHX15 acts as a tumour suppressor in glioma. Br J Cancer 2017; 117:1349-1359. [PMID: 28829764 PMCID: PMC5672939 DOI: 10.1038/bjc.2017.273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glioblastoma is the most common form of malignant brain cancer and has a poor prognosis in adults. We identified Dhx15 as a candidate tumour suppressor gene in glioma by transposon-based mutagenesis. Dhx15 is an adenosine triphosphate (ATP)-dependent RNA helicase belonging to the DEAH-box (DHX) helicase family, but its role in cancer remains elusive. METHODS DHX15 expression levels were examined in glioma cell lines. DHX15 functions were examined by gain- and loss-of-function analyses. Protein motifs required for the function of DHX15 were investigated by the analysis of mutant proteins. RESULTS DHX15 expression was lower in human glioma cell lines than in normal neural stem cells. Dhx15 knockdown resulted in enhanced proliferation of primary immortalised mouse astrocytes, supporting the notion that DHX15 is a tumour suppressor. Retroviral-mediated transduction of DHX15 into glioma cell lines suppressed proliferation and foci formation in vitro. Moreover, DHX15 suppressed tumour formation in a xenograft mouse model. ATPase activity was not required for the growth-inhibitory function of DHX15; however, the Ia, Ib, IV, and V motifs, which act as RNA-binding domains in DHX15, were essential. qPCR analysis revealed that DHX15 suppressed expression of NF-κB downstream target genes as well as the genes involved in splicing. CONCLUSIONS These findings provide evidence that DHX15 acts as a tumour suppressor gene in glioma.
Collapse
Affiliation(s)
- Shingo Ito
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 1088639, Japan
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo 1138421, Japan
| | - Hideto Koso
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 1088639, Japan
| | - Kazuhiro Sakamoto
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo 1138421, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 1088639, Japan
| |
Collapse
|
29
|
Chauhan M, Tarique M, Tuteja R. Plasmodium falciparum specific helicase 3 is nucleocytoplasmic protein and unwinds DNA duplex in 3' to 5' direction. Sci Rep 2017; 7:13146. [PMID: 29030567 PMCID: PMC5640622 DOI: 10.1038/s41598-017-12927-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023] Open
Abstract
Plasmodium falciparum is responsible for most dangerous and prevalent form of malaria. The emergence of multi drug resistant parasite hindered the prevention of malaria burden worldwide. Helicases are omnipresent enzymes, which play important role in nucleic acid metabolism and can be used as potential targets for development of novel therapeutics. The genome wide analysis of P. falciparum 3D7 strain revealed some novel parasite specific helicases, which are not present in human host. Here we report the detailed biochemical characterization of P. falciparum parasite specific helicase 3 (PfPSH3). The characteristic ATPase and helicase activities of PfPSH3 reside in its N-terminal region (PfPSH3N) as it contains all the conserved signature motifs whereas the C-terminal does not show any detectable biochemical activity. PfPSH3N also shows DNA helicase activity in the 3′–5′ direction. The immunofluorescence microscopy results show that PSH3 is localized in nucleus as well as in cytoplasm during different stages such as trophozoite and early schizont stages of intraerythrocytic development. This report sets the foundation for further study of parasite specific helicases and will be helpful in understanding the parasite biology.
