1
|
Ding J, Yan Z, Peng L, Li J, Yang F, Zheng D. Inhibitory effects of berberine on fungal growth, biofilm formation, virulence, and drug resistance as an antifungal drug and adjuvant with prospects for future applications. World J Microbiol Biotechnol 2024; 41:5. [PMID: 39690297 DOI: 10.1007/s11274-024-04223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Berberine (BBR), an isoquinoline alkaloid found in medicinal plants such as Coptidis rhizoma, Berberis sp., and Hydrastis canadensis, is a distinctive compound known for its dual ability to exhibit broad-spectrum antifungal activity while offering beneficial effects to the host. These attributes make it a highly valuable candidate for antifungal therapy and as an antibiotic adjuvant. This review provides a comprehensive evaluation of BBR's antifungal properties, focusing on its in vitro and in vivo activity, underlying mechanisms, and its influence on fungal pathogenicity, including virulence, biofilm formation, and resistance. Additionally, the antifungal potential of BBR extracts, derivatives, and nanoformulations is examined in detail. BBR demonstrates fungicidal effects through multiple mechanisms. It targets critical fungal components such as mitochondria, cell membranes, and cell walls, while also inhibiting enzymatic activity and transcription processes. Furthermore, it suppresses the expression of virulence factors, effectively diminishing fungal pathogenicity. Beyond its direct antifungal activity, BBR exerts beneficial effects on the host by modulating gut microbiota, thereby bolstering host defenses against fungal infections and reducing potential adverse effects. BBR's interaction with conventional antifungal drugs presents a unique complexity, particularly in the context of resistance mechanisms. When used in combination therapies, conventional antifungal drugs enhance the intracellular accumulation of BBR, thereby amplifying its antifungal potency as the primary active agent. These synergistic effects position BBR as a promising candidate for combination strategies, especially in addressing drug-resistant fungal infections and persistent biofilms. As antifungal resistance and biofilm-associated infections continue to rise, the multifaceted properties of BBR and its advanced formulations highlight their significant therapeutic potential. However, the scarcity of robust in vivo and clinical studies limits a full understanding of its efficacy and safety profile. To bridge this gap, future investigations should prioritize well-designed in vivo and clinical trials to thoroughly evaluate the therapeutic effectiveness and safety of BBR in diverse clinical settings. This approach could pave the way for its broader application in combating fungal infections.
Collapse
Affiliation(s)
- Junping Ding
- Department of Pharmacy, Second People's Hospital of Ya'an City, Ya'an, 625000, China
| | - Zhong Yan
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China
| | - Liang Peng
- Ya'an Polytechnic College Affiliated Hospital, Ya'an, 625000, China
| | - Jing Li
- Department of Wellness and Nursing, Tianfu College of SWUFE, Deyang, 618000, China
| | - Fuzhou Yang
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China.
| | - Dongming Zheng
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China.
| |
Collapse
|
2
|
Pasman R, Zhang J, Zaat SAJ, Brul S, Krom BP. A customizable and defined medium supporting culturing of Candida albicans, Staphylococcus aureus, and human oral epithelial cells. Appl Environ Microbiol 2024; 90:e0036024. [PMID: 39072650 PMCID: PMC11337806 DOI: 10.1128/aem.00360-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Candida albicans, an opportunistic oral pathogen, synergizes with Staphylococcus aureus, allowing bacteria to co-invade and systemically disseminate within the host. Studying human-microbe interactions creates the need for a universal culture medium that supports fungal, bacterial, and human cell culturing, while allowing sensitive analytical approaches such as OMICs and chromatography techniques. In this study, we established a fully defined, customizable adaptation of Dulbecco's modified Eagle medium (DMEM), allowing multi-kingdom culturing of S. aureus, C. albicans, and human oral cell lines, whereas minimal version of DMEM (mDMEM) did not support growth of S. aureus, and neither did supplementation with dextrose, MEM non-essential amino acids, pyruvate, and Glutamax. This new medium composition, designated as "mDMEM-DMP," promoted growth of all tested S. aureus strains. Addition of 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) further improved growth, while higher concentrations did not improve growth any further. Higher concentrations of HEPES did result in prolonged stabilization of medium pH. mDMEM-DMP promoted (hyphal) C. albicans monoculturing and co-culturing on both solid and semi-solid surfaces. In contrast to S. aureus, addition of HEPES reduced C. albicans maximum culture optical density (OD). Finally, only buffered mDMEM-DMP (100 mM HEPES) was successful in maintaining the metabolic activity of human oral Ca9-22 and HO1N1 cell lines for 24 hours. Altogether, our findings show that mDMEM-DMP is a versatile and potent culture medium for both microbial and human cell culturing, providing a customizable platform to study human as well as microbial molecular physiology and putative interactions. IMPORTANCE Interaction between microbes and the host are in the center of interest both in disease and in health. In order to study the interactions between microbes of different kingdoms and the host, alternative media are required. Synthetic media are useful as they allow addition of specific components. In addition, well-defined media are required if high-resolution analyses such as metabolomics and proteomics are desired. We describe the development of a synthetic medium to study the interactions between C. albicans, S. aureus, and human oral epithelial cells. Our findings show that mDMEM-DMP is a versatile and potent culture medium for both microbial and human cell culturing, providing a customizable platform to study human as well as microbial molecular physiology and putative interactions.
