1
|
Jesus A, Ratanji S, Cidade H, Sousa E, Cruz MT, Oliveira R, Almeida IF. Phenolics as Active Ingredients in Skincare Products: A Myth or Reality? Molecules 2025; 30:1423. [PMID: 40286007 PMCID: PMC11990743 DOI: 10.3390/molecules30071423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Phenolic compounds, with their diverse biological activities, are widely explored as cosmetic ingredients with photoprotective, antioxidant, anti-inflammatory, and anti-hyperpigmentation properties, offering a multitargeted approach to combat photo-induced skin aging. The study analyzed 1299 cosmetic products from 2021 to 2024 to understand the market impact of phenolic compounds and their mechanism of action against photo-induced skin damage. A total of 28 active phenolic compounds were identified and the prevalence of phenolics was 13.2% in anti-aging products, 5.2% in sunscreens and 4.8% in aftersun products. Bakuchiol and polyphenols, such as resveratrol, chrysin, and hesperidin methyl chalcone, were found in anti-aging products. Sunscreens and aftersun products were counted with ferulic and caffeic acids, and salicylic acid, respectively. Antioxidant activity was found to be the primary mechanism of action of phenolic compounds by scavenging reactive species, thus mitigating oxidative stress. Ferulic and caffeic acids, chrysin, and glucosylrutin can also absorb UV radiation, acting preventively against solar-induced skin damage. This study provides insights into the limited use of phenolic compounds in commercial cosmetics, despite their diverse biological activities, and suggests potential barriers to wider use in skin and sun care products.
Collapse
Affiliation(s)
- Ana Jesus
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (S.R.); (R.O.); (I.F.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Smeera Ratanji
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (S.R.); (R.O.); (I.F.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (CESPU), 4585-116 Gandra, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
| | - Maria T. Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal;
- CNC—Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Rita Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (S.R.); (R.O.); (I.F.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-BHS—Biomedical and Health Sciences Research Unit, FFP-I3ID Faculty of Health Sciences, University of Fernando Pessoa, 4200-150 Porto, Portugal
- RISE—Health, Faculty of Health Sciences, Fernando Pessoa University, Fernando Pessoa Teaching and Culture Foundation, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| | - Isabel F. Almeida
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (S.R.); (R.O.); (I.F.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Panigrahy UP, Buchade RS, Subhadra S, Narayanan AK, Gunjal SD, Selvakumari E, Pandey NK, Wal A. Acetylresveratrol (AC-Res): An Evolving Frontier in Modulating Gene Expression. Curr Gene Ther 2025; 25:210-226. [PMID: 38860906 DOI: 10.2174/0115665232291487240603093218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Acetylresveratrol (AC-Res), to date, is a powerful stilbene phytoalexin generated organically or as a component of a plant's defensive system, is a significant plant phenolic chemical portion and is investigated as a therapy option for a number of disorders. Owing to its inadequate stabilisation and considerable conformation rigidity, the utility of AC-Res as a medication is limited. OBJECTIVE The current review article outlined the structure of AC-Res, their methods of activity, and the latest technological progress in the administration of these molecules. It is conceivable to deduce that AC-Res has a variety of consequences for the cellular functions of infected cells. METHODS The literature survey for the present article was gathered from the authentic data published by various peer-reviewed publishers employing Google Scholar and PubMedprioritizing Scopus and Web of Science indexed journals as the search platform focusing on AC-Res pharmacological actions, particularly in the English language. RESULTS Despite its extensive spectrum of biological and therapeutic applications, AC-Res has become a source of increasing concern. Depending on the researchers, AC-Res possesses radioprotective, cardioprotective, neurological, anti-inflammatory, and anti-microbial potential. It also has anti-cancer and antioxidant properties. CONCLUSION To avoid non-specific cytotoxicity, optimization efforts are presently emphasizing the possible usage of AC-Res based on nanocrystals, nanoparticles and dendrimers, and nanocrystals. Finally, while using AC-Res in biology is still a way off, researchers agree that if they continue to explore it, AC-Res and similar parts will be recognized as actual possibilities for a variety of things in the next years.
Collapse
Affiliation(s)
- Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Downtown University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India
| | - Rahul Subhash Buchade
- SCES's Indira College of Pharmacy "Niramay", S.No.89/2A, New Pune Mumbai Highway, Tathwade, Pune, Maharashtra, India
| | - Sandhya Subhadra
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies Bidholi Dehradun, Uttarakhand, India
| | - Anoop Kumar Narayanan
- School of Family Health Studies, Kerala University of Health Sciences Kozhikode, Kerala, India
| | | | | | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH19, Kanpur, Agra Highway, Kanpur, Uttar Pradesh, India
| |
Collapse
|
3
|
Alghamdi A, Alissa M, Alghamdi SA, Alshehri MA, Alsuwat MA, Alghamdi A. Suppression of glomerular damage, inflammation, apoptosis, and oxidative stress of acute kidney injury induced by cyclophosphamide toxicity using resveratrol in rat models. Tissue Cell 2024; 91:102548. [PMID: 39232356 DOI: 10.1016/j.tice.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Cyclophosphamide (CP) is a chemotherapy drug that can be used to treat different types of cancers, but its nephrotoxicity effects restrict its usage in clinical settings. Currently, we examined whether the polyphenolic antioxidant and anti-inflammatory compound, resveratrol (RES), can protect against CP-induced nephrotoxicity. Twenty male mature Sprague-Dawley rats were divided into 4 groups of equal size: control group, RES group which received RES (20 mg/kg) for 15 consecutive days, CP group which received CP as a single dose (150 mg/kg) on day 16, and CP+RES group which was similar of the RES and CP groups. Tissue samples were obtained for the stereological, immunohistochemical, biochemical, and molecular evaluations. Findings showed that the numerical density of glomerulus, total volumes and interstitial tissue volumes of kidney, antioxidative biomarkers concentrations (CAT, GSH, SOD), and expression levels of OCT2 gene were notably greater in the CP+RES group than the CP group (P<0.05). During treatment, there was a significant decrease in the serum levels of the urea and creatinine, the densities of apoptotic and inflammatory cells, as well as levels of MDA and proinflammatory cytokines (IL-1β, TNF-α, and PFN1) in the CP+RES group than the CP group (P<0.05). We deduce that giving RES can suppress of glomerular damage, inflammation, apoptosis, and oxidative stress of acute kidney injury induced by CP toxicity.
Collapse
Affiliation(s)
- Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Amani Alghamdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
4
|
Monmai C, Kuk YI, Baek SH. Coinhibitory Effects of Resveratrol- and Protopanaxadiol-Enriched Rice Seed Extracts Against Melanogenic Activities in Melan-a Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:3385. [PMID: 39683178 DOI: 10.3390/plants13233385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
In the current study, we aimed to evaluate the combined antimelanogenic effects of resveratrol- and protopanaxadiol (PPD)-enriched rice seed extracts (DJ526 and DJ-PPD) in melan-a cells. The treatment antioxidant capacity was evaluated using the ABTS radical scavenging method. TR_3 (70% [wight (w)/w] of DJ526 and 30% [w/w] of DJ-PPD) markedly increased the antioxidant activity at a level similar to that of DJ526 and DJ-PPD alone. The antimelanogenic activities in melan-a cells were evaluated after co-culturing of treatments at the concentration of 100 μg/mL. The in vitro melan-a cell experiment showed that treatment with the DJ526 and DJ-PPD mixture significantly reduced the cellular tyrosinase activity and melanin content; suppressed the expression of melanogenesis-related genes and proteins; decreased the number and size of melanin-containing cells; upregulated phosphorylated extracellular signal-regulated kinase 1/2 and protein kinase B expression levels; and suppressed the expression of p-p38 MAPK. These results show that DJ-PPD does not interfere with the antioxidant and antimelanogeneic activities of DJ526 but enhances the antioxidant and antimelanogeneic activities of DJ526. These findings indicate the potential of resveratrol- and PPD-enriched rice seeds as novel agents for controlling hyperpigmentation.
Collapse
Affiliation(s)
- Chaiwat Monmai
- Department of Agriculture Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| | - Yong-In Kuk
- Department of Oriental Medicine Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - So-Hyeon Baek
- Department of Agriculture Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| |
Collapse
|
5
|
Costa CE, Romaní A, Domingues L. Overview of resveratrol properties, applications, and advances in microbial precision fermentation. Crit Rev Biotechnol 2024:1-17. [PMID: 39582165 DOI: 10.1080/07388551.2024.2424362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 07/13/2024] [Indexed: 11/26/2024]
Abstract
Resveratrol is an antioxidant abundant in plants like grapes and peanuts and has garnered significant attention for its potential therapeutic applications. This review explores its chemical attributes, stability, and solubility, influencing its diverse applications and bioavailability. Resveratrol's multifaceted therapeutic roles encompass: antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anti-aging, and anticancer properties. While traditionally studied in preclinical settings, a surge in clinical trials underscores resveratrol's promise for human health. Over 250 recent clinical trials investigate its effects alone and in combination with other compounds. Commercially utilized in food, cosmetics, supplements, and pharmaceuticals, the resveratrol market is expanding, driven by microbial fermentation. Microbes offer advantages over plant extraction and chemical synthesis, providing cost-effective, pure, and sustainable production. Microbial biosynthesis can be attained from carbon sources, such as glucose or xylose, among others, which can be obtained from renewable resources or agro-industrial wastes. While Saccharomyces cerevisiae has been the most used host, non-conventional yeasts like Yarrowia lipolytica and bacteria like Escherichia coli have also demonstrated potential. Genetic modifications such as increasing acetyl-CoA/malonyl-CoA pools, boosting the shikimate pathway, or multi-copy expression of pathway genes, allied to the optimization of fermentation strategies have been promising in increasing titers. Microbial biosynthesis of resveratrol aligns with the shift toward sustainable and renewable bio-based compounds, exemplifying a circular bioeconomy. Concluding, microbial fermentation presents a promising avenue for efficient resveratrol production, driven by genetic engineering, pathway optimization, and fermentation strategies. These advances hold the key to unlocking the potential of resveratrol for diverse therapeutic applications, contributing to a greener and sustainable future.