Collapse
Affiliation(s)
- Manish Chauhan
- Parasite Biology Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohammed Tarique
- Parasite Biology Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- Parasite Biology Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
30
|
Zhang HY, Lei G, Zhou HW, He C, Liao JL, Huang YJ. Quantitative iTRAQ-based proteomic analysis of rice grains to assess high night temperature stress. Proteomics 2017; 17. [PMID: 28101936 PMCID: PMC5811895 DOI: 10.1002/pmic.201600365] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/23/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022]
Abstract
Rice yield and quality are adversely affected by increasing global surface temperature, and are strongly attributed to high night temperature (HNT) than high daytime temperature. However, the molecular mechanism underlying the heat‐tolerant characteristics of rice remains unclear. In the present study, we compared the proteomes of heat‐tolerant and ‐sensitive lines of rice at early milky stage using an iTRAQ method. We have identified 38 differentially expressed proteins between the two lines, of which 32 proteins have been functionally annotated in NCBI and/or the UniProt database. These proteins were then classified into seven functional subgroups, which include signal transduction, transcript regulation, oxidation, defense response, transport, energy metabolism, and biosynthesis. Further analysis indicated that HNT stress could disrupt the redox equilibrium of plant cells, which in turn triggers the calcium‐dependent protein kinase and COP9 signalosome, thereby regulating downstream genes/proteins that are involved in the HNT response. The candidate proteins may provide genetic resources for the improvement of heat‐tolerant characteristics in rice, and the proposed model for signal transduction and transcriptional regulation may facilitate in the elucidation of the molecular mechanism underlying the response to HNT stress in rice.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education, Jiangxi Province, P. R. China
| | - Gang Lei
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education, Jiangxi Province, P. R. China
| | - Hui-Wen Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education, Jiangxi Province, P. R. China
| | - Chao He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education, Jiangxi Province, P. R. China
| | - Jiang-Lin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education, Jiangxi Province, P. R. China
| | - Ying-Jin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education, Jiangxi Province, P. R. China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Province, P. R. China
| |
Collapse
|
31
|
Tian C, Tan S, Bao L, Zeng Q, Liu S, Yang Y, Zhong X, Liu Z. DExD/H-box RNA helicase genes are differentially expressed between males and females during the critical period of male sex differentiation in channel catfish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:109-119. [DOI: 10.1016/j.cbd.2017.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 01/19/2023]
|
32
|
Tuteja R. Unraveling the importance of the malaria parasite helicases. FEBS J 2017; 284:2592-2603. [DOI: 10.1111/febs.14109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Renu Tuteja
- Parasite Biology Group; International Centre for Genetic Engineering and Biotechnology; New Delhi India
| |
Collapse
|
33
|
Yang Y, Cai L, Ma R, Xu Y, Tong Y, Huang Y, Jiao N, Zhang R. A Novel Roseosiphophage Isolated from the Oligotrophic South China Sea. Viruses 2017; 9:v9050109. [PMID: 28505134 PMCID: PMC5454422 DOI: 10.3390/v9050109] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/22/2017] [Accepted: 05/10/2017] [Indexed: 12/30/2022] Open
Abstract
The Roseobacter clade is abundant and widespread in marine environments and plays an important role in oceanic biogeochemical cycling. In this present study, a lytic siphophage (labeled vB_DshS-R5C) infecting the strain type of Dinoroseobacter shibae named DFL12T, which is part of the Roseobacter clade, was isolated from the oligotrophic South China Sea. Phage R5C showed a narrow host range, short latent period and low burst size. The genome length of phage R5C was 77, 874 bp with a G+C content of 61.5%. Genomic comparisons detected no genome matches in the GenBank database and phylogenetic analysis based on DNA polymerase I revealed phylogenetic features that were distinct to other phages, suggesting the novelty of R5C. Several auxiliary metabolic genes (e.g., phoH gene, heat shock protein and queuosine biosynthesis genes) were identified in the R5C genome that may be beneficial to the host and/or offer a competitive advantage for the phage. Among siphophages infecting the Roseobacter clade (roseosiphophages), four gene transfer agent-like genes were commonly located with close proximity to structural genes, suggesting that their function may be related to the tail of siphoviruses. The isolation and characterization of R5C demonstrated the high genomic and physiological diversity of roseophages as well as improved our understanding of host-phage interactions and the ecology of the marine Roseobacter.
Collapse
Affiliation(s)
- Yunlan Yang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Lanlan Cai
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Yongle Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Yigang Tong
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.