Collapse
Affiliation(s)
- Raymond Pasman
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Jianbo Zhang
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Efremenko E, Stepanov N, Senko O, Maslova O, Lyagin I, Domnin M, Aslanli A. "Stop, Little Pot" as the Motto of Suppressive Management of Various Microbial Consortia. Microorganisms 2024; 12:1650. [PMID: 39203492 PMCID: PMC11356704 DOI: 10.3390/microorganisms12081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The unresolved challenges in the development of highly efficient, stable and controlled synthetic microbial consortia, as well as the use of natural consortia, are very attractive for science and technology. However, the consortia management should be done with the knowledge of how not only to accelerate but also stop the action of such "little pots". Moreover, there are a lot of microbial consortia, the activity of which should be suppressively controlled. The processes, catalyzed by various microorganisms being in complex consortia which should be slowed down or completely cancelled, are typical for the environment (biocorrosion, landfill gas accumulation, biodegradation of building materials, water sources deterioration etc.), industry (food and biotechnological production), medical practice (vaginitis, cystitis, intestinal dysbiosis, etc.). The search for ways to suppress the functioning of heterogeneous consortia in each of these areas is relevant. The purpose of this review is to summarize the general trends in these studies regarding the targets and new means of influence used. The analysis of the features of the applied approaches to solving the main problem confirms the possibility of obtaining a combined effect, as well as selective influence on individual components of the consortia. Of particular interest is the role of viruses in suppressing the functioning of microbial consortia of different compositions.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia (O.S.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Arrigoni R, Ballini A, Jirillo E, Santacroce L. Current View on Major Natural Compounds Endowed with Antibacterial and Antiviral Effects. Antibiotics (Basel) 2024; 13:603. [PMID: 39061285 PMCID: PMC11274329 DOI: 10.3390/antibiotics13070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Nowadays, infectious diseases of bacterial and viral origins represent a serious medical problem worldwide. In fact, the development of antibiotic resistance is responsible for the emergence of bacterial strains that are refractory even to new classes of antibiotics. Furthermore, the recent COVID-19 pandemic suggests that new viruses can emerge and spread all over the world. The increase in infectious diseases depends on multiple factors, including malnutrition, massive migration of population from developing to industrialized areas, and alteration of the human microbiota. Alternative treatments to conventional antibiotics and antiviral drugs have intensively been explored. In this regard, plants and marine organisms represent an immense source of products, such as polyphenols, alkaloids, lanthipeptides, and terpenoids, which possess antibacterial and antiviral activities. Their main mechanisms of action involve modifications of bacterial cell membranes, with the formation of pores, the release of cellular content, and the inhibition of bacterial adherence to host cells, as well as of the efflux pump. Natural antivirals can interfere with viral replication and spreading, protecting the host with the enhanced production of interferon. Of note, these antivirals are not free of side effects, and their administration to humans needs more research in terms of safety. Preclinical research with natural antibacterial and antiviral compounds confirms their effects against bacteria and viruses, but there are still only a few clinical trials. Therefore, their full exploitation and more intensive clinical studies represent the next steps to be pursued in this area of medicine.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