Collapse
Affiliation(s)
- Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Aloia Romaní
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), Ourense, Spain
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Sharma H, Anand A, Halagali P, Inamdar A, Pathak R, Taghizadeh‐Hesary F, Ashique S. Advancement of Nanoengineered Flavonoids for Chronic Metabolic Diseases. ROLE OF FLAVONOIDS IN CHRONIC METABOLIC DISEASES 2024:459-510. [DOI: 10.1002/9781394238071.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Atapour-Mashhad H, Tayarani-Najaran Z, Golmohammadzadeh S. Preparation and characterization of novel nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN) containing coenzyme Q10 as potent antioxidants and antityrosinase agents. Heliyon 2024; 10:e31429. [PMID: 38882272 PMCID: PMC11180323 DOI: 10.1016/j.heliyon.2024.e31429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
We developed novel and optimal Q10-NLC/SLN formulations as antioxidant and anti-tyrosinase agents. The formulations were analyzed for particle size, morphology, entrapment efficiency (EE %), and long-term stability. The in vitro drug release and in vivo skin penetration were evaluated using dialysis bag diffusion and Sprague Dawley (SD) rats, respectively. Cytotoxicity and protecting effects were assessed by AlamarBlue® assay, ROS level by DCFH-DA, and tyrosinase activity by l-DOPA assay, measuring the absorbance at 470 nm. The selected formulations had optimal surface characterizations, including Z-average size, PDI, and Zeta potential ranging from 125 to 207 nm, 0.09-0.22, and -7 to -24, respectively. They also exhibited physiochemical stability for up to 6 months and EE% above 80 %. The lipids ratio and co-Q10 amount as variable factors significantly affected particle size and zeta potential but were insignificant on PDI. The in vitro release diagram showed that Q10-NLC/SLN revealed a fast release during the first 8 h and prolonged release afterward. The in vivo skin permeation revealed a higher accumulative uptake of co-Q10 in the skin for Q10-NLC/SLN compared to Q10 emulsions. Both selected Q10-NLC and Q10-SLN could reduce intracellular ROS after exposure to H2O2. The Q10-NLC was found to be more potent for inhibiting the tyrosinase activity compared to O10-SLN. The results suggest that the new formulations are promising carriers for topical delivery of co-Q10 as an anti-aging and skin-whitening agent.
Collapse
Affiliation(s)
- Hoda Atapour-Mashhad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Monmai C, Kim JS, Baek SH. Resveratrol-Enriched Rice Callus Extract Inhibits Oxidative and Cellular Melanogenic Activities in Melan-A Cells. Antioxidants (Basel) 2024; 13:625. [PMID: 38929064 PMCID: PMC11201182 DOI: 10.3390/antiox13060625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The excessive production of melanin can cause skin diseases and hyperpigmentation. In this study, resveratrol contained in Dongjin rice seed (DJ526) was increased through callus induction. The antioxidant capacity of resveratrol-enriched rice callus was evaluated using the ABTS radical scavenging method and was equivalent to that of vitamin C. DJ526 rice callus extract significantly increased antioxidant activities in a concentration-dependent manner. The anti-melanogenesis effects of DJ526 rice callus extract were also evaluated in melan-a cells. Resveratrol-enriched rice callus extract significantly (i) decreased the size and number of melanin-containing cells, (ii) suppressed the activity of cellular tyrosinase and melanin content, (iii) downregulated the expression of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2, (iv) increased the expression of phosphorylated extracellular signal-regulated kinase 1/2 and protein kinase B, and (v) inhibited the activation of phosphorylated p38 in melan-a cells. From the above observations, DJ526 rice callus extract showed strong antioxidant and anti-melanogenesis activity at the concentration test. These findings indicate the potential of resveratrol-enriched rice callus as a novel agent for controlling hyperpigmentation.
Collapse
Affiliation(s)
| | | | - So-Hyeon Baek
- Department of Agriculture Life Science, Sunchon National University, Suncheon 59722, Republic of Korea; (C.M.); (J.-S.K.)
| |
Collapse
|
9
|
Jiang P, Wang X, Wang R. Improving grape fruit quality through soil conditioner: Insights from RNA-seq analysis of Cabernet Sauvignon roots. Open Life Sci 2024; 19:20220864. [PMID: 38737104 PMCID: PMC11087741 DOI: 10.1515/biol-2022-0864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 05/14/2024] Open
Abstract
The application of fertilizers and soil quality are crucial for grape fruit quality. However, the molecular data linking different fertilizer (or soil conditioner [SC]) treatments with grape fruit quality is still lacking. In this study, we investigated three soil treatments, namely inorganic fertilizer (NPK, 343.5 kg/hm2 urea [N ≥ 46%]; 166.5 kg/hm2 P2O5 [P2O5 ≥ 64%]; 318 kg/hm2 K2O [K2O ≥ 50%]), organic fertilizer (Org, 9 t/hm2 [organic matter content ≥ 35%, N + P2O5 + K2O ≥ 13%]), and SC (SC, 3 t/hm2 [humic acid ≥ 38.5%; C, 56.1%; H, 3.7%; N, 1.5%; O, 38%; S, 0.6%]), on 4-year-old Cabernet Sauvignon grapevines. Compared with the NPK- and Org-treated groups, the SC significantly improved the levels of soluble solids, tannins, anthocyanins, and total phenols in the grape berries, which are important biochemical indicators that affect wine quality. Furthermore, we conducted RNA-seq analysis on the grapevine roots from each of the three treatments and used weighted gene co-expression network analysis to identify five hub genes that were associated with the biochemical indicators of the grape berries. Furthermore, we validated the expression levels of three hub genes (ERF, JP, and SF3B) and five selected genes related to anthocyanin biosynthesis (UFGT1, UFGT2, UFGT3, GST, and AT) by using quantitative reverse transcription-polymerase chain reaction. Compared to the NPK and Org treatment groups, the SC treatment resulted in a significant increase in the transcription levels of three hub genes as well as VvUFGT1, VvUFGT3, VvGST, and VvAT. These results suggest that the SC can improve grape fruit quality by altering gene transcription patterns in grapevine roots and further influence the biochemical indices of grape fruits, particularly anthocyanin content. This study reveals that the application of SC can serve as an important measure for enhancing vineyard SC and elevating grape quality.
Collapse
Affiliation(s)
- Peng Jiang
- College of Agronomy, Ningxia University, Yinchuan750021, P.R. China
| | - Xiaojing Wang
- Ningxia Research Institute of Quality Standards and Testing Technology of Agricultural Products, Yinchuan750001, P.R. China
| | - Rui Wang
- College of Agronomy, Ningxia University, Yinchuan750021, P.R. China
- Ningxia Grape and Wine Research Institute, Yinchuan750021, P.R. China
| |
Collapse
|
10
|
Woo YR, Kim HS. Interaction between the microbiota and the skin barrier in aging skin: a comprehensive review. Front Physiol 2024; 15:1322205. [PMID: 38312314 PMCID: PMC10834687 DOI: 10.3389/fphys.2024.1322205] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The interplay between the microbes and the skin barrier holds pivotal significance in skin health and aging. The skin and gut, both of which are critical immune and neuroendocrine system, harbor microbes that are kept in balance. Microbial shifts are seen with aging and may accelerate age-related skin changes. This comprehensive review investigates the intricate connection between microbe dynamics, skin barrier, and the aging process. The gut microbe plays essential roles in the human body, safeguarding the host, modulating metabolism, and shaping immunity. Aging can perturb the gut microbiome which in turn accentuates inflammaging by further promoting senescent cell accumulation and compromising the host's immune response. Skin microbiota diligently upholds the epidermal barrier, adeptly fending off pathogens. The aging skin encompasses alterations in the stratum corneum structure and lipid content, which negatively impact the skin's barrier function with decreased moisture retention and increased vulnerability to infection. Efficacious restoration of the skin barrier and dysbiosis with strategic integration of acidic cleansers, emollients with optimal lipid composition, antioxidants, and judicious photoprotection may be a proactive approach to aging. Furthermore, modulation of the gut-skin axis through probiotics, prebiotics, and postbiotics emerges as a promising avenue to enhance skin health as studies have substantiated their efficacy in enhancing hydration, reducing wrinkles, and fortifying barrier integrity. In summary, the intricate interplay between microbes and skin barrier function is intrinsically woven into the tapestry of aging. Sound understanding of these interactions, coupled with strategic interventions aimed at recalibrating the microbiota and barrier equilibrium, holds the potential to ameliorate skin aging. Further in-depth studies are necessary to better understand skin-aging and develop targeted strategies for successful aging.
Collapse
Affiliation(s)
- Yu Ri Woo
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
11
|
Therstappen K, Eichner A, Wohlrab J. [Practical problems with the use of topicals in geriatric dermatology]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2023; 74:773-781. [PMID: 37493717 PMCID: PMC10516777 DOI: 10.1007/s00105-023-05187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/27/2023]
Abstract
Changes related to aging affect all layers of the skin and are influenced by both intrinsic conditions and extrinsic factors. The extent of the senescent changes can vary enormeously in seniors, so that an individual assessment is useful and often necessary. Of particular clinical importance are changes in the epidermis, which entail a complex reduction of the barrier function and a reduction in the compensatory capacity with regard to exogenous noxae. This results in increased susceptibility, especially toward infection and cancer. Against this background, a prophylactic strategy for the substitution of the physicochemical and thus also the microbiological barrier in the context of basic care is very important. In order to be able to implement these consistently, recommendations for preparations explicitly designed for aging skin as well as practical instructions for use are highly meaningful. The latter should take into account limitations regarding mobility as well as possible cognitive deficits of seniors. For this purpose, creams and suitable preparations in terms of viscosity and composition should be recommended. In order to facilitate implementation, written or pictorial recommendations for application as well as digital assistance systems can be used. Due to demographic developments in Germany and Europe, the clinical relevance of geriatric dermatology will significantly increase in the future.