| | - Yong Huang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| |
Collapse
|
34
|
Nawaz G, Kang H. Chloroplast- or Mitochondria-Targeted DEAD-Box RNA Helicases Play Essential Roles in Organellar RNA Metabolism and Abiotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:871. [PMID: 28596782 PMCID: PMC5442247 DOI: 10.3389/fpls.2017.00871] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/10/2017] [Indexed: 05/04/2023]
Abstract
The yields and productivity of crops are greatly diminished by various abiotic stresses, including drought, cold, heat, and high salinity. Chloroplasts and mitochondria are cellular organelles that can sense diverse environmental stimuli and alter gene expression to cope with adverse environmental stresses. Organellar gene expression is mainly regulated at posttranscriptional levels, including RNA processing, intron splicing, RNA editing, RNA turnover, and translational control, during which a variety of nucleus-encoded RNA-binding proteins (RBPs) are targeted to chloroplasts or mitochondria where they play essential roles in organellar RNA metabolism. DEAD-box RNA helicases (RHs) are enzymes that can alter RNA structures and affect RNA metabolism in all living organisms. Although a number of DEAD-box RHs have been found to play important roles in RNA metabolism in the nucleus and cytoplasm, our understanding on the roles of DEAD-box RHs in the regulation of RNA metabolism in chloroplasts and mitochondria is only at the beginning. Considering that organellar RNA metabolism and gene expression are tightly regulated by anterograde signaling from the nucleus, it is imperative to determine the functions of nucleus-encoded organellar RBPs. In this review, we summarize the emerging roles of nucleus-encoded chloroplast- or mitochondria-targeted DEAD-box RHs in organellar RNA metabolism and plant response to diverse abiotic stresses.
Collapse
|
35
|
Tuteja R. Emerging functions of helicases in regulation of stress survival in malaria parasite Plasmodium falciparum and their comparison with human host. Parasitol Int 2016; 65:645-664. [PMID: 27586396 DOI: 10.1016/j.parint.2016.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/28/2016] [Accepted: 08/28/2016] [Indexed: 02/04/2023]
Abstract
The cellular response to various stresses is a universal phenomenon and involves a common set of stress responses that are largely independent of the type of stress. The response to stress is complex and cells can activate multiple signaling pathways that act in concert to influence cell fate and results in a specific cellular outcome, including reduction in macromolecular synthesis by shared pathways, cell cycle arrest, DNA repair, senescence and/or apoptosis. Whether cells mount a protective response or die depends to a great degree on the nature and duration of the stress and the particular cell type. Helicases play essential roles in DNA replication, repair, recombination, transcription and translation, and also participate in RNA metabolic processes including pre-mRNA processing, ribosome biogenesis, RNA turnover, export, translation, surveillance, storage and decay. In order to survive in the human host, the malaria parasite Plasmodium falciparum has to handle variety of stresses, which it encounters during the erythrocytic stages of its life cycle. In recent past the role of helicases in imparting various stress responses has emerged. Therefore in the present review an attempt has been made to highlight the emerging importance of helicases in stress responses in malaria parasite and their comparison with human host is also presented. It is noteworthy that PfDHX33 and PfDDX60 are larger in size and different in sequence as compared to the HsDHX33 and HsDDX60. The study suggests that helicases are multifunctional and play major role in helping the cells to combat various stresses.
Collapse
Affiliation(s)
- Renu Tuteja
- Parasite Biology Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
36
|
Rahman F, Tarique M, Tuteja R. Plasmodium falciparum Bloom homologue, a nucleocytoplasmic protein, translocates in 3' to 5' direction and is essential for parasite growth. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:594-608. [PMID: 26917473 DOI: 10.1016/j.bbapap.2016.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/25/2022]
Abstract
Malaria caused by Plasmodium, particularly Plasmodium falciparum, is the most serious and widespread parasitic disease of humans. RecQ helicase family members are essential in homologous recombination-based error-free DNA repair processes in all domains of life. RecQ helicases present in each organism differ and several homologues have been identified in various multicellular organisms. These proteins are involved in various pathways of DNA metabolism by providing duplex unwinding function. Five members of RecQ family are present in Homo sapiens but P. falciparum contains only two members of this family. Here we report the detailed biochemical and functional characterization of the Bloom (Blm) homologue (PfBlm) from P. falciparum 3D7 strain. Purified PfBlm exhibits ATPase and 3' to 5' direction specific DNA helicase activity. The calculated average reaction rate of ATPase was ~13 pmol of ATP hydrolyzed/min/pmol of enzyme. The immunofluorescence assay results show that PfBlm is expressed in all the stages of intraerythrocytic development of the P. falciparum 3D7 strain. In some stages of development in addition to nucleus PfBlm also localizes in the cytoplasm. The gene disruption studies of PfBlm by dsRNA showed that it is required for the ex-vivo intraerythrocytic development of the parasite P. falciparum 3D7 strain. The dsRNA mediated inhibition of parasite growth suggests that a variety of pathways are affected resulting in curtailing of the parasite growth. This study will be helpful in unravelling the basic mechanism of DNA transaction in the malaria parasite and additionally it may provide leads to understand the parasite specific characteristics of this protein.