5
|
Tang Y, Su H, Nie K, Wang H, Gao Y, Chen S, Lu F, Dong H. Berberine exerts antidepressant effects in vivo and in vitro through the PI3K/AKT/CREB/BDNF signaling pathway. Biomed Pharmacother 2024; 170:116012. [PMID: 38113631 DOI: 10.1016/j.biopha.2023.116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Depression, a global neuropsychiatric disorder, brings a serious burden to patients and society as its incidence continues to rise. Berberine is one of the main compounds of a variety of Chinese herbal medicines and has been shown to have multiple pharmacological effects. However, whether berberine can exert antidepressant effects in vivo and in vitro and its related mechanisms remain to be explored. METHODS The chronic restraint stress (CRS) method and corticosterone (CORT) were applied to simulate depression-like behavior in vivo and neuronal apoptosis in vitro, respectively. The antidepressant effects of berberine were evaluated by behavioral tests and changes in the content of monoamine neurotransmitters. Inflammatory cytokines were detected and immunofluorescence staining was used to observe the expression levels of apoptosis-related proteins. RT-qPCR and Western blot were used to examine the mRNA and protein expression (or phosphorylation) levels of biomarkers of the PI3K/AKT/CREB/BDNF signaling pathways. RESULTS Behavioral tests and levels of neurotransmitters proved that berberine could effectively ameliorate depression-like symptoms in CRS mice. Meanwhile, the results of ELISA and immunofluorescence staining showed that berberine could alleviate inflammatory status and reduce cell apoptosis in vivo and in vitro. Moreover, the changes of the PI3K/AKT/CREB/BDNF signaling pathway induced by CRS or CORT in mouse hippocampus or HT-22 cells were significantly reversed by berberine. CONCLUSION Our current study suggested that berberine could exert antidepressant effects in vitro and in vivo, which may be associated with the PI3K/AKT/CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
6
|
Bonincontro G, Scuderi SA, Marino A, Simonetti G. Synergistic Effect of Plant Compounds in Combination with Conventional Antimicrobials against Biofilm of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida spp. Pharmaceuticals (Basel) 2023; 16:1531. [PMID: 38004397 PMCID: PMC10675371 DOI: 10.3390/ph16111531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial and fungal biofilm has increased antibiotic resistance and plays an essential role in many persistent diseases. Biofilm-associated chronic infections are difficult to treat and reduce the efficacy of medical devices. This global problem has prompted extensive research to find alternative strategies to fight microbial chronic infections. Plant bioactive metabolites with antibiofilm activity are known to be potential resources to alleviate this problem. The phytochemical screening of some medicinal plants showed different active groups, such as stilbenes, tannins, alkaloids, terpenes, polyphenolics, flavonoids, lignans, quinones, and coumarins. Synergistic effects can be observed in the interaction between plant compounds and conventional drugs. This review analyses and summarises the current knowledge on the synergistic effects of plant metabolites in combination with conventional antimicrobials against biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The synergism of conventional antimicrobials with plant compounds can modify and inhibit the mechanisms of acquired resistance, reduce undesirable effects, and obtain an appropriate therapeutic effect at lower doses. A deeper knowledge of these combinations and of their possible antibiofilm targets is needed to develop next-generation novel antimicrobials and/or improve current antimicrobials to fight drug-resistant infections attributed to biofilm.
