1
|
Li C, Ohadi S, Mesgaran MB. Asymmetry in fitness-related traits of later-generation hybrids between two invasive species. AMERICAN JOURNAL OF BOTANY 2021; 108:51-62. [PMID: 33316089 DOI: 10.1002/ajb2.1583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
PREMISE The importance of hybridization to invasion has been frequently discussed, with most studies focusing on the comparison of fitness-related traits between F1 hybrids and their parents and the consequences of such fitness differences. However, relatively little attention has been given to late-generation hybrids. Different fitness landscapes could emerge in later generations after hybrids cross with each other or backcross with their parents, which may play an important role in plant invasion and subsequent speciation. METHODS In this study, artificial crosses were conducted to generate multiple generations, including F1, F2, and backcrosses between two invasive species: Cakile edentula (self-compatible) and C. maritima (self-incompatible). Putative hybrids were also collected in the sympatric zone and compared with their co-occurring parents for phenotypic and genetic differences. RESULTS Genetic data provided evidence of hybridization happening in the wild, and phenotypic comparisons showed that natural hybrids had intermediate traits between the two species but showed more similarity to C. maritima than to C. edentula. The asymmetry was further identified in artificial generations for several phenotypic characters. Furthermore, backcrosses exhibited different patterns of variation, with backcrosses to C. maritima having higher reproductive output than their counterparts. CONCLUSIONS Our results suggest that hybridization and introgression (backcrossing) in Cakile species is asymmetric and most likely to favor the proliferation of C. maritima genes in the mixed population and thus help its establishment, a finding that could not be predicted by characterizing F1 hybrids.
Collapse
Affiliation(s)
- Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, China
- School of BioSciences, the University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Sara Ohadi
- School of BioSciences, the University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Mohsen B Mesgaran
- School of BioSciences, the University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
2
|
Gallego-Tévar B, Grewell BJ, Drenovsky RE, Castillo JM. Transgressivity in Key Functional Traits Rather Than Phenotypic Plasticity Promotes Stress Tolerance in A Hybrid Cordgrass. PLANTS (BASEL, SWITZERLAND) 2019; 8:E594. [PMID: 31842356 PMCID: PMC6963473 DOI: 10.3390/plants8120594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022]
Abstract
Hybridization might promote offspring fitness via a greater tolerance to environmental stressors due to heterosis and higher levels of phenotypic plasticity. Thus, analyzing the phenotypic expression of hybrids provides an opportunity to elucidate further plant responses to environmental stress. In the case of coastal salt marshes, sea level rise subjects hybrids, and their parents, to longer tidal submergence and higher salinity. We analyzed the phenotypic expression patterns in the hybrid Spartina densiflora x foliosa relative to its parental species, native S. foliosa, and invasive S. densiflora, from the San Francisco Estuary when exposed to contrasting salinities and inundations in a mesocosm experiment. 37% of the recorded traits displayed no variability among parents and hybrids, 3% showed an additive inheritance, 37% showed mid-parent heterosis, 18% showed best-parent heterosis, and 5% presented worst-parent heterosis. Transgressivity, rather than phenotypic plasticity, in key functional traits of the hybrid, such as tiller height, conveyed greater stress tolerance to the hybrid when compared to the tolerance of its parents. As parental trait variability increased, phenotypic transgressivity of the hybrid increased and it was more important in response to inundation than salinity. Increases in salinity and inundation associated with sea level rise will amplify the superiority of the hybrid over its parental species. These results provide evidence of transgressive traits as an underlying source of adaptive variation that can facilitate plant invasions. The adaptive evolutionary process of hybridization is thought to support an increased invasiveness of plant species and their rapid evolution.