Collapse
Affiliation(s)
- Farhana Rahman
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mohammed Tarique
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
37
|
Mhashal AR, Choudhury CK, Roy S. Probing the ATP-induced conformational flexibility of the PcrA helicase protein using molecular dynamics simulation. J Mol Model 2016; 22:54. [PMID: 26860503 DOI: 10.1007/s00894-016-2922-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 01/24/2016] [Indexed: 11/26/2022]
Abstract
Helicases are enzymes that unwind double-stranded DNA (dsDNA) into its single-stranded components. It is important to understand the binding and unbinding of ATP from the active sites of helicases, as this knowledge can be used to elucidate the functionality of helicases during the unwinding of dsDNA. In this work, we investigated the unbinding of ATP and its effect on the active-site residues of the helicase PcrA using molecular dynamic simulations. To mimic the unbinding process of ATP from the active site of the helicase, we simulated the application of an external force that pulls ATP from the active site and computed the free-energy change during this process. We estimated an energy cost of ~85 kJ/mol for the transformation of the helicase from the ATP-bound state (1QHH) to the ATP-free state (1PJR). Unbinding led to conformational changes in the residues of the protein at the active site. Some of the residues at the ATP-binding site were significantly reoriented when the ATP was pulled. We observed a clear competition between reorientation of the residues and energy stabilization by hydrogen bonds between the ATP and active-site residues. We also checked the flexibility of the PcrA protein using a principal component analysis of domain motion. We found that the ATP-free state of the helicase is more flexible than the ATP-bound state.
Collapse
Affiliation(s)
- Anil R Mhashal
- Physical Chemistry Division, National Chemical Laboratory, Pune, 411008, India
| | | | - Sudip Roy
- Physical Chemistry Division, National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|
38
|
Suthar MK, Purva M, Maherchandani S, Kashyap SK. Identification and in silico analysis of cattle DExH/D box RNA helicases. SPRINGERPLUS 2016; 5:25. [PMID: 26783509 PMCID: PMC4705078 DOI: 10.1186/s40064-015-1640-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/20/2015] [Indexed: 12/16/2022]
Abstract
The helicases are motor proteins participating
in a range of nucleic acid metabolisms. RNA helicase families are characterized by the presence of conserved motifs. This article reports a comprehensive in silico analysis of Bos taurus DExH/D helicase members. Bovine helicases were identified using the helicase domain sequences including 38 DDX (DEAD box) and 16 DHX (DEAH box) members. Signature motifs were used for the validation of these proteins. Putative sub cellular localization and phylogenetic relationship for these RNA helicases were established. Comparative analysis of these proteins with human DDX and DHX members was carried out. These bovine helicase have been assigned putative physiological functions. Present study of cattle DExH/D helicase will provides an invaluable source for the detailed biochemical and physiological research on these members.
Collapse
Affiliation(s)
- Manish Kumar Suthar
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary & Animal Sciences, Bikaner, Rajasthan 334001 India
| | - Mukul Purva
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary & Animal Sciences, Bikaner, Rajasthan 334001 India
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary & Animal Sciences, Bikaner, Rajasthan 334001 India
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary & Animal Sciences, Bikaner, Rajasthan 334001 India
| |
Collapse
|
39
|
da Silva CC, Martins FT. Insights into the opening of DNA-like double-stranded helices in lamivudine duplex IV and the first polymorph of this drug. CrystEngComm 2016. [DOI: 10.1039/c6ce01613h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Rahman F, Tarique M, Ahmad M, Tuteja R. Plasmodium falciparum Werner homologue is a nuclear protein and its biochemical activities reside in the N-terminal region. PROTOPLASMA 2016; 253:45-60. [PMID: 25824666 DOI: 10.1007/s00709-015-0785-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
RecQ helicases, also addressed as a gatekeeper of genome, are an inevitable family of genome scrutiny proteins conserved from prokaryotes to eukaryotes and play a vital role in DNA metabolism. The deficiencies of three RecQ proteins out of five are involved in genetic abnormalities like Bloom syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS). It is noteworthy that Plasmodium falciparum contains only two members of the RecQ family as opposed to five members present in the host Homo sapiens. In the present study, we report the biochemical characterization of the homologue of Werner (Wrn) helicase from P. falciparum 3D7 strain. Although there are significant sequence conservations between Wrn helicases of both H. sapiens and P. falciparum as well as among all the other Plasmodium species, they contain some peculiar differences also. In silico studies reveal that PfWrn is evolutionarily close to the bacterial RecQ protein. The N-terminal fragment (PfWrnN) contains all the helicase motifs along with all the functional domains and the predicted structure resembles with the human RecQ1 protein, whereas the C-terminal fragment (PfWrnC) contains no significant domain. Biochemical characterization further revealed that purified recombinant PfWrnN shows ATPase and DNA helicase activity in 3' to 5' direction, but PfWrnC lacks the ATPase and helicase activities. Immunofluorescence study shows that PfWrn is expressed in all the stages of intraerythrocytic development of the P. falciparum 3D7 strain and localizes distinctly in the nucleus. This study can be used for further characterization of RecQ helicases that will aid in understanding the physiological significance of these helicases in the malaria parasite.
