1
|
Freeze fracture: new avenues for the ultrastructural analysis of cells in vitro. Histochem Cell Biol 2017; 149:3-13. [PMID: 29134300 DOI: 10.1007/s00418-017-1617-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2017] [Indexed: 01/02/2023]
Abstract
The ultrastructural analysis of biological membranes by freeze fracture has a 60-year tradition. In this review, we summarize the benefits of the freeze-fracture technique and review special structures analyzed by freeze fracture and by combined freeze-fracture replica immunogold labeling (FRIL) of cell cultures. In principle, every cellular membrane whether of cell suspensions, mono- or bilayers of cell cultures can be analyzed in freeze fracture. The combination of freeze fracture and immunogold labeling of the replica allows the ultrastructural identification of protein assemblies in combination with the molecular identification of their constituent proteins using specific antibodies. The analysis of fractured and labeled intramembrane particles enables determination of the arrangement and organization of proteins within the membrane due to the high resolution of the transmission electron microscope. Because of cell-specific ultrastructural features such as square arrays, identification of cell types can be performed in parallel. This review is aimed at presenting the possibilities of freeze fracture and FRIL in the high-resolution ultrastructural analysis of membrane proteins and their assembly in naïve, transfected or otherwise treated cultured cells. At the interface of molecular approaches and morphology, the application of FRIL in genetically modified cells provides a novel and intriguing aspect for their analysis.
Collapse
|
2
|
Mestas JL, Chettab K, Roux S, Prieur F, Lafond M, Dumontet C, Lafon C. Development of a confocal ultrasound device using an inertial cavitation control for transfection in-vitro. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1742-6596/656/1/012003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
3
|
Beckmann A, Grissmer A, Krause E, Tschernig T, Meier C. Pannexin-1 channels show distinct morphology and no gap junction characteristics in mammalian cells. Cell Tissue Res 2015; 363:751-63. [PMID: 26386583 DOI: 10.1007/s00441-015-2281-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Pannexins (Panx) are proteins with a similar membrane topology to connexins, the integral membrane protein of gap junctions. Panx1 channels are generally of major importance in a large number of system and cellular processes and their function has been thoroughly characterized. In contrast, little is known about channel structure and subcellular distribution. We therefore determine the subcellular localization of Panx1 channels in cultured cells and aim at the identification of channel morphology in vitro. Using freeze-fracture replica immunolabeling on EYFP-Panx1-overexpressing HEK 293 cells, large particles were identified in plasma membranes, which were immunogold-labeled using either GFP or Panx1 antibodies. There was no labeling or particles in the nuclear membranes of these cells, pointing to plasma membrane localization of Panx1-EYFP channels. The assembly of particles was irregular, this being in contrast to the regular pattern of gap junctions. The fact that no counterparts were identified on apposing cells, which would have been indicative of intercellular signaling, supported the idea of Panx1 channels within one membrane. Control cells (transfected with EYFP only, non-transfected) were devoid of both particles and immunogold labeling. Altogether, this study provides the first demonstration of Panx1 channel morphology and assembly in intact cells. The identification of Panx1 channels as large particles within the plasma membrane provides the knowledge required to enable recognition of Panx1 channels in tissues in future studies. Thus, these results open up new avenues for the detailed analysis of the subcellular localization of Panx1 and of its nearest neighbors such as purinergic receptors in vivo.
Collapse
Affiliation(s)
- Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Alexander Grissmer
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Elmar Krause
- Department of Physiology, Saarland University, 66421, Homburg/Saar, Germany
| | - Thomas Tschernig
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany.
| |
Collapse
|
4
|
Chettab K, Roux S, Mathé D, Cros-Perrial E, Lafond M, Lafon C, Dumontet C, Mestas JL. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents. PLoS One 2015; 10:e0134247. [PMID: 26274324 PMCID: PMC4537239 DOI: 10.1371/journal.pone.0134247] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022] Open
Abstract
Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40–80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.
