1
|
Chen HW, Barber G, Chong BF. The Genetic Landscape of Cutaneous Lupus Erythematosus. Front Med (Lausanne) 2022; 9:916011. [PMID: 35721085 PMCID: PMC9201079 DOI: 10.3389/fmed.2022.916011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune connective tissue disease that can exist as a disease entity or within the context of systemic lupus erythematosus (SLE). Over the years, efforts to elucidate the genetic underpinnings of CLE and SLE have yielded a wealth of information. This review examines prior studies investigating the genetics of CLE at the DNA and RNA level and identifies future research areas. In this literature review, we examined the English language literature captured within the MEDLINE and Embase databases using pre-defined search terms. First, we surveyed studies investigating various DNA studies of CLE. We identified three predominant areas of focus in HLA profiling, complement deficiencies, and genetic polymorphisms. An increased frequency of HLA-B8 has been strongly linked to CLE. In addition, multiple genes responsible for mediating innate immune response, cell growth, apoptosis, and interferon response confer a higher risk of developing CLE, specifically TREX1 and SAMHD1. There was a strong association between C2 complement deficiency and CLE. Second, we reviewed literature studying aberrations in the transcriptomes of patients with CLE. We reviewed genetic aberrations initiated by environmental insults, and we examined the interplay of dysregulated inflammatory, apoptotic, and fibrotic pathways in the context of the pathomechanism of CLE. These current learnings will serve as the foundation for further advances in integrating personalized medicine into the care of patients with CLE.
Collapse
|
2
|
Sukhov A, Adamopoulos IE, Maverakis E. Interactions of the Immune System with Skin and Bone Tissue in Psoriatic Arthritis: A Comprehensive Review. Clin Rev Allergy Immunol 2016; 51:87-99. [PMID: 26780035 PMCID: PMC6080719 DOI: 10.1007/s12016-016-8529-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cutaneous psoriasis (e.g., psoriasis vulgaris (PsV)) and psoriatic arthritis (PsA) are complex heterogeneous diseases thought to have similar pathophysiology. The soluble and cellular mediators of these closely related diseases are being elucidated through genetic approaches such as genome-wide association studies (GWAS), as well as animal and molecular models. Novel therapeutics targeting these mediators (IL-12, IL-23, IL-17, IL-17 receptor, TNF) are effective in treating both the skin and joint manifestations of psoriasis, reaffirming the shared pathophysiology of PsV and PsA. However, the molecular and cellular interactions between skin and joint disease have not been well characterized. Clearly, PsV and PsA are highly variable in terms of their clinical manifestations, and this heterogeneity can partially be explained by differences in HLA-associations (HLA-Cw*0602 versus HLA-B*27, for example). In addition, there are numerous other genetic susceptibility loci (LCE3, CARD14, NOS2, NFKBIA, PSMA6, ERAP1, TRAF3IP2, IL12RB2, IL23R, IL12B, TNIP1, TNFAIP3, TYK2) and geoepidemiologic factors that contribute to the wide variability seen in psoriasis. Herein, we review the complex interplay between the genetic, cellular, ethnic, and geographic mediators of psoriasis, focusing on the shared mechanisms of PsV and PsA.
Collapse
Affiliation(s)
- Andrea Sukhov
- Department of Dermatology, University of California, Davis, 3301 C St. Suite 1400, Sacramento, CA, 95816, USA
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California, CA, Davis, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, 3301 C St. Suite 1400, Sacramento, CA, 95816, USA.
| |
Collapse
|
3
|
The Assessment of Selected Bone and Cartilage Biomarkers in Psoriatic Patients from Poland. Mediators Inflamm 2015; 2015:194535. [PMID: 26146462 PMCID: PMC4471390 DOI: 10.1155/2015/194535] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 11/18/2022] Open
Abstract
Background. Psoriasis is an inflammatory disease in which joints involvement may be insidious and difficult to detect. Bone and cartilage biomarkers may be helpful in screening patients with psoriasis for psoriatic arthritis (PsA). Objectives. To assess bone and cartilage serum biomarkers in psoriasis. Methods. The study was conducted in 2014 and included 61 psoriatic patients and 30 healthy individuals. In both groups, the serum concentrations of soluble receptor activator of nuclear factor-κB ligand (sRANKL), cartilage oligomeric matrix protein (COMP), osteoprotegerin (OPG), and interleukin-20 (IL-20) were examined. Severity of skin lesions was assessed by Psoriasis Area and Severity Index (PASI), body surface area (BSA), and Physician Global Assessment (PGA) scores. Results. The duration of psoriasis was from 1 year to 45 years. 22 patients suffered from concomitant PsA. The mean value of PASI was 23.1 ± 12.0 and BSA was 27.6 ± 20.6%. COMP, OPG, and IL-20 concentrations in psoriatic patients were significantly higher than in the control group. OPG/sRANKL ratio was significantly lower in PsA patients than in psoriatic patients without arthritis. Conclusions. Results of the conducted study suggest that COMP, OPG, IL-20, and OPG/sRANKL ratio may appear useful biomarkers of bone and cartilage involvement in psoriasis.