Collapse
Affiliation(s)
- Graziana Bonincontro
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Giovanna Simonetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| |
Collapse
|
7
|
Zeng L, Lin F, Ling B. Effect of traditional Chinese medicine monomers interfering with quorum-sensing on virulence factors of extensively drug-resistant Acinetobacter baumannii. Front Pharmacol 2023; 14:1135180. [PMID: 37063277 PMCID: PMC10097947 DOI: 10.3389/fphar.2023.1135180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
The antimicrobial resistance of Acinetobacter baumannii (A. baumannii) clinical isolates has emerged as a great threat to public health. Quorum sensing (QS) is one of the resistance mechanisms for drug-resistant A. baumannii. Interfering with QS is a promising strategy to combat infections caused by drug-resistant bacteria. This study explored the QS inhibition ability of thirty-four traditional Chinese medicine monomers (TCMMs) and assessed the effect of QS inhibitors (QSIs) on the virulence factors of twelve extensively drug-resistant A. baumannii (XDRAB) strains. Nine traditional Chinese medicine monomers, such as caffeic acid, cinnamic acid, and myricetin, were found to be able to inhibit the bacterial QS. Then, at 1/8 of the minimal inhibitory concentration, we found that these QSIs inhibited extensively drug-resistant A. baumannii adhesion and biofilm formation and downregulated the expression levels of virulence-associated genes (abaI, abaR, csuE, pgaA, and bap). In conclusion, nine traditional Chinese medicine monomers have QS inhibitory activity and may downregulate QS genes to interfere with the QS system, which could inhibit the expression of extensively drug-resistant A. baumannii virulence factors. These results suggest that traditional Chinese medicine monomers could develop as novel anti-virulence compounds to control extensively drug-resistant A. baumannii infections.
Collapse
Affiliation(s)
- Li Zeng
- School of Pharmacy, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The Third People’s Hospital of Yibin, Yibin, China
| | - Fei Lin
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Baodong Ling
- School of Pharmacy, Chengdu Medical College, Chengdu, China
- *Correspondence: Baodong Ling,
| |
Collapse
|
8
|
Zhao Y, Yang J, Hao D, Xie R, Jia L, Yang M, Ma H, Wang P, Yang W, Sui F, Zhao H, Chen Y, Zhao Q. Infection Microenvironment-Sensitive Photothermal Nanotherapeutic Platform to Inhibit Methicillin-Resistant Staphylococcus aureus Infection. Macromol Biosci 2023; 23:e2200430. [PMID: 36478660 DOI: 10.1002/mabi.202200430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) can induce multiple inflammations. The biofilm formed by MRSA is resistant to a variety of antibiotics and is extremely difficult to cure, which seriously threatens human health. Herein, a nanoparticle encapsulating berberine with polypyrrole core and pH-sensitive shell to provide chemo-photothermal dual therapy for MRSA infection is reported. By integrating photothermal agent polypyrrole, berberine, acid-degradable crosslinker, and acid-induced charge reversal polymer, the nanoparticle exhibited highly efficient MRSA infection treatment. In normal uninfected areas and bloodstream, nanoparticles showed negatively charged, demonstrating high biocompatibility and excellent hemocompatibility. However, once arriving at the MRSA infection site, the nanoparticle can penetrate and accumulate in the biofilm within 2 h. Simultaneously, berberine can be released into biofilm rapidly. Under the combined effect of photothermal response and berberine inhibition, 88.7% of the biofilm is removed at 1000 µg mL-1 . Moreover, the nanoparticles have an excellent inhibitory effect on biofilm formation, the biofilm inhibition capacity can reach up to 90.3%. Taken together, this pH-tunable nanoparticle can be employed as a new generation treatment strategy to fight against the fast-growing MRSA infection.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiaying Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Danli Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lingyu Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Miyi Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hai Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanjun Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qinghe Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
9
|
Zhang M, Han W, Gu J, Qiu C, Jiang Q, Dong J, Lei L, Li F. Recent advances on the regulation of bacterial biofilm formation by herbal medicines. Front Microbiol 2022; 13:1039297. [PMID: 36425031 PMCID: PMC9679158 DOI: 10.3389/fmicb.2022.1039297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Biofilm formation is a fundamental part of life cycles of bacteria which affects various aspects of bacterial-host interactions including the development of drug resistance and chronic infections. In clinical settings, biofilm-related infections are becoming increasingly difficult to treat due to tolerance to antibiotics. Bacterial biofilm formation is regulated by different external and internal factors, among which quorum sensing (QS) signals and nucleotide-based second messengers play important roles. In recent years, different kinds of anti-biofilm agents have been discovered, among which are the Chinese herbal medicines (CHMs). CHMs or traditional Chinese medicines have long been utilized to combat various diseases around the world and many of them have the ability to inhibit, impair or decrease bacterial biofilm formation either through regulation of bacterial QS system or nucleotide-based second messengers. In this review, we describe the research progresses of different chemical classes of CHMs on the regulation of bacterial biofilm formation. Though the molecular mechanisms on the regulation of bacterial biofilm formation by CHMs have not been fully understood and there are still a lot of work that need to be performed, these studies contribute to the development of effective biofilm inhibitors and will provide a novel treatment strategy to control biofilm-related infections.