Collapse
Affiliation(s)
- Farhana Rahman
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohammed Tarique
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Moaz Ahmad
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
41
|
Zheng T, Jiang P, Cao B, Cheng Q, Kong L, Zheng X, Hu Q, You D. DndEi Exhibits Helicase Activity Essential for DNA Phosphorothioate Modification and ATPase Activity Strongly Stimulated by DNA Substrate with a GAAC/GTTC Motif. J Biol Chem 2015; 291:1492-500. [PMID: 26631733 DOI: 10.1074/jbc.m115.694018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 11/06/2022] Open
Abstract
Phosphorothioate (PT) modification of DNA, in which the non-bridging oxygen of the backbone phosphate group is replaced by sulfur, is governed by the DndA-E proteins in prokaryotes. To better understand the biochemical mechanism of PT modification, functional analysis of the recently found PT-modifying enzyme DndEi, which has an additional domain compared with canonical DndE, from Riemerella anatipestifer is performed in this study. The additional domain is identified as a DNA helicase, and functional deletion of this domain in vivo leads to PT modification deficiency, indicating an essential role of helicase activity in PT modification. Subsequent analysis reveals that the additional domain has an ATPase activity. Intriguingly, the ATPase activity is strongly stimulated by DNA substrate containing a GAAC/GTTC motif (i.e. the motif at which PT modifications occur in R. anatipestifer) when the additional domain and the other domain (homologous to canonical DndE) are co-expressed as a full-length DndEi. These results reveal that PT modification is a biochemical process with DNA strand separation and intense ATP hydrolysis.
Collapse
Affiliation(s)
- Tao Zheng
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Pan Jiang
- the Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Shanghai 200240, and
| | - Bo Cao
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Qiuxiang Cheng
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Lingxin Kong
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Xiaoqing Zheng
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Qinghai Hu
- the Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Shanghai 200240, and
| | - Delin You
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, the Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
42
|
Tuteja N, Tarique M, Trivedi DK, Sahoo RK, Tuteja R. Stress-induced Oryza sativa BAT1 dual helicase exhibits unique bipolar translocation. PROTOPLASMA 2015; 252:1563-1574. [PMID: 25772680 DOI: 10.1007/s00709-015-0791-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
HLA-B associated transcript 1 (BAT1) protein, also named as spliceosome RNA helicase UAP56, is a member of the DExD/H-box family of helicases. However, regulation under stress, biochemical properties, and functions of plant homologue of BAT1 are poorly understood. Here, we report the purification and detailed biochemical characterization of the Oryza sativa homologue of BAT1 (OsBAT1/UAP56) protein (52 kDa) and regulation of its transcript under abiotic stress. OsBAT1 transcript levels are enhanced in rice seedlings in response to abiotic stress including salt stress and abscisic acid. Purified OsBAT1 protein exhibits the DNA- and RNA-dependent ATPase, RNA helicase, and DNA- and RNA-binding activities. Interestingly OsBAT1 also exhibits unique DNA helicase activity, which has not been reported so far in any BAT1 homologue. Moreover, OsBAT1 translocates in both the 3' to 5' and 5' to 3' directions, which is also a unique property. The K m value for OsBAT1 DNA helicase is 0.9753 nM and for RNA helicase is 1.7536 nM, respectively. This study demonstrates several unique characteristics of OsBAT1 especially its ability to unwind both DNA and RNA duplexes; bipolar translocation and its transcript upregulation under abiotic stresses indicate that it is a multifunctional protein. Overall, this study represents significant contribution in advancing our knowledge regarding functions of OsBAT1 in RNA and DNA metabolism and its putative role in abiotic stress signaling in plants.