Collapse
Affiliation(s)
- Blanca Gallego-Tévar
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain;
| | - Brenda J. Grewell
- USDA-ARS Invasive Species and Pollinator Health Research Unit, Department. of Plant Sciences, University of California, Mail Stop 4, 1 Shields Avenue, Davis, CA 95616, USA;
| | - Rebecca E. Drenovsky
- Department of Biology, John Carroll University, University Heights, OH 44118, USA;
| | - Jesús M. Castillo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain;
| |
Collapse
|
3
|
Lachmuth S, Molofsky J, Milbrath L, Suda J, Keller SR. Associations between genomic ancestry, genome size and capitula morphology in the invasive meadow knapweed hybrid complex ( Centaurea × moncktonii) in eastern North America. AOB PLANTS 2019; 11:plz055. [PMID: 31632628 PMCID: PMC6790064 DOI: 10.1093/aobpla/plz055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Plant invasions are prime opportunities for studying hybridization and the nature of species boundaries, but hybrids also complicate the taxonomic treatment and management of introduced taxa. In this study, we use population genomics to estimate the extent of genomic admixture and test for its association with morphology and genome size in a hybrid complex of knapweeds invasive to North America: meadow knapweed (Centaurea × moncktonii) and its parental species (C. jacea and C. nigra). We sampled 20 populations from New York and Vermont, USA, and used genotyping by sequencing to identify single nucleotide polymorphisms in order to estimate genome-wide ancestry and classify individuals into hybrid genotype classes. We then tested for association between degree of genomic introgression and variation in a subset of traits diagnostic for the parental taxa, namely capitula morphology and monoploid genome size. Genomic clustering revealed two clearly defined lineages, as well as many admixed individuals forming a continuous gradation of introgression. Individual assignments to hybrid genotype classes revealed many advanced generation intercrosses and backcrosses, suggesting introgression has been extensive and unimpeded by strong reproductive barriers between taxa. Variation in capitula traits between the two unadmixed, presumed parental, lineages exhibited continuous, and in some cases transgressive, segregation among introgressed hybrids. Genome size was also divergent between lineages, although advanced generation hybrids had smaller genomes relative to additive expectations. Our study demonstrates deep introgression between the porous genomes of a hybrid invasive species complex. In addition to strong associations among genomic ancestry, genome size and morphology, hybrids expressed more extreme phenotypic values for capitula traits and genome size, indicating transgressive segregation, as well as a bias towards smaller genomes, possibly due to genomic downsizing. Future studies will apply these results to experimentally test how introgression, transgressive segregation and genome size reduction interact to confer invasiveness.
Collapse
Affiliation(s)
- Susanne Lachmuth
- University of Vermont, Department of Plant Biology, Burlington, VT, USA
- Martin Luther University Halle Wittenberg, Institute of Biology, Geobotany & Botanical Garden, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Jane Molofsky
- University of Vermont, Department of Plant Biology, Burlington, VT, USA
| | - Lindsey Milbrath
- United Sates Department of Agriculture, Agricultural Research Service (USDA-ARS), Ithaca, NY, USA
| | - Jan Suda
- Charles University Prague, Department of Botany, Prague, Czech Republic
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Stephen R Keller
- University of Vermont, Department of Plant Biology, Burlington, VT, USA
| |
Collapse
|
4
|
Boecklen WJ. Topology of syngameons. Ecol Evol 2017; 7:10486-10491. [PMID: 29299231 PMCID: PMC5743628 DOI: 10.1002/ece3.3507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/27/2017] [Accepted: 08/31/2017] [Indexed: 11/10/2022] Open
Abstract
Syngameons are sets of species linked by interspecific hybridization. Common observations regarding the structure of syngameons are that hybridization propensity is not uniform across species and that patterns of hybridization are dominated by a few species. I use computer simulations to test these claims in naturally occurring syngameons selected from the literature and from personal observation. Natural syngameons, especially those involving plants, typically exhibit nonrandom structure: The first three order statistics for the number of hybrid partners and the variance in the number of hybrid partners are larger than chance alone would predict. The structure of two insect syngameons examined is not significantly different from random. To test a hypothesis that variation in hybridization propensity across species in natural syngameons is simply an artifact of hybridization opportunity, I examine the structure of four artificial syngameons (fertility relationships) produced by full diallel crosses. Three of four artificial syngameons exhibit nonrandom structure, as the observed variation in number of successful crosses is larger than chance alone would predict. In general, there are no significant results involving the order statistics. Finally, I discuss biogeographic, ecological, and phylogenetic hypotheses for variation in hybridization propensity across species in natural syngameons.
Collapse
|
5
|
Limited genomic consequences of hybridization between two African clawed frogs, Xenopus gilli and X. laevis (Anura: Pipidae). Sci Rep 2017; 7:1091. [PMID: 28439068 PMCID: PMC5430669 DOI: 10.1038/s41598-017-01104-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/13/2017] [Indexed: 11/15/2022] Open
Abstract
The Cape platanna, Xenopus gilli, an endangered frog, hybridizes with the African clawed frog, X. laevis, in South Africa. Estimates of the extent of gene flow between these species range from pervasive to rare. Efforts have been made in the last 30 years to minimize hybridization between these two species in the west population of X. gilli, but not the east populations. To further explore the impact of hybridization and the efforts to minimize it, we examined molecular variation in one mitochondrial and 13 nuclear genes in genetic samples collected recently (2013) and also over two decades ago (1994). Despite the presence of F1 hybrids, none of the genomic regions we surveyed had evidence of gene flow between these species, indicating a lack of extensive introgression. Additionally we found no significant effect of sampling time on genetic diversity of populations of each species. Thus, we speculate that F1 hybrids have low fitness and are not backcrossing with the parental species to an appreciable degree. Within X. gilli, evidence for gene flow was recovered between eastern and western populations, a finding that has implications for conservation management of this species and its threatened habitat.