Collapse
Affiliation(s)
- Meimei Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Cao Qiu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qiujie Jiang
- Jilin Animal Disease Control Center, Changchun, China
| | - Jianbao Dong
- Department of Veterinary Medical, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fengyang Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
10
|
Zhang C, Li Z, Pan Q, Fan L, Pan T, Zhu F, Pan Q, Shan L, Zhao L. Berberine at sub-inhibitory concentration inhibits biofilm dispersal in Staphylococcus aureus. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36178801 DOI: 10.1099/mic.0.001243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is a major human pathogen, which has multiple drug resistance and can cause serious infections. Recent studies have shown that berberine has antibacterial activity and it can affect biofilm formation of S. aureus. However, the berberine effect on the biofilm of S. aureus is controversial. In this study, we investigate the effect of berberine on the biofilm development in S. aureus NCTC8325 and explore the possible mechanism. Susceptibility test shows that berberine inhibits growth of methicillin-sensitive S. aureus (MSSA), methicillin-resistant S. aureus (MRSA) and vancomycin-intermediate S. aureus (VISA) at different concentrations. S. aureus NCTC8325 is chosen as a model strain to explore further the berberine effect. The MIC of berberine for S. aureus NCTC8325 is 256 µg ml-1. Berberine below 32 µg ml-1 inhibits the dispersal of biofilm and stimulates clumping of cells of NCTC8325 in a concentration-dependent manner, while not showing obvious inhibition on the bacterial growth. The transcription of the key negative regulator of biofilm dispersal AgrA is decreased and an agrA mutant forms biofilm reaching to a similar level of biomass to WT in the presence of berberine at 32 µg ml-1. Transcription of some genes involving synthesis of biofilm structure components, including polysaccharide intracellular adhesin (PIA), proteins and eDNA were also up-regulated, especially icaA for PIA synthesis. And consistently, PIA content was increased in cells exposed to berberine at 32 µg ml-1. This study reveals the dependence of berberine inhibition of biofilm dispersal on the Agr system, which is the first report exploring the molecule mechanism of the berberine effect on the biofilm of S. aureus.
Collapse
Affiliation(s)
- Changfeng Zhang
- Clinical Laboratory Center, First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, PR China
| | - Zhongliang Li
- Clinical Laboratory Center, First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, PR China
| | - Qing Pan
- Clinical Laboratory Center, First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, PR China
| | - Liping Fan
- Clinical Laboratory Center, First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, PR China
| | - Ting Pan
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Feng Zhu
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Qian Pan
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Li Shan
- Clinical Laboratory Center, First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, PR China
| | - Liping Zhao
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| |
Collapse
|
11
|
Akbar N, Kawish M, Khan NA, Shah MR, Alharbi AM, Alfahemi H, Siddiqui R. Hesperidin-, Curcumin-, and Amphotericin B- Based Nano-Formulations as Potential Antibacterials. Antibiotics (Basel) 2022; 11:696. [PMID: 35625340 PMCID: PMC9137731 DOI: 10.3390/antibiotics11050696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
To combat the public health threat posed by multiple-drug-resistant (MDR) pathogens, new drugs with novel chemistry and modes of action are needed. In this study, several drugs including Hesperidin (HES), curcumin (CUR), and Amphotericin B (AmpB) drug-nanoparticle formulations were tested for antibacterial strength against MDR Gram-positive bacteria, including Bacillus cereus, Streptococcus pyogenes, Methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae, and Gram-negative bacteria, including Escherichia coli K1, Pseudomonas aeruginosa, Salmonella enterica, and Serratia marcescens. Nanoparticles were synthesized and subjected to Atomic force microscopy, Fourier transform-infrared spectroscopy, and Zetasizer for their detailed characterization. Antibacterial assays were performed to determine their bactericidal efficacy. Lactate dehydrogenase (LDH) assays were carried out to measure drugs' and drug-nanoparticles' cytotoxic effects on human cells. Spherical NPs ranging from 153 to 300 nm were successfully synthesized. Results from antibacterial assays revealed that drugs and drug-nanoparticle formulations exerted bactericidal activity against MDR bacteria. Hesperidin alone failed to exhibit antibacterial effects but, upon conjugation with cinnamic-acid-based magnetic nanoparticle, exerted significant bactericidal activity against both the Gram-positive and Gram-negative isolates. AmpB-LBA-MNPs produced consistent, potent antibacterial efficacy (100% kill) against all Gram-positive bacteria. AmpB-LBA-MNPs showed strong antibacterial activity against Gram-negative bacteria. Intriguingly, all the drugs and their conjugated counterpart except AmpB showed minimal cytotoxicity against human cells. In summary, these innovative nanoparticle formulations have the potential to be utilized as therapeutic agents against infections caused by MDR bacteria and represent a significant advancement in our effort to counter MDR bacterial infections.