Collapse
Affiliation(s)
- K Therstappen
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Deutschland
| | - A Eichner
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Deutschland.
- An-Institut für angewandte Dermatopharmazie (IADP), Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 23, 06120, Halle (Saale), Deutschland.
| | - J Wohlrab
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Deutschland
- An-Institut für angewandte Dermatopharmazie (IADP), Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 23, 06120, Halle (Saale), Deutschland
| |
Collapse
|
12
|
Patathananone S, Pothiwan M, Uapipatanakul B, Kunu W. Inhibitory Effects of Vernonia amygdalina Leaf Extracts on Free Radical Scavenging, Tyrosinase, and Amylase Activities. Prev Nutr Food Sci 2023; 28:302-311. [PMID: 37842258 PMCID: PMC10567596 DOI: 10.3746/pnf.2023.28.3.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 10/17/2023] Open
Abstract
Cytotoxicity and instability are the limitations when using bioactive compounds in cosmetic and pharmacology products. This study assesses Vernonia amygdalina leaf extracts for their antityrosinase, antiamylase, and antioxidant activities. Group A extracts were obtained using an aqueous solvent system [70% (v/v) of methanol (BTL70ME), ethanol (BTL70ET), and acetone (BTL70AC)]. Group B extracts were obtained using organic solvents of varying polarities. The results displayed that all extracts exhibited antityrosinase, antiamylase, and antioxidant activities in vitro. The most potent antityrosinase activity was observed in BTL70AC, with a half-maximal inhibitory concentration (IC50) value of 20 μg/mL. BTL_Ethyl acetate and BTL70AC showed potential antiamylase activity. BTL_Isopropanol and BTL_Ethanol exhibited potential antioxidant activity, with IC50 values of 4.0 μg/mL. The total phenolic content of BTL70ME, BTL70ET, and BTL70AC was 72.29±14.14, 65.98±11.91, and 69.37±7.72 mg gallic acid/g extract, respectively. The total flavonoid content was 53.04±5.22, 44.35±13.17, and 61.74±13.17 mg quercetin/g extract, respectively. Group A extracts contained polyphenols, flavonoids, saponins, terpenoids, steroids, and cardiac glycosides. These biological properties can potentially be attributed to the types and quantities of phytochemicals present. Bioactive compounds in the extracts may exert synergistic effects in vitro by interfering with the conformational changes of tyrosinase during substrate binding. Both groups of extracts have the potential to suppress biomolecule degradation, promote antiaging and antimelasma effects, and their phytochemicals can help lower blood glucose levels in diabetes.
Collapse
Affiliation(s)
- Supawadee Patathananone
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 220, Thailand
| | - Mahinthorn Pothiwan
- Programme of Agricultural Business, Faculty of Agricultural Technology, Rajabhat Maha Sarakham University, Maha Sarakham 44000, Thailand
| | - Boontida Uapipatanakul
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 220, Thailand
| | - Wuttisak Kunu
- Programme of Veterinary Technology and Veterinary Nursing, Faculty of Agricultural Technology, Rajabhat Maha Sarakham University, Maha Sarakham 44000, Thailand
| |
Collapse
|
13
|
Rostkowska E, Poleszak E, Wojciechowska K, Dos Santos Szewczyk K. Dermatological Management of Aged Skin. COSMETICS 2023. [DOI: 10.3390/cosmetics10020055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The subject of the work concerns the dermatological management of patients mainly with aged skin. The purpose of the work was to present the basic techniques and preparations which are performed by dermatologists in the treatment of aged skin. There are dermatological treatments related to the treatment of skin diseases and cosmetic treatments which are mainly related to skin care. In this work, the method of literature research was applied. On the basis of books and journal articles on dermatological and cosmetic procedures for aged skin, an analysis of treatment types was made. Then, the results of this analysis were presented in the paper under discussion. The paper presents information on the skin and its properties. The structure and functions of the skin, aging processes and characteristics of aged skin were discussed. Then, the possibilities of reducing the visible signs of skin aging through the use of invasive and non-invasive dermatological and cosmetological treatments were given, and the most important components of preparations used supportively in combating skin aging processes were discussed.
Collapse
|
14
|
Monsour CG, Tadle AB, Tafolla-Aguirre BJ, Lakshmanan N, Yoon JH, Sabio RB, Selke M. Singlet Oxygen Quenching by Resveratrol Derivatives. Photochem Photobiol 2023; 99:672-679. [PMID: 36031343 PMCID: PMC9971345 DOI: 10.1111/php.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
We investigated the singlet oxygen quenching ability of several derivatives of trans-resveratrol which have been reported to have significant antioxidant ability, including photoprotective activity. We measured the total rate constants of singlet oxygen removal (kT ) by the methylated resveratrol derivative 1,3-dimethoxy-5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene, and the partially methylated resveratrol derivatives 4-((E)-2-(3,5-dimethoxyphenyl)ethenyl)phenol (pterostilbene), 5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene-1,3-diol and (2R,3R)-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-2,3-dihydrochromen-4-one (dihydromyricetin). A protic solvent system results in higher kT values, except for the completely methylated derivative. We also investigated the ability of trans-resveratrol to directly act as a photosensitizer (rather than via secondary photoproducts resulting from other primary photochemical reactions) for the production of singlet oxygen but found that neither resveratrol nor any of its derivatives are able to do so. We then studied the chemical reactions of the methylated derivative with singlet oxygen. The main pathway consists of a [4 + 2] cycloaddition reaction involving the trans-double bond and the para-substituted benzene ring similar to what has been observed for trans-resveratrol. Unlike trans-resveratrol, the primary singlet oxygen product undergoes a second [4 + 2] cycloaddition with singlet oxygen leading to the formation of diendoperoxides. A second reactivity pathway for both trans-resveratrol and the methylated derivative leads to the formation of aldehydes via cleavage of a transient dioxetane.
Collapse
Affiliation(s)
- Charlotte G. Monsour
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Abegail B. Tadle
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | | | - Nidhi Lakshmanan
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Jin Hyeok Yoon
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Rhemrose B. Sabio
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Matthias Selke
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| |
Collapse
|
15
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
16
|
Nanoemulsion and Nanogel Containing Cuminum cyminum L Essential Oil: Antioxidant, Anticancer, Antibacterial, and Antilarval Properties. J Trop Med 2023; 2023:5075581. [PMID: 36793773 PMCID: PMC9925266 DOI: 10.1155/2023/5075581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/29/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Cuminum cyminum L. is a widespread medicinal plant with a broad spectrum of biological activity. In the present study, the chemical structure of its essential oil was examined utilizing GC-MS analysis (gas chromatography-mass spectrometry). Then, a nanoemulsion dosage form was prepared with a droplet size and droplet size distribution (SPAN) of 121 ± 3 nm and 0.96. After that, the dosage form of the nanogel was prepared; the nanoemulsion was gelified by the addition of 3.0% carboxymethyl cellulose. In addition, the successful loading of the essential oil into the nanoemulsion and nanogel was approved by ATR-FTIR (attenuated total reflection Fourier transform infrared) analysis. The IC50 values (half maximum inhibitory concentration) of the nanoemulsion and nanogel against A-375 human melanoma cells were 369.6 (497-335) and 127.2 (77-210) μg/mL. In addition, they indicated some degrees of an antioxidant activity. Interestingly, after treatment of Pseudomonas aeruginosa with 5000 µg/mL nanogel, bacterial growth was completely (∼100%) inhibited. In addition, the growth of Staphylococcus aureus after treatment with the 5000 μg/ml nanoemulsion was decreased by 80%. In addition, nanoemulsion and nanogel LC50 values for Anopheles stephensi larvae were attained as 43.91 (31-62) and 123.9 (111-137) µg/mL. Given the natural ingredients and promising efficacy, these nanodrugs can be regarded for further research against other pathogens or mosquito larvae.
Collapse
|
17
|
Sabater-Jara AB, Almagro L, Nicolás Sánchez I, Pedreño MÁ. Biotechnological Approach to Increase Oxyresveratrol Production in Mulberry In Vitro Plants under Elicitation. PLANTS (BASEL, SWITZERLAND) 2023; 12:546. [PMID: 36771627 PMCID: PMC9920829 DOI: 10.3390/plants12030546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Morus alba L. is used for a range of therapeutic purposes in Asian traditional medicine, and its extracts are reported to be effective against lipidemia, diabetes, and obesity, as well as being hepatoprotective and tyrosinase-inhibitory. They are also included in cosmetic products as anti-aging and skin-whitening agents. Stilbenes, the major bioactive compounds found in M. alba, have received renewed attention recently because of their putative activity against COVID-19. In this study M. alba plants were established in vitro, and the effect of elicitation on plant growth and stilbene accumulation, specifically oxyresveratrol and trans-resveratrol, was investigated. Different concentrations of the elicitors including methyl jasmonate and cyclodextrins were applied, and stilbene levels were determined in leaves, roots, and the culture medium. Elicitation of the M. alba plants with 5 mM cyclodextrins, alone or in combination with 10 µM methyl jasmonate, significantly increased the total phenolic content in the culture medium and leaves after 7 days of treatment. The higher total phenolic content in the roots of control plants and those treated only with methyl jasmonate indicated that cyclodextrins promoted metabolite release to the culture medium. Notably, the cyclodextrin-treated plants with the highest levels of oxy- and trans-resveratrol also had the highest total phenolic content and antioxidant capacity. These results indicate that elicited M. alba in vitro plants constitute a promising alternative source of bioactive stilbenes to supply pharmaceutical and cosmeceutical industries.