Collapse
Affiliation(s)
- Kamel Chettab
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- Caviskills SAS, Vaulx-en-Velin, France
- * E-mail:
| | - Stéphanie Roux
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Doriane Mathé
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Emeline Cros-Perrial
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Maxime Lafond
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- Inserm, U1032, LabTau, Lyon, F-69003, France
| | - Cyril Lafon
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- Caviskills SAS, Vaulx-en-Velin, France
- Inserm, U1032, LabTau, Lyon, F-69003, France
| | - Charles Dumontet
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Jean-Louis Mestas
- Université de Lyon, 69000, Lyon, France
- Université de Lyon 1, 69000, Lyon, France
- Caviskills SAS, Vaulx-en-Velin, France
- Inserm, U1032, LabTau, Lyon, F-69003, France
| |
Collapse
|
5
|
Maeß MB, Wittig B, Lorkowski S. Highly efficient transfection of human THP-1 macrophages by nucleofection. J Vis Exp 2014:e51960. [PMID: 25226503 PMCID: PMC4828023 DOI: 10.3791/51960] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Macrophages, as key players of the innate immune response, are at the focus of research dealing with tissue homeostasis or various pathologies. Transfection with siRNA and plasmid DNA is an efficient tool for studying their function, but transfection of macrophages is not a trivial matter. Although many different approaches for transfection of eukaryotic cells are available, only few allow reliable and efficient transfection of macrophages, but reduced cell vitality and severely altered cell behavior like diminished capability for differentiation or polarization are frequently observed. Therefore a transfection protocol is required that is capable of transferring siRNA and plasmid DNA into macrophages without causing serious side-effects thus allowing the investigation of the effect of the siRNA or plasmid in the context of normal cell behavior. The protocol presented here provides a method for reliably and efficiently transfecting human THP-1 macrophages and monocytes with high cell vitality, high transfection efficiency, and minimal effects on cell behavior. This approach is based on Nucleofection and the protocol has been optimized to maintain maximum capability for cell activation after transfection. The protocol is adequate for adherent cells after detachment as well as cells in suspension, and can be used for small to medium sample numbers. Thus, the method presented is useful for investigating gene regulatory effects during macrophage differentiation and polarization. Apart from presenting results characterizing macrophages transfected according to this protocol in comparison to an alternative chemical method, the impact of cell culture medium selection after transfection on cell behavior is also discussed. The presented data indicate the importance of validating the selection for different experimental settings.
Collapse
Affiliation(s)
- Marten B Maeß
- Institute of Nutrition, Friedrich Schiller University Jena
| | - Berith Wittig
- Institute of Nutrition, Friedrich Schiller University Jena
| | | |
Collapse
|
6
|
Zupančič D, Romih R, Robenek H, Žužek Rožman K, Samardžija Z, Kostanjšek R, Kreft ME. Molecular ultrastructure of the urothelial surface: insights from a combination of various microscopic techniques. Microsc Res Tech 2014; 77:896-901. [PMID: 25060677 DOI: 10.1002/jemt.22412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/30/2014] [Accepted: 07/15/2014] [Indexed: 11/09/2022]
Abstract
The urothelium forms the blood-urine barrier, which depends on the complex organization of transmembrane proteins, uroplakins, in the apical plasma membrane of umbrella cells. Uroplakins compose 16 nm intramembrane particles, which are assembled into urothelial plaques. Here we present an integrated survey on the molecular ultrastructure of urothelial plaques in normal umbrella cells with advanced microscopic techniques. We analyzed the ultrastructure and performed measurements of urothelial plaques in the normal mouse urothelium. We used field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) on immunolabeled ultrathin sections (immuno-TEM), and freeze-fracture replicas (FRIL). We performed immunolabeling of uroplakins for scanning electron microscopy (immuno-FESEM). All microscopic techniques revealed a variability of urothelial plaque diameters ranging from 332 to 1179 nm. All immunolabeling techniques confirmed the presence of uroplakins in urothelial plaques. FRIL showed the association of uroplakins with 16 nm intramembrane particles and their organization into plaques. Using different microscopic techniques and applied qualitative and quantitative evaluation, new insights into the urothelial apical surface molecular ultrastructure have emerged and may hopefully provide a timely impulse for many ongoing studies. The combination of various microscopic techniques used in this study shows how these techniques complement one another. The described advantages and disadvantages of each technique should be considered for future studies of molecular and structural membrane specializations in other cells and tissues.