Collapse
|
6
|
Turner KG, Fréville H, Rieseberg LH. Adaptive plasticity and niche expansion in an invasive thistle. Ecol Evol 2015; 5:3183-97. [PMID: 26357544 PMCID: PMC4559060 DOI: 10.1002/ece3.1599] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/11/2015] [Accepted: 06/14/2015] [Indexed: 01/14/2023] Open
Abstract
Phenotypic differentiation in size and fecundity between native and invasive populations of a species has been suggested as a causal driver of invasion in plants. Local adaptation to novel environmental conditions through a micro-evolutionary response to natural selection may lead to phenotypic differentiation and fitness advantages in the invaded range. Local adaptation may occur along a stress tolerance trade-off, favoring individuals that, in benign conditions, shift resource allocation from stress tolerance to increased vigor and fecundity and, therefore, invasiveness. Alternately, the typically disturbed invaded range may select for a plastic, generalist strategy, making phenotypic plasticity the main driver of invasion success. To distinguish between these hypotheses, we performed a field common garden and tested for genetically based phenotypic differentiation, resource allocation shifts in response to water limitation, and local adaptation to the environmental gradient which describes the source locations for native and invasive populations of diffuse knapweed (Centaurea diffusa). Plants were grown in an experimental field in France (naturalized range) under water addition and limitation conditions. After accounting for phenotypic variation arising from environmental differences among collection locations, we found evidence of genetic variation between the invasive and native populations for most morphological and life-history traits under study. Invasive C. diffusa populations produced larger, later maturing, and therefore potentially fitter individuals than native populations. Evidence for local adaptation along a resource allocation trade-off for water limitation tolerance is equivocal. However, native populations do show evidence of local adaptation to an environmental gradient, a relationship which is typically not observed in the invaded range. Broader analysis of the climatic niche inhabited by the species in both ranges suggests that the physiological tolerances of C. diffusa may have expanded in the invaded range. This observation could be due to selection for plastic, "general-purpose" genotypes with broad environmental tolerances.
Collapse
Affiliation(s)
- Kathryn G Turner
- Department of Botany and Biodiversity Research Centre, University of British ColumbiaRoom 3529-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada
| | - Hélène Fréville
- UMR 1334 AGAP INRA2 place Pierre Viala, Montpellier Cedex 2, 34060, France
- UMR 5175 CEFE CNRS1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British ColumbiaRoom 3529-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Biology, Indiana UniversityBloomington, Indiana, 47405
| |
Collapse
|
7
|
Migeon A, Auger P, Hufbauer R, Navajas M. Genetic traits leading to invasion: plasticity in cold hardiness explains current distribution of an invasive agricultural pest, Tetranychus evansi (Acari: Tetranychidae). Biol Invasions 2015. [DOI: 10.1007/s10530-015-0873-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Meng J, Mao JF, Zhao W, Xing F, Chen X, Liu H, Xing Z, Wang XR, Li Y. Adaptive differentiation in seedling traits in a hybrid pine species complex, Pinus densata and its parental species, on the Tibetan Plateau. PLoS One 2015; 10:e0118501. [PMID: 25757072 PMCID: PMC4355066 DOI: 10.1371/journal.pone.0118501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/19/2015] [Indexed: 11/24/2022] Open
Abstract
Evidence from molecular genetics demonstrates that Pinus densata is a natural homoploid hybrid originating from the parent species Pinus tabuliformis and Pinus yunnanensis, and ecological selection may have played a role in the speciation of P. densata. However, data on differentiation in adaptive traits in the species complex are scarce. In this study, we performed a common garden test on 16 seedling traits to examine the differences between P. densata and its parental species in a high altitude environment. We found that among the 16 analyzed traits, 15 were significantly different among the species. Pinus tabuliformis had much earlier bud set and a relatively higher bud set ratio but poorer seedling growth, and P. yunnanensis had opposite responses for the same traits. P. densata had the greatest fitness with higher viability and growth rates than the parents. The relatively high genetic contribution of seedling traits among populations suggested that within each species the evolutionary background is complex. The correlations between the seedling traits of a population within a species and the environmental factors indicated different impacts of the environment on species evolution. The winter temperature is among the most important climate factors that affected the fitness of the three pine species. Our investigation provides empirical evidence on adaptive differentiation among this pine species complex at seedling stages.