Collapse
|
18
|
Rahimifard M, Baeeri M, Mousavi T, Azarnezhad A, Haghi-Aminjan H, Abdollahi M. Combination therapy of cisplatin and resveratrol to induce cellular aging in gastric cancer cells: Focusing on oxidative stress, and cell cycle arrest. Front Pharmacol 2023; 13:1068863. [PMID: 36686661 PMCID: PMC9846154 DOI: 10.3389/fphar.2022.1068863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Background: As a medical dilemma, gastric cancer will have 7.3 million new cases in 2040. Despite the disease's high economic and global burden, conventional chemotherapy regimens containing cisplatin have insufficient effectiveness and act non-specifically, leading to several adverse drug reactions To address these issues, the biological efficacy of the cisplatin-resveratrol combination was tested. Methods: To find IC50, gastric adenocarcinoma cells (AGS) were exposed to different concentrations of resveratrol and cisplatin. Anti-cancer and anti-metastatic effects of 100 M resveratrol with concentrations of cisplatin (25, 50, and 100 g/ml) were studied by assessing ß-galactosidase and telomerase activities, senescence and migration gene expression, reactive oxygen species (ROS) level, and cell cycle arrest. Results: Co-administration of cisplatin and resveratrol increased ß-galactosidase activity, ROS level as a key marker of oxidative stress, p53, p38, p16, p21, and MMP-2 gene expression, and induced G0/G1 cell cycle arrest. Additionally, telomerase activity, pro-inflammatory gene expression, and cell invasion were suppressed. The best results were achieved with 100 g/ml cisplatin co-administered with resveratrol. Conclusion: The current study proved the synergistic effect of the cisplatin-resveratrol combination on suppressing metastasis and inducing apoptosis and cell senescence through targeting P38/P53 and P16/P21 pathways. Such promising results warrant translation to animal models and the clinic. This may lead to cost-effective, available, and accessible treatment regimens with targeted action and the fewest ADRs.
Collapse
Affiliation(s)
- Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
19
|
Hao R, Li M, Li F, Sun-Waterhouse D, Li D. Protective effects of the phenolic compounds from mung bean hull against H 2O 2-induced skin aging through alleviating oxidative injury and autophagy in HaCaT cells and HSF cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156669. [PMID: 35718184 DOI: 10.1016/j.scitotenv.2022.156669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
To add value to food waste and seek skin aging suppressor, petroleum ether, ethyl acetate, n-butanol and water phenolic extracts were produced from mung bean hulls subjected to ultrasound-assisted ethanolic extraction. The four extracts all contained protocatechuic acid, isovitexin, vitexin, caffeic acid, 4-coumaric acid, ferulic acid, rutin and chlorogenic acid (revealed by UHPLC-MS/MS). The effects of the four extracts and their main phenolic compounds against H2O2-caused cell damage and aging in HaCaT and HSF cells were examined (including cell viability, ROS, MDA, SOD, GSH-px and β-galactosidase levels). The four extracts and the eight phenolic compounds exhibited different protective effects on H2O2-treated HaCaT/HSF cells viability, with the ethyl acetate extract among the extracts, and isovitexin and vitexin among the eight compounds, exerting the greatest protection. Therefore, isovitexin and vitexin may be the key oxidative stress and autophagy modulators of mung bean hull, and they inhibit skin aging and damage likely through suppressing Nrf2/keap1/HO-1 related oxidative damage and LC3II/p62/GATA4 related autophagy.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Meiqi Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China.
| |
Collapse
|
20
|
Zhao Y, Li Z, Wang X, Zhao F, Wang C, Zhang Q, Chen X, Geng Z, Zhang C. Resveratrol Attenuates Heat Stress-Induced Impairment of Meat Quality in Broilers by Regulating the Nrf2 Signaling Pathway. Animals (Basel) 2022; 12:ani12151889. [PMID: 35892539 PMCID: PMC9330235 DOI: 10.3390/ani12151889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Studies have indicated that dietary resveratrol (RES) improves the meat quality of broilers subjected to heat stress (HS), but the mechanism of action remains unclear. Therefore, the main purpose of this study was to investigate the effect of RES on meat quality, muscle antioxidant status, and its mechanism of action in broilers under HS. A total of 162 male AA broilers at 21 days old with similar weight were randomly assigned to 3 treatment groups with 6 replicates each. The control group (ambient temperature: 22 ± 1 °C) and HS group (ambient temperature: 33 ± 1 °C for 10 h a day from 8:00 to 18:00 and 22 ± 1 °C for the remaining time) were fed a basal diet and the HS + RES group was fed a basal diet with 400 mg/kg RES. The feeding was conducted for 21 continuous days. The results indicated that HS decreased final body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), breast and leg muscle yield, a*24h, pH24h, the activities of catalase (CAT), glutathione S-transferase (GST) and glutathione peroxidase (GSH-Px), and mRNA levels of nuclear factor erythroid 2−related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NADPH quinone oxidoreductase 1 (NQO1), and GSH-Px (p < 0.05). HS also increased b*45min, L*24h, drip loss, malondialdehyde (MDA) content, and kelch-like epichlorohydrin-associated protein 1 (Keap1) mRNA level (p < 0.05). Compared with the HS group, the HS + RES group exhibited a higher ADG, breast and leg muscle yield, a*24h, pH24h, activities of GST and GSH-Px, and mRNA levels of Nrf2, HO-1, and NQO1 but had lower drip loss and Keap1 mRNA level (p < 0.05). RES can improve meat quality and the muscle antioxidant ability of heat-stressed broilers by activating the Nrf2 signaling pathway.
Collapse
|
21
|
Abscisic Acid and Chitosan Modulate Polyphenol Metabolism and Berry Qualities in the Domestic White-Colored Cultivar Savvatiano. PLANTS 2022; 11:plants11131648. [PMID: 35807600 PMCID: PMC9269509 DOI: 10.3390/plants11131648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/27/2022]
Abstract
During the last decade, several studies demonstrated the effect of biostimulants on the transcriptional and metabolic profile of grape berries, suggesting their application as a useful viticultural practice to improve grape and wine quality. Herein, we investigated the impact of two biostimulants—abscisic acid (0.04% w/v and 0.08% w/v) and chitosan (0.3% w/v and 0.6% w/v)—on the polyphenol metabolism of the Greek grapevine cultivar, Savvatiano, in order to determine the impact of biostimulants’ application in the concentration of phenolic compounds. The applications were performed at the veraison stage and the impact on yield, berry quality traits, metabolome and gene expression was examined at three phenological stages (veraison, middle veraison and harvest) during the 2019 and 2020 vintages. Results showed that anthocyanins increased during veraison after treatment with chitosan and abscisic acid. Additionally, stilbenoids were recorded in higher amount following the chitosan and abscisic acid treatments at harvest. Both of the abscisic acid and chitosan applications induced the expression of genes involved in stilbenoids and anthocyanin biosynthesis and resulted in increased accumulation, regardless of the vintage. Alterations in other phenylpropanoid gene expression profiles and phenolic compound concentrations were observed as well. Nevertheless, they were mostly restricted to the first vintage. Therefore, the application of abscisic acid and chitosan on the Greek cultivar Savvatiano showed promising results to induce stilbenoid metabolism and potentially increase grape defense and quality traits.
Collapse
|
22
|
Vo GT, Liu Z, Chou O, Zhong B, Barrow CJ, Dunshea FR, Suleria HA. Screening of phenolic compounds in australian grown grapes and their potential antioxidant activities. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Sharifi-Rad J, Quispe C, Durazzo A, Lucarini M, Souto EB, Santini A, Imran M, Moussa AY, Mostafa NM, El-Shazly M, Batiha GES, Qusti S, Alshammari EM, Sener B, Schoebitz M, Martorell M, Alshehri MM, Dey A, Cruz-Martins N. Resveratrol’ biotechnological applications: enlightening its antimicrobial and antioxidant properties. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Kaur N, Sharma P, Aditya A, Shanavas A. Taking leads out of nature, can nano deliver us from COVID-like pandemics? Biomed Phys Eng Express 2022; 8. [PMID: 35078168 DOI: 10.1088/2057-1976/ac4ec8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/25/2022] [Indexed: 11/11/2022]
Abstract
The COVID-19 crisis has alerted the research community to re-purpose scientific tools that can effectively manage emergency pandemic situations. Researchers were never so desperate to discover a 'magic bullet' that has significant clinical benefits with minimal or no side effects. At the beginning of the pandemic, due to restricted access to traditional laboratory techniques, many research groups delved into computational screening of thousands of lead molecules that could inhibit SARS-CoV-2 at one or more stages of its infectious cycle. Several in silico studies on natural derivatives point out their potency against SARS-CoV-2 proteins. However, theoretical predictions and existing knowledge on related molecules reflect their poor oral bioavailability due to biotransformation in the gut and liver. Nanotechnology has evolved into a key field for precise and controlled delivery of various drugs that lack aqueous solubility, have low oral bioavailability and possess pronounced toxicity in their native form. In this review, we discuss various nanoformulations of natural products with favorable ADME properties, and also briefly explore nano-drug delivery to lungs, the primary site of SARS-CoV-2 infection. Natural products are also envisioned to augment nanotechnology-based 1) personnel protective equipment for ex vivo viral inactivation and 2) wearable sensors that perform rapid and non-invasive analysis of volatile organic compounds in exhaled breath of the infected person after therapeutic food consumption.