Collapse
Affiliation(s)
- Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
7
|
Pfisterer SG, Bakula D, Frickey T, Cezanne A, Brigger D, Tschan MP, Robenek H, Proikas-Cezanne T. Lipid droplet and early autophagosomal membrane targeting of Atg2A and Atg14L in human tumor cells. J Lipid Res 2014; 55:1267-78. [PMID: 24776541 DOI: 10.1194/jlr.m046359] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Indexed: 12/26/2022] Open
Abstract
Autophagy is a lysosomal bulk degradation pathway for cytoplasmic cargo, such as long-lived proteins, lipids, and organelles. Induced upon nutrient starvation, autophagic degradation is accomplished by the concerted actions of autophagy-related (ATG) proteins. Here we demonstrate that two ATGs, human Atg2A and Atg14L, colocalize at cytoplasmic lipid droplets (LDs) and are functionally involved in controlling the number and size of LDs in human tumor cell lines. We show that Atg2A is targeted to cytoplasmic ADRP-positive LDs that migrate bidirectionally along microtubules. The LD localization of Atg2A was found to be independent of the autophagic status. Further, Atg2A colocalized with Atg14L under nutrient-rich conditions when autophagy was not induced. Upon nutrient starvation and dependent on phosphatidylinositol 3-phosphate [PtdIns(3)P] generation, both Atg2A and Atg14L were also specifically targeted to endoplasmic reticulum-associated early autophagosomal membranes, marked by the PtdIns(3)P effectors double-FYVE containing protein 1 (DFCP1) and WD-repeat protein interacting with phosphoinositides 1 (WIPI-1), both of which function at the onset of autophagy. These data provide evidence for additional roles of Atg2A and Atg14L in the formation of early autophagosomal membranes and also in lipid metabolism.
Collapse
Affiliation(s)
- Simon G Pfisterer
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Daniela Bakula
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tancred Frickey
- Applied Bioinformatics Laboratory, University of Konstanz, Konstanz, Germany
| | - Alice Cezanne
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Daniel Brigger
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Mario P Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Horst Robenek
- Leibniz Institute for Arteriosklerosis Research, University of Muenster, Muenster, Germany
| | - Tassula Proikas-Cezanne
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
8
|
Kreft ME, Robenek H. Freeze-fracture replica immunolabelling reveals urothelial plaques in cultured urothelial cells. PLoS One 2012; 7:e38509. [PMID: 22768045 PMCID: PMC3387185 DOI: 10.1371/journal.pone.0038509] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/07/2012] [Indexed: 12/02/2022] Open
Abstract
The primary function of the urothelium is to provide the tightest and most impermeable barrier in the body, i.e. the blood-urine barrier. Urothelial plaques are formed and inserted into the apical plasma membrane during advanced stages of urothelial cell differentiation. Currently, it is supposed that differentiation with the final formation of urothelial plaques is hindered in cultured urothelial cells. With the aid of the high-resolution imaging technique of freeze-fracture replica immunolabelling, we here provide evidence that urothelial cells in vitro form uroplakin-positive urothelial plaques, localized in fusiform-shaped vesicles and apical plasma membranes. With the establishment of such an in vitro model of urothelial cells with fully developed urothelial plaques and functional properties equivalent to normal bladder urothelium, new perspectives have emerged which challenge prevailing concepts of apical plasma membrane biogenesis and blood-urine barrier development. This may hopefully provide a timely impulse for many ongoing studies and open up new questions for future research.