Collapse
|
4
|
Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, Marmon S, Neimann A, Brusca S, Patel T, Manasson J, Pamer EG, Littman DR, Abramson SB. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol 2015; 67:128-39. [PMID: 25319745 DOI: 10.1002/art.38892] [Citation(s) in RCA: 566] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 09/23/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To characterize the diversity and taxonomic relative abundance of the gut microbiota in patients with never-treated, recent-onset psoriatic arthritis (PsA). METHODS High-throughput 16S ribosomal RNA pyrosequencing was utilized to compare the community composition of gut microbiota in patients with PsA (n = 16), patients with psoriasis of the skin (n = 15), and healthy, matched control subjects (n = 17). Samples were further assessed for the presence and levels of fecal and serum secretory IgA (sIgA), proinflammatory proteins, and fatty acids. RESULTS The gut microbiota observed in patients with PsA and patients with skin psoriasis was less diverse when compared to that in healthy controls. This could be attributed to the reduced presence of several taxa. Samples from both patient groups showed a relative decrease in abundance of Coprococcus species, while samples from PsA patients were also characterized by a significant reduction in Akkermansia, Ruminococcus, and Pseudobutyrivibrio. Supernatants of fecal samples from PsA patients revealed an increase in sIgA levels and decrease in RANKL levels. Analysis of fatty acids revealed low fecal quantities of hexanoate and heptanoate in both patients with PsA and patients with psoriasis. CONCLUSION Patients with PsA and patients with skin psoriasis had a lower relative abundance of multiple intestinal bacteria. Although some genera were concomitantly decreased in both conditions, PsA samples had a lower abundance of reportedly beneficial taxa. This gut microbiota profile in PsA was similar to that previously described in patients with inflammatory bowel disease and was associated with changes in specific inflammatory proteins unique to this group, and distinct from that in patients with skin psoriasis and healthy controls. Thus, the role of the gut microbiome in the continuum of psoriasis-PsA pathogenesis and the associated immune response merits further study.
Collapse
Affiliation(s)
- Jose U Scher
- New York University and New York University Hospital for Joint Diseases, New York, New York
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Toberer F, Sykora J, Göttel D, Hartschuh W, Werchau S, Enk A, Joos S, Krammer PH, Kuhn A. Apoptotic signal molecules in skin biopsies of cutaneous lupus erythematosus: analysis using tissue microarray. Exp Dermatol 2014; 22:656-9. [PMID: 24079735 DOI: 10.1111/exd.12216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2013] [Indexed: 01/05/2023]
Abstract
Cutaneous lupus erythematosus (CLE) is a heterogeneous autoimmune disease. Different pathogenetic mechanisms, including the accumulation of apoptotic keratinocytes in CLE, have been reported. Therefore, we investigated whether CLE and other inflammatory skin diseases differ with regard to the epidermal expression of molecules that are crucial for the initiation and regulation of apoptosis. In this study, 241 skin biopsies from patients with CLE, psoriasis (PSO), lichen planus (LP) and healthy controls (HCs) were analysed immunohistochemically using the tissue microarray (TMA) technique. The TUNEL assay and anti-activated caspase-3 antibodies revealed a significant increase of apoptotic keratinocytes in CLE lesions compared with HCs. Furthermore, we detected a significant increase in the epidermal expression of CD95 in CLE specimens compared with PSO, LP and HCs. These data suggest that the accumulation of apoptotic keratinocytes in CLE might be due to the increased epidermal expression of CD95, resulting in increased activity of the extrinsic apoptotic pathway in the disease.
Collapse
Affiliation(s)
- Ferdinand Toberer
- Division of Immunogenetics, Tumorimmunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gambichler T, Terras S, Kampilafkos P, Kreuter A, Skrygan M. T regulatory cells and related immunoregulatory factors in polymorphic light eruption following ultraviolet A1 challenge. Br J Dermatol 2014; 169:1288-94. [PMID: 24032533 DOI: 10.1111/bjd.12608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Polymorphic light eruption (PLE) is considered to be an autoimmune-mediated skin condition in which the normal ultraviolet (UV)-induced local immunosuppression appears to be absent, leading to recognition of photoinduced autoantigens and subsequent inflammation. OBJECTIVES To investigate T regulatory cells (Tregs) and related immunoregulatory factors in PLE lesions and controls. METHODS Skin biopsies were performed in 13 patients with UVA1-challenged PLE, 12 female patients with chronic discoid lupus erythematosus (CDLE) and 11 healthy controls who had exposure to UVA1. Immunohistochemistry and four-colour immunofluorescence studies were performed. RESULTS Patients with CDLE and UVA1-exposed controls showed significantly decreased epidermal immunoreactivity for CD1a compared with patients with PLE (P = 0·0001). Four-colour immunofluorescence revealed a median percentage of CD4+CD25+FOXP3+ Tregs of 7·6% (range 3·7-13·6%) in PLE, a median of 11·7% (range 9·5-13·9%) in CDLE and a median of 3·4% (range 0-6·8%) in controls. Compared with UVA1-exposed controls, PLE and CDLE lesions showed significantly decreased transforming growth factor (TGF)-β1 immunoreactivity in the epidermis (P = 0·0003). In PLE lesions, we observed significantly decreased interleukin (IL)-10 expression compared with CDLE (P = 0·022). In the dermis, receptor activator of nuclear factor-κB ligand (RANKL) expression was increased in UVA1-exposed controls compared with PLE and CDLE (P = 0·018). CONCLUSIONS Similar to CDLE lesions, UVA1-challenged PLE lesions display an altered immunoregulatory network, as indicated by decreased epidermal or dermal expression of TGF-β1, IL-10 and RANKL, and a relatively low number of Tregs, particularly when compared with other inflammatory skin conditions reported in the literature.