Collapse
Affiliation(s)
- Navneet Kaur
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, INDIA
| | - Priyanka Sharma
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, INDIA
| | - Adrija Aditya
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, INDIA
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, INDIA
| |
Collapse
|
25
|
Moon K, Lee S, Park H, Cha J. Enzymatic Synthesis of Resveratrol α-Glucoside by Amylosucrase of Deinococcus geothermalis. J Microbiol Biotechnol 2021; 31:1692-1700. [PMID: 34584041 PMCID: PMC9706033 DOI: 10.4014/jmb.2108.08034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022]
Abstract
Glycosylation of resveratrol was carried out by using the amylosucrase of Deinococcus geothermalis, and the glycosylated products were tested for their solubility, chemical stability, and biological activities. We synthesized and identified these two major glycosylated products as resveratrol-4'-O-α-glucoside and resveratrol-3-O-α-glucoside by nuclear magnetic resonance analysis with a ratio of 5:1. The water solubilities of the two resveratrol-α-glucoside isomers (α-piceid isomers) were approximately 3.6 and 13.5 times higher than that of β-piceid and resveratrol, respectively, and they were also highly stable in buffered solutions. The antioxidant activity of the α-piceid isomers, examined by radical scavenging capability, showed it to be initially lower than that of resveratrol, but as time passed, the α-piceid isomers' activity reached a level similar to that of resveratrol. The α-piceid isomers also showed better inhibitory activity against tyrosinase and melanin synthesis in B16F10 melanoma cells than β-piceid. The cellular uptake of the α-piceid isomers, which was assessed by ultra-performance liquid chromatography (UPLC) analysis of the cell-free extracts of B16F10 melanoma cells, demonstrated that the glycosylated form of resveratrol was gradually converted to resveratrol inside the cells. These results indicate that the enzymatic glycosylation of resveratrol could be a useful method for enhancing the bioavailability of resveratrol.
Collapse
Affiliation(s)
- Keumok Moon
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Seola Lee
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunsu Park
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Jaeho Cha
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea,Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea,Corresponding author Phone: +82-51-510-2196 Fax: +82-51-514-1778 E-mail:
| |
Collapse
|
26
|
Díaz-Ruiz R, Laca A, Sánchez M, Fernández MR, Matos M, Gutiérrez G. Addition of Trans-Resveratrol-Loaded Highly Concentrated Double Emulsion to Yoghurts: Effect on Physicochemical Properties. Int J Mol Sci 2021; 23:ijms23010085. [PMID: 35008506 PMCID: PMC8744663 DOI: 10.3390/ijms23010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
Trans-resveratrol (RSV) needs to be encapsulated to maintain its beneficial properties on the human body. This is due to its extreme photosensitivity, short biological half-life, and easy oxidation. In this study, the use of double emulsions for RSV encapsulation and their further application on functional yoghurts was studied. Different types of yoghurts were prepared: with and without RSV and with two types of volumetric emulsion formulations (20/80 and 30/70). In order to study the influence of the addition of double emulsions to the physical properties of the prepared yoghurts, they were characterised fresh and after a month under storage at 4 °C, in terms of droplet size, morphology, stability, rheology, texturometry, colorimetry, and antioxidant capacity. Results obtained showed that the presence of emulsion in the yoghurts produced a generalised decrease in the predominant droplet size (from 48 µm to 15-25 µm) and an increase in the stability. Additionally, a predominantly elastic character was observed. The firmness values obtained were very similar for all the yoghurts analysed and did not suffer important modifications with time. A slight colour variation was observed with storage time in the control sample, whereas a more notable variation in the case of emulsion yoghurts was observed. An appreciable increase of the antioxidant capacity of the final functional yoghurt (100 g) was observed when it contained 5-8 mg of RSV. Encapsulated RSV added to yoghurts presented a larger protection against RSV oxidation compared with free RSV, presenting a larger antioxidant inhibition after one month of storage. Moreover, the antioxidant capacity of yoghurts with encapsulated RSV was not affected under storage, since slight reductions (3%) were registered after one month of storage at 4 °C.
Collapse
Affiliation(s)
- Rocío Díaz-Ruiz
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
| | - Marta Sánchez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
| | - Manuel Ramón Fernández
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: ; Tel.: +34-985103509; Fax: +34-985103434
| |
Collapse
|
27
|
Iwata H. Resveratrol enhanced mitochondrial recovery from cryopreservation-induced damages in oocytes and embryos. Reprod Med Biol 2021; 20:419-426. [PMID: 34646069 PMCID: PMC8499604 DOI: 10.1002/rmb2.12401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mitochondria play a crucial role in nuclear maturation, fertilization, and subsequent embryo development. Cryopreservation is an important assisted reproductive technology that is used worldwide for humans and domestic animals. Although mitochondrial quantity and quality are decisive factors for successful development of oocytes and embryos, cryopreservation induces mitochondrial dysfunction. Upon thawing, the damaged mitochondria are removed, and de novo synthesis occurs to restore the function of mitochondria. Resveratrol, 3,5,4'-trihydroxystilbene, is a polyphenolic antioxidant that has versatile target proteins, among which sirtuin-1 (SIRT1) is a key regulator of in mitochondrial biogenesis and degradation. METHODS The present study is a literature review focusing on experiments involving the hypothesis that the activation of mitochondrial biogenesis and degradation following cryopreservation and warming by resveratrol may help mitochondrial recovery and improve oocyte and embryo development. MAIN FINDINGS AND CONCLUSION Resveratrol improves oocyte maturation and development and upregulates mitochondrial biogenesis and degradation. When vitrified-warmed embryos are treated with resveratrol, it helps in mitochondrial regulation and recovery of embryos from cryopreservation-induced damage. CONCLUSION Resveratrol treatment is a possible countermeasure against cryopreservation-induced mitochondrial damage.
Collapse
|
28
|
Hosny KM, Alhakamy NA, Al Nahyah KS. The relevance of nanotechnology, hepato-protective agents in reducing the toxicity and augmenting the bioavailability of isotretinoin. Drug Deliv 2021; 28:123-133. [PMID: 33355019 PMCID: PMC7758053 DOI: 10.1080/10717544.2020.1862365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acne Vulgaris is one of the most common chronic inflammatory skin disorders that affect majority of teen-agers worldwide. Isotretinoin (ITT) is the drug of choice in the management of acne, but, it suffers from serious side-effects including hepatotoxicity, and some psychological disturbances following its oral intake. The objective of this study was to develop and optimize ITT loaded nanoemulsions (ITT-SNEDDS) and to incorporate resveratrol (RSV)in optimum formulation to decrease ITT side effects The ITT solubility was first tested in various essential oils, surfactants, and co-surfactants to select the essential nanoemulsion ingredients. Mixture design was applied to study the effect of independent variables and their interactions on the selected dependent responses. The developed ITT-SNEDDS were characterized for their globule size and ex vivo permeation. The optimized batch was further loaded with RSV and evaluated for in vitro and ex vivo permeation and for in vivo hepatotoxicity. The developed ITT-SNEDDS exhibited globule size below 300 nm, up to 272.27 ± 7.12 mcg/cm2.h and 61.27 ± 2.83% of steady-state flux (JSS) and permeability % respectively. Optimum formulation consisted of 0.15 g oil mixture, 0.6 g of surfactant (Labrasol), and 0.250 g co-surfactant (Transcutol). Permeability studies confirmed the enhanced permeation percentage of ITT (40.77 ± 1.18%), and RSV (29.94 ± 2.02%) from optimized formulation, with enhanced steady-state flux (JSS). In vivo studies demonstrated the superior hepatoprotective activity of optimized formulation compared to a different drug formulations and marketed product. Therefore, RVS loaded ITT-SNEDDS might be a successful strategy for acne management with improved action, and minimum side effects.
Collapse
Affiliation(s)
- Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid S Al Nahyah
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Kaur A, Tiwari R, Tiwari G, Ramachandran V. Resveratrol: A Vital Therapeutic Agent with Multiple Health Benefits. Drug Res (Stuttg) 2021; 72:5-17. [PMID: 34412126 DOI: 10.1055/a-1555-2919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Resveratrol (RSV), the most effective stilbene phytoalexin synthesized naturally or induced in plants as part of their defense mechanism, is a key component of natural phenolic compounds and is being considered as a treatment option for a variety of diseases. RSV was discovered in the skin of red grapes, mulberries, peanuts, pines, and Polygonum cuspidatum weed root extracts. It was first extracted from white hellebore (Veratrum grandiflorum O. Loes) roots in 1940, then from Polygonum cuspidatum roots in 1963. However, RSV's use as a drug is limited due to its initial conformational strength and poor stability. The research focused on a set of RSV biological activity data. RSV has been the subject of growing concern, despite its wide range of biological and therapeutic applications. According to the literature, RSV has antioxidant, anti-cancer, cardioprotective, neuroprotective, anti- inflammatory, anti-microbial, immunomodulatory, and radioprotective properties. The current analysis summarized biological applications of RSV, their mechanisms of action, and recent scientific development in the area of their delivery. It is possible to infer that RSV has many effects on infected cells' cellular functions.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh, India
| | - Ruchi Tiwari
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh, India
| | - Gaurav Tiwari
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh, India
| | - Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
30
|
Choi E, Maeng SJ, Yun S, Yu H, Shin JS, Yun JY. The degeneration of skin cosmetics and the structural changes of the chemical components as an indicator of product shelf life. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Prospective Pharmacological Potential of Resveratrol in Delaying Kidney Aging. Int J Mol Sci 2021; 22:ijms22158258. [PMID: 34361023 PMCID: PMC8348580 DOI: 10.3390/ijms22158258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Aging is an unavoidable part of life. The more aged we become, the more susceptible we become to various complications and damages to the vital organs, including the kidneys. The existing drugs for kidney diseases are mostly of synthetic origins; thus, natural compounds with minimal side-effects have attracted growing interest from the scientific community and pharmaceutical companies. A literature search was carried out to collect published research information on the effects of resveratrol on kidney aging. Recently, resveratrol has emerged as a potential anti-aging agent. This versatile polyphenol exerts its anti-aging effects by intervening in various pathologies and multi-signaling systems, including sirtuin type 1, AMP-activated protein kinase, and nuclear factor-κB. Researchers are trying to figure out the detailed mechanisms and possible resveratrol-mediated interventions in divergent pathways at the molecular level. This review highlights (i) the causative factors implicated in kidney aging and the therapeutic aspects of resveratrol, and (ii) the effectiveness of resveratrol in delaying the aging process of the kidney while minimizing all possible side effects.