Collapse
Affiliation(s)
- Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | | |
Collapse
|
9
|
Proikas-Cezanne T, Robenek H. Freeze-fracture replica immunolabelling reveals human WIPI-1 and WIPI-2 as membrane proteins of autophagosomes. J Cell Mol Med 2012; 15:2007-10. [PMID: 21564513 PMCID: PMC3918056 DOI: 10.1111/j.1582-4934.2011.01339.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autophagy defines the lifespan of eukaryotic organisms by ensuring cellular survival through regulated bulk clearance of proteins, organelles and membranes. Pathophysiological consequences of improper autophagy give rise to a variety of age-related human diseases such as cancer and neurodegeneration. Rational therapeutic implementation of autophagy modulation remains problematic, as fundamental molecular details such as the generation of autophagosomes, unique double-membrane vesicles formed to permit the process of autophagy, are insufficiently understood. Here, freeze-fracture replica immunolabelling reveals WD-repeat protein interacting with phosphoinositides 1 and 2 (WIPI-1 and WIPI-2) as membrane components of autophagosomes and the plasma membrane (PM). In addition, WIPI-1 is also present in membranes of the endoplasmic reticulum (ER) and WIPI-2 was further detected in membranes close to the Golgi cisternae. Our results identify WIPI-1 and WIPI-2 as novel protein components of autophagosomes, and of membrane sites from which autophagosomes might originate (ER, PM, Golgi area). Hence therapeutic modulation of autophagy could involve approaches that functionally target human WIPI proteins.
Collapse
Affiliation(s)
- Tassula Proikas-Cezanne
- Autophagy Laboratory, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tübingen, Germany.
| | | |
Collapse
|
10
|
Improved protocol for efficient nonviral transfection of premature THP-1 macrophages. Cold Spring Harb Protoc 2011; 2011:pdb.prot5612. [PMID: 21536764 DOI: 10.1101/pdb.prot5612] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The human monocytic leukemia cell line THP-1 is a widely used model for investigating monocyte and macrophage biology. Successful transfection of THP-1 monocytes with subsequent phorbol 12-myristate 13-acetate (PMA)-induced differentiation into macrophages is not a trivial matter, because according to previous transfection protocols, cell viability is lost almost completely within 24 h of PMA treatment following transfection. This protocol constitutes an optimized version of a previously published protocol by our group. It describes a procedure for transfecting premature THP-1 macrophages, which subsequently can be further differentiated into mature macrophages by PMA without a loss of cell viability. Transfection of THP-1 cells with plasmids or small interfering RNA (siRNA) is achieved by electroporation using the Lonza Nucleofector technology (Basel, Switzerland). This technique allows for the efficient nonviral delivery of plasmids, DNA, RNA, or siRNA into primary cells or cell lines even if the cells are not or are only slowly proliferating. Such cells are usually rather difficult to transfect by nonviral approaches. This means that only viral approaches would be left, which are expensive and labor-intensive and require laboratories complying with the respective safety regulations. The protocol described here is an efficient and convenient alternative.
Collapse
|
11
|
Rutsch F, Gailus S, Miousse IR, Suormala T, Sagné C, Toliat MR, Nürnberg G, Wittkampf T, Buers I, Sharifi A, Stucki M, Becker C, Baumgartner M, Robenek H, Marquardt T, Höhne W, Gasnier B, Rosenblatt DS, Fowler B, Nürnberg P. Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism. Nat Genet 2009; 41:234-9. [PMID: 19136951 DOI: 10.1038/ng.294] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 10/09/2008] [Indexed: 11/09/2022]
Abstract
Vitamin B(12) (cobalamin) is essential in animals for metabolism of branched chain amino acids and odd chain fatty acids, and for remethylation of homocysteine to methionine. In the cblF inborn error of vitamin B(12) metabolism, free vitamin accumulates in lysosomes, thus hindering its conversion to cofactors. Using homozygosity mapping in 12 unrelated cblF individuals and microcell-mediated chromosome transfer, we identified a candidate gene on chromosome 6q13, LMBRD1, encoding LMBD1, a lysosomal membrane protein with homology to lipocalin membrane receptor LIMR. We identified five different frameshift mutations in LMBRD1 resulting in loss of LMBD1 function, with 18 of the 24 disease chromosomes carrying the same mutation embedded in a common 1.34-Mb haplotype. Transfection of fibroblasts of individuals with cblF with wild-type LMBD1 rescued cobalamin coenzyme synthesis and function. This work identifies LMBRD1 as the gene underlying the cblF defect of cobalamin metabolism and suggests that LMBD1 is a lysosomal membrane exporter for cobalamin.
Collapse
Affiliation(s)
- Frank Rutsch
- Department of General Pediatrics, Münster University Children's Hospital, Albert-Schweitzer-Strasse 33, D-48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|