Collapse
Affiliation(s)
- T Gambichler
- Department of Dermatology, Ruhr-University Bochum, Gudrunstraße 56, 44791, Bochum, Germany
| | | | | | | | | |
Collapse
|
7
|
Hasegawa T, Shimada S, Ishida H, Nakashima M. Chafuroside B, an Oolong tea polyphenol, ameliorates UVB-induced DNA damage and generation of photo-immunosuppression related mediators in human keratinocytes. PLoS One 2013; 8:e77308. [PMID: 24116222 PMCID: PMC3792907 DOI: 10.1371/journal.pone.0077308] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/06/2013] [Indexed: 12/16/2022] Open
Abstract
Chafuroside B was recently isolated as a new polyphenolic constituent of oolong tea leaves. However, the effects of chafuroside B on skin function have not been examined. In this study, we investigated the protective effects of chafuroside B against UVB-induced DNA damage, apoptosis and generation of photo-immunosuppression related mediators in cultured normal human epidermal keratinocytes (NHEK). Chafuroside B at 1 µM attenuated both UVB-induced apoptosis, evaluated in terms of caspase-3/7 activity, and UVB-induced DNA damage, evaluated in terms of formation of cyclobutane pyrimidine dimers (CPD), in NHEK exposed to UVB (20 mJ/cm2). In addition, chafuroside B at 0.3 or 1 µM suppressed the UVB-induced production of interleukin (IL)-10, tumor necrosis factor (TNF)-α, and prostaglandin E2 (PGE2), as determined by ELISA, and conversely enhanced IL-12 mRNA expression and production, as measured by RT-PCR and ELISA. Further, chafuroside B at 1 µM also suppressed UVB-induced expression of receptor activator of nuclear factor κB ligand (RANKL) mRNA. These results indicate that chafuroside B promotes repair of UVB-induced DNA damage and ameliorates the generation of IL-10, TNF-α, PGE2, and RANKL, all of which are UVB-induced immunosuppression related mediators. These effects of chafuroside B may be mediated at least in part through induction of IL-12 synthesis in human keratinocytes. Because chafuroside B might have practical value as a photoprotective agent, a further study of the in vivo effects of chafuroside B seems warranted.
Collapse
Affiliation(s)
- Tatsuya Hasegawa
- Functional Food Research and Development Center, Shiseido Research Center, Yokohama, Kanagawa, Japan
- * E-mail:
| | - Shoichiro Shimada
- Functional Food Research and Development Center, Shiseido Research Center, Yokohama, Kanagawa, Japan
| | - Hitoshi Ishida
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Masaya Nakashima
- Functional Food Research and Development Center, Shiseido Research Center, Yokohama, Kanagawa, Japan
| |
Collapse
|
8
|
Patsinakidis N, Wenzel J, Landmann A, Koch R, Gerß J, Luger TA, Metze D, Surber C, Kuhn A. Suppression of UV-induced damage by a liposomal sunscreen: a prospective, open-label study in patients with cutaneous lupus erythematosus and healthy controls. Exp Dermatol 2012; 21:958-61. [DOI: 10.1111/exd.12035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 11/26/2022]
Affiliation(s)
| | - Joerg Wenzel
- Department of Dermatology; University of Bonn; Bonn; Germany
| | - Aysche Landmann
- Division of Immunogenetics; Tumorimmunology Program; German Cancer Research Center; Heidelberg; Germany
| | - Raphael Koch
- Institute of Biostatistics and Clinical Research; University of Muenster; Muenster; Germany
| | - Joachim Gerß
- Institute of Biostatistics and Clinical Research; University of Muenster; Muenster; Germany
| | - Thomas A. Luger
- Department of Dermatology; University of Muenster; Muenster; Germany
| | - Dieter Metze
- Department of Dermatology; University of Muenster; Muenster; Germany
| | | | | |
Collapse
|