Collapse
|
32
|
Díaz-Ruiz R, Valdeón I, Álvarez JR, Matos M, Gutiérrez G. Simultaneous encapsulation of trans-resveratrol and vitamin D 3 in highly concentrated double emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3654-3664. [PMID: 33280118 DOI: 10.1002/jsfa.10995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Encapsulation of biocompounds is essential to protect them from environmental factors that could enhance their oxidation or cause them to lose their beneficial properties due to extreme photosensitivity, among other factors. The main goal of this work was to study the feasibility of preparing concentrated double emulsions with a high loading capacity containing simultaneously trans-resveratrol (RSV) and vitamin D3 (VitD3 ). Such emulsions could be used for food fortification or pharmaceutical formulations or as vehicles for targeted controlled release. RESULTS In order to achieve large concentrations of the encapsulated compounds, all the double emulsions were formulated using a W1 /O in W2 ratio of 80/20, while the ratios tested for W1 in O where 20/80 and 30/70. All the emulsions were characterized by droplet size, morphology, colloidal stability and encapsulation efficiency (EE) over a period of 6 weeks. VitD3 and RSV concentration were determined by a technique based on reverse-phase high-performance liquid chromatography. The viability of preparing concentrated W1 /O/W2 emulsions containing both biocompounds has been demonstrated with satisfactory results. Initial RSV concentrations in the concentrated double emulsions formulated varied from 5.0 to 8.3 mg L-1 , while for VitD3 values of 28-32 mg L-1 were obtained. The presence of VitD3 retarded RSV release in the formulated emulsions. It was observed that after 1 week of storage RSV EE increased around 10-50% when VitD3 was simultaneously encapsulated. CONCLUSION Simultaneous encapsulation of RSV and VitD3 was possible in high internal phase emulsions. The emulsions presented high colloidal stability, being suitable for food fortification applications. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rocío Díaz-Ruiz
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, Spain
| | - Irene Valdeón
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - José Ramón Álvarez
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, Spain
| |
Collapse
|
33
|
Bharadwaj SS, Vaidyanathan L. Effects of resveratrol on the growth and enzyme production of Stenotrophomonas maltophilia: a burn wound pathogen. J Wound Care 2021; 29:S38-S43. [PMID: 33320761 DOI: 10.12968/jowc.2020.29.sup12.s38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The purpose of this study was to identify the potential of resveratrol in inhibiting the growth and production of two enzymes, hyaluronidase and protease, in Stenotrophomonas maltophilia, which has become a burn wound pathogen of great significance. METHOD Stenotrophomonas maltophilia (ATCC 17666) was cultured in nutrient broth and the microbial load was standardised to 0.5 McFarland standard at 600nm. The study included antimicrobial assays (well diffusion and resazurin dye binding method), hyaluronidase expression regulation assay (hyaluronic acid hydrolysis assay and turbidity assay) and protease expression regulation assay (casein hydrolysis assay and determination of specific activity of protease using tyrosine standard). RESULTS The minimum inhibitory concentration (MIC) of resveratrol against Stenotrophomonas maltophilia was found to be 125µg/ml. Hyaluronidase production in the organism treated with resveratrol was found to be half that in the untreated organism. The specific activity of protease produced by the organism treated with resveratrol was found to be one-quarter that in the untreated organism, as analysed by the tyrosine standard estimation protocol. CONCLUSION Resveratrol was found to be a potent compound to treat Stenotrophomonas maltophilia infections. In addition to the antimicrobial and enzyme-regulatory properties of resveratrol, it also shows anti-oxidant and anti-inflammatory properties. This finding has great scope clinically as resveratrol may prove to be an ideal drug to treat burn wound infections.
Collapse
Affiliation(s)
- Sraddha S Bharadwaj
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Lalitha Vaidyanathan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
34
|
Resveratrol Production in Yeast Hosts: Current Status and Perspectives. Biomolecules 2021; 11:biom11060830. [PMID: 34199540 PMCID: PMC8226833 DOI: 10.3390/biom11060830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/14/2022] Open
Abstract
Resveratrol is a plant secondary metabolite known for its therapeutic applications as an antioxidant, anti-cancer, anti-inflammatory, anti-aging, cardio-protective, and neuroprotective agent. Topical formulas of resveratrol are also used for skin disease management and in cosmetic industries. Due to its importance, high resveratrol production is urgently required. Since the last decade, intensive efforts have been devoted to obtaining resveratrol from microorganisms by pathway and metabolic engineering. Yeasts were proven to be excellent host candidates for resveratrol production. In addition to the similar intracellular compartments between yeasts and plants, yeasts exhibit the ability to express genes coding for plant-derived enzymes and to perform post-translational modification. Therefore, this review summarizes the attempts to use yeasts as a platform for resveratrol synthesis as the next promising route in producing high titers of resveratrol from genetically engineered strains.
Collapse
|
35
|
Implementation of an Enzyme Membrane Reactor to Intensify the α- O-Glycosylation of Resveratrol Using Cyclodextrins. Pharmaceuticals (Basel) 2021; 14:ph14040319. [PMID: 33916212 PMCID: PMC8065884 DOI: 10.3390/ph14040319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The O-glycosylation of resveratrol increases both its solubility in water and its bioavailability while preventing its oxidation, allowing a more efficient use of this molecule as a bioactive ingredient in pharmaceutical and cosmetic applications. Resveratrol O-glycosides can be obtained by enzymatic reactions. Recent developments have made it possible to selectively obtain resveratrol α-glycosides from the β-cyclodextrin–resveratrol complex in water with a yield of 35%. However, this yield is limited by the partial hydrolysis of the resveratrol glycosides produced during the reaction. In this study, we propose to intensify this enzymatic reaction by coupling the enzymatic reactor to a membrane process. Firstly, membrane screening was carried out at the laboratory scale and led to the choice of a GE polymeric membrane with a cut-off of 1 kDa. This membrane allowed the retention of 65% of the β-cyclodextrin–resveratrol complex in the reaction medium and the transfer of 70% of the resveratrol α-O-glycosides in the permeate. In a second step, this membrane was used in an enzymatic membrane reactor and improved the yield of the enzymatic glycosylation up to 50%.
Collapse
|
36
|
Study of Resveratrol's Interaction with Planar Lipid Models: Insights into Its Location in Lipid Bilayers. MEMBRANES 2021; 11:membranes11020132. [PMID: 33672841 PMCID: PMC7918209 DOI: 10.3390/membranes11020132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/16/2023]
Abstract
Resveratrol, a polyphenolic molecule found in edible fruits and vegetables, shows a wide range of beneficial effects on human health, including anti-microbial, anti-inflammatory, anti-cancer, and anti-aging properties. Due to its poor water solubility and high liposome-water partition coefficient, the biomembrane seems to be the main target of resveratrol, although the mode of interaction with membrane lipids and its location within the cell membrane are still unclear. In this study, using electrophysiological measurements, we study the interaction of resveratrol with planar lipid membranes (PLMs) of different composition. We found that resveratrol incorporates into palmitoyl-oleoyl-phosphatidylcholine (POPC) and POPC:Ch PLMs and forms conductive units unlike those found in dioleoyl-phosphatidylserine (DOPS):dioleoyl-phosphatidylethanolamine (DOPE) PLMs. The variation of the biophysical parameters of PLMs in the presence of resveratrol provides information on its location within a lipid double layer, thus contributing to an understanding of its mechanism of action.
Collapse
|
37
|
Lephart ED, Naftolin F. Menopause and the Skin: Old Favorites and New Innovations in Cosmeceuticals for Estrogen-Deficient Skin. Dermatol Ther (Heidelb) 2021; 11:53-69. [PMID: 33242128 PMCID: PMC7859014 DOI: 10.1007/s13555-020-00468-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Estrogen is a pivotal signaling molecule; its production is regulated by the expression of the aromatase (CYP19A1) gene from ovarian and peripheral tissue sites, and it is transmitted via estrogen receptors to influence many important biological functions. However, the narrative for this overview focuses on the decline of 17β-estradiol levels from ovarian sites after menopause. This estrogen-deficient condition is associated with a dramatic reduction in skin health and wellness by negatively impacting dermal cellular and homeostatic mechanisms, as well as other important biological functions. The changes include loss of collagen, elastin, fibroblast function, vascularity, and increased matrix metalloproteinase(s) enzymatic activities, resulting in cellular and extracellular degradation that leads to dryness, wrinkles, atrophy, impaired wound healing/barrier function, decreased antioxidant capacity [i.e., defense against reactive oxygen species (ROS) and oxidative stress], decreased attractiveness and psychological health, and increased perception of aging. While topical estrogen may reverse these changes, the effects of today's low-dose systemic hormone treatments are not well established, raising the need for more concentrated local administration of hormones or newer cosmeceutical agents such as selective estrogen receptor modulators (SERMs), including phytoestrogens that have become major active ingredients for skin care products, especially when addressing estrogen-deficient skin. Two example compounds are presented, an analog of resveratrol (i.e., 4'-acetoxy resveratrol) and the isoflavonoid equol, both of which are involved in a variety of biochemical/molecular actions and mechanisms, as demonstrated via in vitro and clinical studies that enhance human dermal health, especially in estrogen-deficient skin.