Collapse
Affiliation(s)
- Jingxiang Meng
- State Engineering Laboratory of Forest Tree Breeding, Key Laboratory of Genetic and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
- College of Biology Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jian-Feng Mao
- State Engineering Laboratory of Forest Tree Breeding, Key Laboratory of Genetic and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
- College of Biology Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wei Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fangqian Xing
- State Engineering Laboratory of Forest Tree Breeding, Key Laboratory of Genetic and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
- College of Biology Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinyu Chen
- State Engineering Laboratory of Forest Tree Breeding, Key Laboratory of Genetic and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
- College of Biology Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hao Liu
- College of Resources and Environment, College of Agriculture and Animal Husbandry of Tibet University, Linzhi, Tibet, China
| | - Zhen Xing
- College of Resources and Environment, College of Agriculture and Animal Husbandry of Tibet University, Linzhi, Tibet, China
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Yue Li
- State Engineering Laboratory of Forest Tree Breeding, Key Laboratory of Genetic and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
- College of Biology Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Turner KG, Hufbauer RA, Rieseberg LH. Rapid evolution of an invasive weed. THE NEW PHYTOLOGIST 2014; 202:309-321. [PMID: 24320555 DOI: 10.1111/nph.12634] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/04/2013] [Indexed: 05/27/2023]
Abstract
Trade-offs between performance and the ability to tolerate abiotic and biotic stress have been suggested to explain both the success of invasive species and phenotypic differentiation between native and invasive populations. It is critical to sample broadly across both ranges and to account for latitudinal clines and maternal effects when testing this premise. Wild-collected Centaurea diffusa seeds were grown in benign and stressful conditions (drought, flooding, nutrient stress and simulated herbivory), to evaluate whether native and introduced individuals differ in performance or life history phenotypes. A second experiment used glasshouse-grown seeds to evaluate whether patterns remain comparable when maternal environment is consistent. Many traits differed between ranges, and in all cases but one, invasive individuals grew larger, performed better, or matured later. No trade-off in performance with herbivore defense was evident. Invasive populations may have been released from a trade-off between growth and drought tolerance apparent in the native range. Larger individuals with delayed maturity and greater reproductive potential have evolved in invasive populations, a pattern evident across broad population sampling, and after latitude and maternal environment were considered. Release from abiotic stress tolerance trade-offs may be important for the invasion success of Centaurea diffusa.
Collapse
Affiliation(s)
- Kathryn G Turner
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Room 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Ruth A Hufbauer
- Department of Bioagricultural Sciences and Pest Management and Graduate Degree Program in Ecology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Room 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
10
|
Rius M, Darling JA. How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol 2014; 29:233-42. [DOI: 10.1016/j.tree.2014.02.003] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/16/2022]
|
11
|
Parepa M, Fischer M, Krebs C, Bossdorf O. Hybridization increases invasive knotweed success. Evol Appl 2014; 7:413-20. [PMID: 24665343 PMCID: PMC3962301 DOI: 10.1111/eva.12139] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022] Open
Abstract
Hybridization is one of the fundamental mechanisms by which rapid evolution can occur in exotic species. If hybrids show increased vigour, this could significantly contribute to invasion success. Here, we compared the success of the two invasive knotweeds, Fallopia japonica and F. sachalinensis, and their hybrid, F. × bohemica, in competing against experimental communities of native plants. Using plant material from multiple clones of each taxon collected across a latitudinal gradient in Central Europe, we found that knotweed hybrids performed significantly better in competition with a native community and that they more strongly reduced the growth of the native plants. One of the parental species, F. sachalinensis, regenerated significantly less well from rhizomes, and this difference disappeared if activated carbon was added to the substrate, which suggests allelopathic inhibition of F. sachalinensis regeneration by native plants. We found substantial within-taxon variation in competitive success in all knotweed taxa, but variation was generally greatest in the hybrid. Interestingly, there was also significant variation within the genetically uniform F. japonica, possibly reflecting epigenetic differences. Our study shows that invasive knotweed hybrids are indeed more competitive than their parents and that hybridization increased the invasiveness of the exotic knotweed complex.
Collapse
Affiliation(s)
- Madalin Parepa
- Institute of Plant Sciences, University of Bern Bern, Switzerland ; Institute of Evolution and Ecology, University of Tübingen Tübingen, Germany
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern Bern, Switzerland
| | | | - Oliver Bossdorf
- Institute of Plant Sciences, University of Bern Bern, Switzerland ; Institute of Evolution and Ecology, University of Tübingen Tübingen, Germany
| |
Collapse
|