Collapse
Affiliation(s)
- Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Mohammed Tarique
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Dipesh Kumar Trivedi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ranjan Kumar Sahoo
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
43
|
Shaw PLR, McAdams NM, Hast MA, Ammerman ML, Read LK, Schumacher MA. Structures of the T. brucei kRNA editing factor MRB1590 reveal unique RNA-binding pore motif contained within an ABC-ATPase fold. Nucleic Acids Res 2015; 43:7096-109. [PMID: 26117548 PMCID: PMC4538832 DOI: 10.1093/nar/gkv647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022] Open
Abstract
Kinetoplastid RNA (kRNA) editing is a process that creates translatable mitochondrial mRNA transcripts from cryptogene encoded RNAs and is unique for kinetoplastids, such as Trypanosoma brucei. In addition to the catalytic 20S editosome, multiple accessory proteins are required for this conversion. Recently, the multiprotein mitochondrial RNA binding complex 1 (MRB1) has emerged as a key player in this process. MRB1 consists of six core proteins but makes dynamic interactions with additional accessory proteins. Here we describe the characterization of one such factor, the 72 kDa MRB1590 protein. In vivo experiments indicate a role for MRB1590 in editing mitochondrial mRNA transcripts, in particular the transcript encoding the ATP synthase subunit 6 (A6). Structural studies show that MRB1590 is dimeric and contains a central ABC-ATPase fold embedded between novel N- and C-terminal regions. The N-terminal domains combine to create a basic pore and biochemical studies indicate residues in this region participate in RNA binding. Structures capturing distinct MRB1590 conformations reveal that the RNA binding pore adopts closed and open states, with the latter able to accommodate RNA. Based on these findings, implications for MRB1590 function are discussed.
Collapse
Affiliation(s)
- Porsha L R Shaw
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Natalie M McAdams
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA
| | - Michael A Hast
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michelle L Ammerman
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
44
|
Huang Q, Liu L, Liu J, Ni J, She Q, Shen Y. Efficient 5'-3' DNA end resection by HerA and NurA is essential for cell viability in the crenarchaeon Sulfolobus islandicus. BMC Mol Biol 2015; 16:2. [PMID: 25880130 PMCID: PMC4351679 DOI: 10.1186/s12867-015-0030-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/26/2015] [Indexed: 12/31/2022] Open
Abstract
Background ATPase/Helicases and nucleases play important roles in homologous recombination repair (HRR). Many of the mechanistic details relating to these enzymes and their function in this fundamental and complicated DNA repair process remain poorly understood in archaea. Here we employed Sulfolobus islandicus, a hyperthermophilic archaeon, as a model to investigate the in vivo functions of the ATPase/helicase HerA, the nuclease NurA, and their associated proteins Mre11 and Rad50. Results We revealed that each of the four genes in the same operon, mre11, rad50, herA, and nurA, are essential for cell viability by a mutant propagation assay. A genetic complementation assay with mutant proteins was combined with biochemical characterization demonstrating that the ATPase activity of HerA, the interaction between HerA and NurA, and the efficient 5′-3′ DNA end resection activity of the HerA-NurA complex are essential for cell viability. NurA and two other putative HRR proteins: a PIN (PilT N-terminal)-domain containing ATPase and the Holliday junction resolvase Hjc, were co-purified with a chromosomally encoded N-His-HerA in vivo. The interactions of HerA with the ATPase and Hjc were further confirmed by in vitro pull down. Conclusion Efficient 5′-3′ DNA end resection activity of the HerA-NurA complex contributes to necessity of HerA and NurA in Sulfolobus, which is crucial to yield a 3′-overhang in HRR. HerA may have additional binding partners in cells besides NurA. Electronic supplementary material The online version of this article (doi:10.1186/s12867-015-0030-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qihong Huang
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Rd., Jinan, 250100, P. R. China. .,Archaea Centre, Department of Biology, University of Copenhagen, Ole MaaløesVej 5, Copenhagen N, DK-2200, Denmark.
| | - Linlin Liu
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Rd., Jinan, 250100, P. R. China.
| | - Junfeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Rd., Jinan, 250100, P. R. China.