Collapse
Affiliation(s)
- Edwin D Lephart
- Department of Physiology, Developmental Biology and The Neuroscience Center, College of Life Sciences, Brigham Young University, Provo, UT, USA.
| | | |
Collapse
|
38
|
Torres-Santiago G, Zepeda-Vallejo LG, Serrano-Contreras JI. Linking metabolic profiling, resveratrol, the gut microbiota, and antioxidant potential. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Mostafa DK, Omar SI, Abdellatif AA, Sorour OA, Nayel OA, Abod Al Obaidi MR. Differential Modulation of Autophagy Contributes to the Protective Effects of Resveratrol and Co-Enzyme Q10 in Photoaged Mice. Curr Mol Pharmacol 2021; 14:458-468. [PMID: 32744981 DOI: 10.2174/1874467213666200730114547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In photoaging, the accumulation of ultraviolet (UV)-induced oxidative damage leads to the characteristic hallmarks of aging. Here arises the importance of autophagy as a cellular degradation process that cleans the cells of defective or aged organelles and macromolecules, thus maintaining cellular homeostasis. In spite of this, the exact impact of autophagy in photoaging is still elusive. OBJECTIVE To evaluate the protective effects of resveratrol and/or co-enzyme-Q10 against the UVA-induced alterations and to explore the role of autophagy in their proposed benefits. METHODS Sixty female mice were randomly divided into normal control, untreated UVA-exposed, resveratrol (50mg/kg), co-enzyme-Q10 (100mg/kg), and resveratrol/co-enzyme-Q10-treated UVA-- exposed groups. Clinical signs of photoaging were evaluated using a modified grading score and the pinch test. Skin malondialdehyde and reduced glutathione were assessed as markers of oxidative stress. Tissues were examined for histopathological signs of photodamage, and autophagic changes were determined by immunohistochemical detection of LC3 and P62 in the different cells of the skin. RESULTS UVA-exposure increased the oxidative stress with subsequent epidermal and dermal injury. This was associated with the stimulation of autophagy in the keratinocytes and inhibition of autophagic flux in the fibroblasts and infiltrating macrophages. Both drugs corrected the impaired pinch test, macro-and microscopic changes, and exhibited distinct staining patterns with anti-LC3 and P62 in the different cell types denoting autophagic modulation. CONCLUSION Changes in autophagic flux are strongly implicated in photoaging associated skin damage and the differential modulation of autophagy by resveratrol and, to a lesser extent by Co-enzyme- Q10, is partially involved in their therapeutic benefits.
Collapse
Affiliation(s)
- Dalia K Mostafa
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Shaimaa I Omar
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amany A Abdellatif
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Osama A Sorour
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Omnia A Nayel
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
40
|
Hübner AA, Sarruf FD, Oliveira CA, Neto AV, Fischer DCH, Kato ETM, Lourenço FR, Baby AR, Bacchi EM. Safety and Photoprotective Efficacy of a Sunscreen System Based on Grape Pomace ( Vitis vinifera L.) Phenolics from Winemaking. Pharmaceutics 2020; 12:E1148. [PMID: 33260841 PMCID: PMC7761385 DOI: 10.3390/pharmaceutics12121148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 01/12/2023] Open
Abstract
In winemaking, a large amount of grape pomace is produced that is rich in polyphenolics and highly beneficial for human health, as phenols are useful for skin ultraviolet (UV) protection. In this investigation, we evaluated the safety and clinical efficacy of a sunscreen system containing a grape pomace extract from Vitis vinifera L. as a bioactive ingredient. The recovery of phenolics in the waste was performed by percolation. Nine emulsions were developed using a factorial design and two were evaluated clinically: Formulation E, containing only UV filters (butylmethoxydibenzoyl methane, ethylhexyl methoxycinnamate and ethylhexyl dimethyl PABA), and F, with the extract at 10.0% w/w + UV filters. The antioxidant activity was determined by the DPPH assay and the in vitro efficacy was established by sun protection factor (SPF) measurements (Labsphere UV-2000S). Clinical tests were performed to determine safety (human repeated insult patch test) and to confirm efficacy (photoprotective effectiveness in participants). The results showed a synergistic effect between the sunscreen system and the extract on UVB protection and antioxidant activity. Both samples were considered safe. Formulation F was 20.59% more efficient in protecting skin against UVB radiation, taking approximately 21% more time to induce erythema compared to the extract-free sample.
Collapse
Affiliation(s)
- Alexandra A. Hübner
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Fernanda D. Sarruf
- IPclin—Institute of Integrated Clinical Research, Jundiai 13200-000, Brazil;
| | - Camila A. Oliveira
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Alberto V. Neto
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Dominique C. H. Fischer
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Edna T. M. Kato
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Felipe R. Lourenço
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - André Rolim Baby
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Elfriede M. Bacchi
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| |
Collapse
|
41
|
Imhof L, Leuthard D. Topical Over-the-Counter Antiaging Agents: An Update and Systematic Review. Dermatology 2020; 237:217-229. [PMID: 32882685 DOI: 10.1159/000509296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022] Open
Abstract
Over-the-counter antiaging formulations aim to prevent or minimize the signs of aging skin, and to maintain the benefits obtained from different cosmetic procedures. Even though a huge selection of such products is available on the market, evidence and good clinical practice of the data supporting their use are oftentimes lacking. In this systematic review, the authors reviewed scientific data available in the published literature on the most common ingredients used in antiaging cosmetics, with a particular focus on in vivo studies.
Collapse
Affiliation(s)
- Laurence Imhof
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland,
| | - Deborah Leuthard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Zimányi L, Thekkan S, Eckert B, Condren AR, Dmitrenko O, Kuhn LR, Alabugin IV, Saltiel J. Determination of the p Ka Values of trans-Resveratrol, a Triphenolic Stilbene, by Singular Value Decomposition. Comparison with Theory. J Phys Chem A 2020; 124:6294-6302. [PMID: 32635729 DOI: 10.1021/acs.jpca.0c04792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several independent determinations of the pKa values of trans-resveratrol in water have led to conflicting results. Singular value decomposition analysis of UV absorption spectra of trans-resveratrol (t-Resv) in N2-outgased aqueous solutions buffered to pH values in the 7.0-13.6 range yielded the UV spectra of the three anionic forms and the corresponding pKa values: pKa1 = 9.16, pKa2 = 9.77, and pKa3 = 10.55 in very good agreement with calculated theoretical values. The analysis of the absorption spectra guided the assignment of the fluorescence spectrum of each anionic form. With the resolved spectra on hand, we applied the Förster equation to estimate pKa* values of 2.5 and 0, respectively, for the p- and m-OH substituents of t-Resv in S1. Theory supports a proposed mechanism for the reaction of t-Resv anions with O2.
Collapse
Affiliation(s)
- László Zimányi
- Institute of Biophysics, Biological Research Centre, P.O. Box 521, Szeged, Hungary H-6701
| | - Shareefa Thekkan
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Brett Eckert
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Alanna R Condren
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Leah R Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Jack Saltiel
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
43
|
Gugleva V, Zasheva S, Hristova M, Andonova V. Topical use of resveratrol: technological aspects. PHARMACIA 2020. [DOI: 10.3897/pharmacia.67.e48472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Resveratrol is a natural polyphenolic phytoalexin found in grapes, berry skins, roots of Japanese knotweed and is reputed as an excellent antioxidant, anti-inflammatory, neuro- and cardio- protective agent. Resveratrol has also beneficial effects in therapy of different skin conditions such as acne, exfoliative eczema, psoriasis and is known to provide a protection against ultraviolet radiation-mediated oxidative stress. However, its low oral bioavailability and short biological half- life compromise its beneficial therapeutic effects; therefore, its topical application is a practical approach in the treatment of various cutaneous disorders. Challenges associated with the development of topical resveratrol drug delivery systems and dosage forms include its low aqueous solubility as well as its poor UV-, pH- and temperature-dependent stability. The purpose of this article is to discuss the mechanism of action, therapeutic effect and physicochemical properties of resveratrol and to present recent technological approaches designed to improve its stability, bioavailability and therapeutic efficiency.
Collapse
|
44
|
Brotons-Canto A, Gonzalez-Navarro CJ, Gurrea J, González-Ferrero C, Irache JM. Zein nanoparticles improve the oral bioavailability of resveratrol in humans. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Microemulsion composed of combination of skin beneficial oils as vehicle: Development of resveratrol-loaded microemulsion based formulations for skin care applications. Colloids Surf B Biointerfaces 2020; 194:111161. [PMID: 32521462 DOI: 10.1016/j.colsurfb.2020.111161] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023]
Abstract
Microemulsion can be a potential delivery vehicle to deliver skin care actives to deep skin layer for chronic skin care benefits. On top of skin care active, microemulsion vehicle composed of multiple skin beneficial oils can deliver additional skin care efficacies. In this study, microemulsions were developed using combinations of two skin beneficial oils, tea tree oil and medium chain triglyceride instead of single oil. For that, pseudo ternary phase diagrams were constructed on these oil combinations at different ratios of surfactant/co-surfactants. Ratio of oils and surfactant/co-surfactant combinations exhibited significant impact on the microemulsion region. A few compositions were selected from the single phase microemulsion regions of these phase diagrams for the preparation of resveratrol-loaded microemulsion and microemulsion gel formulations. The particle size of the resveratrol-loaded microemulsions were <50 nm. Cryogenic scanning electron microscope image clearly showed nano-droplets dispersed in continuous phase. Both physical and chemical stability of the formulations varied depending on their compositions, such as surfactant/co-surfactant combination and % total oil. The presence of chelating agent and anti-oxidant was also crucial to stabilize the formulations. The selected formulations demonstrated good physicochemical stability at 5 °C, 25 °C, and 40 °C/75 % RH (relative humidity) stability conditions. The results further showed that the % total oil and surfactant phase composition had huge influence on resveratrol release and skin permeation patterns from the microemulsion gels. In vitro skin permeation result indicated that the microemulsion gels can help resveratrol penetration into deep skin layer. Therefore, the developed resveratrol-loaded microemulsion gels can be utilized as skin care product with multiple skin care benefits.