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Rd., Jinan, 250100, P. R. China.
| | - Qunxin She
- Archaea Centre, Department of Biology, University of Copenhagen, Ole MaaløesVej 5, Copenhagen N, DK-2200, Denmark.
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Rd., Jinan, 250100, P. R. China.
| |
Collapse
|
45
|
Chen J, Wan S, Liu H, Fan S, Zhang Y, Wang W, Xia M, Yuan R, Deng F, Shen F. Overexpression of an Apocynum venetum DEAD-Box Helicase Gene (AvDH1) in Cotton Confers Salinity Tolerance and Increases Yield in a Saline Field. FRONTIERS IN PLANT SCIENCE 2015; 6:1227. [PMID: 26779246 PMCID: PMC4705273 DOI: 10.3389/fpls.2015.01227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/18/2015] [Indexed: 05/04/2023]
Abstract
Soil salinity is a major environmental stress limiting plant growth and productivity. We have reported previously the isolation of an Apocynum venetum DEAD-box helicase 1 (AvDH1) that is expressed in response to salt exposure. Here, we report that the overexpression of AvDH1 driven by a constitutive cauliflower mosaic virus-35S promoter in cotton plants confers salinity tolerance. Southern and Northern blotting analyses showed that the AvDH1 gene was integrated into the cotton genome and expressed. In this study, the growth of transgenic cotton expressing AvDH1 was evaluated under saline conditions in a growth chamber and in a saline field trial. Transgenic cotton overexpressing AvDH1 was much more resistant to salt than the wild-type plants when grown in a growth chamber. The lower membrane ion leakage, along with increased activity of superoxide dismutase, in AvDH1 transgenic lines suggested that these characteristics may prevent membrane damage, which increases plant survival rates. In a saline field, the transgenic cotton lines expressing AvDH1 showed increased boll numbers, boll weights and seed cotton yields compared with wild-type plants, especially at high soil salinity levels. This study indicates that transgenic cotton expressing AvDH1 is a promising option for increasing crop productivity in saline fields.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Sibao Wan
- College of Life Science, Shanghai UniversityShanghai, China
| | - Huaihua Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Shuli Fan
- Cotton Research Institute – Chinese Academy of Agricultural SciencesAnyang, China
| | - Yujuan Zhang
- Cotton Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Minxuan Xia
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Rui Yuan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Fenni Deng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
- *Correspondence: Fafu Shen,
| |
Collapse
|
46
|
Umate P, Tuteja N, Tuteja R. Genome-wide comprehensive analysis of human helicases. Commun Integr Biol 2014. [DOI: 10.4161/cib.13844] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Tuteja N, Tarique M, Tuteja R. Rice SUV3 is a bidirectional helicase that binds both DNA and RNA. BMC PLANT BIOLOGY 2014; 14:283. [PMID: 25311683 PMCID: PMC4207899 DOI: 10.1186/s12870-014-0283-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 10/09/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Helicases play crucial role in almost all the nucleic acid metabolism including replication, repair, recombination, transcription, translation, ribosome biogenesis and splicing and these processes regulate plant growth and development. It is suggested that helicases play essential roles in stabilizing growth in plants under stress because their presence in the stress-induced ORFs has been identified. Moreover in a recent study we have reported that SUV3 helicase from Oryza sativa (OsSUV3) functions in salinity stress tolerance in transgenic rice by improving the antioxidant machinery. SUV3 helicase has been identified and characterized from yeast and human systems but the properties and functions of plant SUV3 are poorly understood. RESULTS In this study, the purification and extensive characterization of recombinant OsSUV3 protein (67 kDa) is presented. OsSUV3 binds to DNA and RNA and exhibits DNA as well as RNA-dependent ATPase activities. It also contains the characteristic DNA and RNA helicase activity. OsSUV3 can use mainly ATP or dATP as energy source for the unwinding activity and it cannot unwind the blunt-end duplex DNA substrate. It is interesting to note that OsSUV3 unwinds DNA in both the 5'-3' and 3'-5 directions and thus its activity is bipolar in vitro. The Km values of OsSUV3 are 0.51 nM and 0.95 nM for DNA helicase and RNA helicase, respectively. CONCLUSIONS This study is the first direct evidence to show the bipolar DNA helicase activity of OsSUV3 protein. The unique properties of OsSUV3 including its dual helicase activity imply that it could be a multifunctional protein involved in biologically significant process of DNA and RNA metabolisms. These results should make significant contribution towards better understanding of SUV3 protein in plants.
Collapse
Affiliation(s)
- Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Mohammed Tarique
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
48
|
Tuteja N, Tarique M, Banu MSA, Ahmad M, Tuteja R. Pisum sativum p68 DEAD-box protein is ATP-dependent RNA helicase and unique bipolar DNA helicase. PLANT MOLECULAR BIOLOGY 2014; 85:639-51. [PMID: 24908423 DOI: 10.1007/s11103-014-0209-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/29/2014] [Indexed: 05/20/2023]
Abstract
DEAD-box helicases play essential role in DNA and RNA metabolism such as replication, repair, recombination, transcription, translation, ribosome biogenesis and splicing which regulate plant growth and development. The presence of helicases in the stress-induced ORFs identified by cDNA microarray indicates that helicases might be playing an important role in stabilizing growth in plants under stress. p68 DEAD-box helicase has been identified and characterized from animal systems but the properties and functions of plant p68 are poorly understood. In this study, the identification, purification and characterization of recombinant p68 from Pisum sativum (Psp68) is presented. Psp68 possesses all the characteristic motifs like DEAD-box ATP-binding and helicase C terminal motifs and is structurally similar to human p68 homologue. Psp68 exhibits ATPase activity in the presence of both DNA and RNA and it binds to DNA as well as RNA. It contains the characteristic RNA helicase activity. Interestingly Psp68 also shows the unique DNA helicase activity, which is bipolar in nature (unwinds DNA in both the 5'-3' and 3'-5' directions). The Km values of Psp68 for ATPase are 0.5126 and 0.9142 mM in the presence of DNA and RNA, respectively. The Km values of Psp68 are 1.6129 and 1.14 nM for DNA helicase and RNA helicase, respectively. The unique properties of Psp68 suggest that it could be a multifunctional protein involved in different aspect of DNA and RNA metabolism. This discovery should make an important contribution to better understanding of nucleic acids metabolism plants.
Collapse
Affiliation(s)
- Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India,
| | | | | | | | | |
Collapse
|
49
|
Ansari A, Tarique M, Tuteja R. Genetically engineered synthetic miniaturized versions of Plasmodium falciparum UvrD helicase are catalytically active. PLoS One 2014; 9:e90951. [PMID: 24608129 PMCID: PMC3946578 DOI: 10.1371/journal.pone.0090951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/05/2014] [Indexed: 11/19/2022] Open
Abstract
Helicases catalyze unwinding of double stranded nucleic acids in an energy-dependent manner. We have reported characterization of UvrD helicase from Plasmodium falciparum. We reported that the N-terminal and C-terminal fragments of PfUvrD contain characteristic ATPase and DNA helicase activities. Here we report the generation and characterization of a genetically engineered version of PfUvrD and its derivatives. This synthetic UvrD (sUD) contains all the conserved domains of PfUvrD but only the intervening linker sequences are shortened. sUD (∼45 kDa) and one of its smallest derivative sUDN1N2 (∼22 kDa) contain ATPase and DNA helicase activities. sUD and sUDN1N2 can utilize hydrolysis of all the NTPs and dNTPs, can also unwind blunt end duplex DNA substrate and unwind DNA duplex in 3 to 5 direction only. Some of the properties of sUD are similar to the PfUvrD helicase. Mutagenesis in the conserved motif Ia indicate that the mutants sUDM and sUDN1N2M lose all the enzyme activities, which further confirms that these activities are intrinsic to the synthesized proteins. These studies show that for helicase activity only the conserved domains are essentially required and intervening sequences have almost no role. These observations will aid in understanding the unwinding mechanism by a helicase.
Collapse
Affiliation(s)
- Abulaish Ansari
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Mohammed Tarique
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
50
|
Ahmad M, Tuteja R. Plasmodium falciparum RuvB2 translocates in 5′–3′ direction, relocalizes during schizont stage and its enzymatic activities are up regulated by RuvB3 of the same complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2795-811. [DOI: 10.1016/j.bbapap.2013.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 11/27/2022]
|