Collapse
|
46
|
Abstract
Biotechnology uses microorganisms and/or enzymes to obtain specific products through fermentative processes and/or genetic engineering techniques. Examples of these products are active ingredients, such as hyaluronic acid, kojic acid, resveratrol, and some enzymes, which are used in skin anti-aging products. In addition, certain growth factors, algae, stem cells, and peptides have been included in cosmetics and aesthetic medicines. Thus, biotechnology, cosmetics and aesthetic medicines are now closely linked, through the production of high-quality active ingredients, which are more effective and safer. This work describes the most used active ingredients that are produced from biotechnological processes. Although there are a vast number of active ingredients, the number of biotechnological active ingredients reported in the literature is not significantly high.
Collapse
|
47
|
Lee J, Papa F, Jaini PA, Alpini S, Kenny T. An Epigenetics-Based, Lifestyle Medicine-Driven Approach to Stress Management for Primary Patient Care: Implications for Medical Education. Am J Lifestyle Med 2020; 14:294-303. [PMID: 32477032 PMCID: PMC7232902 DOI: 10.1177/1559827619847436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Over 75% of patients in the primary care setting present with stress-related complaints. Curiously, patients and health care providers all too often see stress as a relatively benign sequela of many common illnesses such as heart disease, cancer, lung disease, dementia, diabetes, and mental illness. Unfortunately, various day-to-day lifestyle choices and environmental factors, unrelated to the presence of any disease, can cause stress sufficient to contribute to the development of various diseases/disorders and suboptimal health. There is evidence suggesting that counseling in stress management-oriented therapeutic interventions (as offered by lifestyle medicine-oriented practitioners) may prevent or reduce the onset, severity, duration, and/or overall burden of stress-related illnesses. Such counseling often involves considerations such as the patient's nutrition, physical activity, interest in/capacity to meditate, drug abuse/cessation, and so on. Unfortunately, lifestyle medicine-oriented approaches to stress management are rarely offered in primary care-the patient care arena wherein such counseling would likely be best received by patients. Would health care outcomes improve if primary care providers offered counseling in both stress management and positive lifestyle choices? The purpose of this article is to provide both primary care practitioners and educators in health care training programs with an introductory overview of epigenetics. An emerging field of science offering insights into how factors such as stress and lifestyle choices interact with our genes in ways that can both positively and negatively impact the various micro (eg, cellular) through macro (eg, physiologic, pathophysiologic) processes that determine our tendencies toward illness or wellness. A deeper understanding of epigenetics, as provided herein, should enable primary care providers and medical educators to more confidently advocate for the primary benefits associated with counseling in both stress reduction and the pursuit of healthy lifestyle choices.
Collapse
Affiliation(s)
- Jenny Lee
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Frank Papa
- Frank Papa, DO, PhD, Medical Education, UNT Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107; e-mail:
| | - Paresh Atu Jaini
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Sarah Alpini
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Tim Kenny
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| |
Collapse
|
48
|
Angellotti G, Murgia D, Presentato A, D’Oca MC, Scarpaci AG, Alduina R, Raimondi MV, De Caro V. Antibacterial PEGylated Solid Lipid Microparticles for Cosmeceutical Purpose: Formulation, Characterization, and Efficacy Evaluation. MATERIALS 2020; 13:ma13092073. [PMID: 32365956 PMCID: PMC7254386 DOI: 10.3390/ma13092073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
The development of efficacious means of delivering antioxidant polyphenols from natural sources for the treatment of skin diseases is of great interest for many cosmetic and pharmaceutical companies. Resveratrol (RSV) and Limonene (LIM) have been shown to possess good anti-inflammatory and antibacterial properties against Staphylococcus aureus infections responsible for many skin disorders, such as acne vulgaris. In this study, solid lipid microparticles are designed as composite vehicles capable of encapsulating a high amount of trans-RSV and enhancing its absorption through the stratum corneum. A microparticulate system based on mixture of PEGylate lipids, long-chain alcohols and LIM is able to entrap RSV in an amorphous state, increasing its half-life and avoiding inactivation due to isomerization phenomena, which represents the main drawback in topical formulations. Particles have been characterized in term of shape, size distribution and drug loading. Antimicrobial tests against S. aureus have highlighted that empty microspheres possess per se antimicrobial activity, which is enhanced by the presence of LIM, demonstrating that they can represent an interesting bactericide vehicle for RSV administration on the skin.
Collapse
Affiliation(s)
- Giuseppe Angellotti
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, 90127 Palermo, Italy; (G.A.); (D.M.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, 90128 Palermo, Italy; (A.P.); (A.G.S.); (R.A.); (M.V.R.)
| | - Denise Murgia
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, 90127 Palermo, Italy; (G.A.); (D.M.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, 90128 Palermo, Italy; (A.P.); (A.G.S.); (R.A.); (M.V.R.)
| | - Alessandro Presentato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, 90128 Palermo, Italy; (A.P.); (A.G.S.); (R.A.); (M.V.R.)
| | - Maria Cristina D’Oca
- Dipartimento di Fisica e Chimica, Università degli Studi Palermo, 90128 Palermo, Italy;
| | - Amalia Giulia Scarpaci
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, 90128 Palermo, Italy; (A.P.); (A.G.S.); (R.A.); (M.V.R.)
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, 90128 Palermo, Italy; (A.P.); (A.G.S.); (R.A.); (M.V.R.)
| | - Maria Valeria Raimondi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, 90128 Palermo, Italy; (A.P.); (A.G.S.); (R.A.); (M.V.R.)
| | - Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo, 90128 Palermo, Italy; (A.P.); (A.G.S.); (R.A.); (M.V.R.)
- Correspondence: ; Tel.: +39-091-2389-1926
| |
Collapse
|
49
|
Abstract
Increasing evidence suggests that environmental stress, such as UV radiation, generates reactive oxygen and nitrogen species in skin cells, leading to histochemical changes including skin disorders and aging, hyper pigmentation, and increased formation of wrinkles. Besides the defensive system in skin composed of vitamins and intrinsic antioxidant enzymes, topical and skin conditioning products have been used commonly to eradicate or eliminate these skin ailments. Among various ingredients providing nourishing and moisturizing effect in skin, antioxidants have been reported to be a key ingredient to counteract skin aging processes and skin disorders. Derived from a patented extraction process, a polyphenol rich sugarcane concentrate (Officinol™) becomes the focus of this study due to its rich content of polyphenols known to be strong antioxidants. In this work, we carried out a series of cell-based in vitro studies to examine the use of Officinol™ in anti-aging and skin care functions. Our studies show that Officinol™ activated telomerase, a major biomarker that have been reported to be associated with slowed cellular aging process. When skin cells were under environmental stress such as UV radiation, Officinol™ inhibited MMP-1, an interstitial collagenase in skin cells, and deterred the breakdown of collagen that provides supple texture in skin. Officinol™ also inhibited cellular expression of melanin pigmentation and tyrosinase activity, two major biomarkers causing skin pigmentation and aging spots, and inhibited elastase, an enzyme that facilities the reduction of skin elasticity. At the end of the investigation, we carried out a 10-person, pilot study to examine the effect of Officinol™ on skin lightening and fine line and wrinkle reduction in human skin. The combination of the in vitro and the human pre-study indicates that Officinol™ could provide significant preventative and protective functions including antioxidant, anti-aging, wrinkle reduction, and skin brightening for human skin suffering from aging and other stress. These findings are to be confirmed with a larger scale clinical study at a later stage.
Collapse
|
50
|
Trobo-Maseda L, H Orrego A, Guisan JM, Rocha-Martin J. Coimmobilization and colocalization of a glycosyltransferase and a sucrose synthase greatly improves the recycling of UDP-glucose: Glycosylation of resveratrol 3-O-β-D-glucoside. Int J Biol Macromol 2020; 157:510-521. [PMID: 32344088 DOI: 10.1016/j.ijbiomac.2020.04.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/02/2023]
Abstract
Glycosylation is one of the most efficient biocompatible methodologies to enhance the water solubility of natural products, and therefore their bioavailability. The excellent regio- and stereoselectivity of nucleotide sugar-dependent glycosyltransferases enables single-step glycosylations at specific positions of a broad variety of acceptor molecules without the requirement of protection/deprotection steps. However, the need for stoichiometric quantities of high-cost substrates, UDP-sugars, is a limiting factor for its use at an industrial scale. To overcome this challenge, here we report tailor-made coimmobilization and colocalization procedures to assemble a bi-enzymatic cascade composed of a glycosyltransferase and a sucrose synthase for the regioselective 5-O-β-D-glycosylation of piceid with in situ cofactor regeneration. Coimmobilization and colocalization of enzymes was achieved by performing slow immobilization of both enzymes inside the porous support. The colocalization of both enzymes within the porous structure of a solid support promoted an increase in the overall stability of the bi-enzymatic system and improved 50-fold the efficiency of piceid glycosylation compared with the non-colocalized biocatalyst. Finally, piceid conversion to resveratrol 3,5-diglucoside was over 90% after 6 cycles using the optimal biocatalyst and was reused in up to 10 batch reaction cycles accumulating a TTN of 91.7 for the UDP recycling.
Collapse
Affiliation(s)
- Lara Trobo-Maseda
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Alejandro H Orrego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|