Collapse
Affiliation(s)
- Noor Akbar
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; (N.A.); (R.S.)
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (M.K.); (M.R.S.)
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (M.K.); (M.R.S.)
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 26521, Saudi Arabia;
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia;
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; (N.A.); (R.S.)
| |
Collapse
|
12
|
Hwang G. In it together: Candida-bacterial oral biofilms and therapeutic strategies. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:183-196. [PMID: 35218311 PMCID: PMC8957517 DOI: 10.1111/1758-2229.13053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 05/16/2023]
Abstract
Under natural environmental settings or in the human body, the majority of microorganisms exist in complex polymicrobial biofilms adhered to abiotic and biotic surfaces. These microorganisms exhibit symbiotic, mutualistic, synergistic, or antagonistic relationships with other species during biofilm colonization and development. These polymicrobial interactions are heterogeneous, complex and hard to control, thereby often yielding worse outcomes than monospecies infections. Concerning fungi, Candida spp., in particular, Candida albicans is often detected with various bacterial species in oral biofilms. These Candida-bacterial interactions may induce the transition of C. albicans from commensal to pathobiont or dysbiotic organism. Consequently, Candida-bacterial interactions are largely associated with various oral diseases, including dental caries, denture stomatitis, periodontitis, peri-implantitis, and oral cancer. Given the severity of oral diseases caused by cross-kingdom consortia that develop hard-to-remove and highly drug-resistant biofilms, fundamental research is warranted to strategically develop cost-effective and safe therapies to prevent and treat cross-kingdom interactions and subsequent biofilm development. While studies have shed some light, targeting fungal-involved polymicrobial biofilms has been limited. This mini-review outlines the key features of Candida-bacterial interactions and their impact on various oral diseases. In addition, current knowledge on therapeutic strategies to target Candida-bacterial polymicrobial biofilms is discussed.
Collapse
Affiliation(s)
- Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding Author: Geelsu Hwang,
| |
Collapse
|
13
|
Xia S, Ma L, Wang G, Yang J, Zhang M, Wang X, Su J, Xie M. In vitro Antimicrobial Activity and the Mechanism of Berberine Against Methicillin-Resistant Staphylococcus aureus Isolated from Bloodstream Infection Patients. Infect Drug Resist 2022; 15:1933-1944. [PMID: 35469308 PMCID: PMC9034846 DOI: 10.2147/idr.s357077] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose To investigate the antimicrobial activity of berberine and the mechanism by which it combats methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from patients with bloodstream infections. Methods Fifteen clinical MRSA isolates were collected, and their Multi-locus Sequence Types (MLST) were examined. The minimum inhibitory concentration (MIC) and combined antibacterial activity of berberine alone, and when combined with clindamycin and rifampicin separately, were determined. Additionally, two MRSA strains (ST239 and ST5) were selected to perform the time-killing assay and biofilm formation test. Cell wall alterations and cell membrane integrity were measured by confocal laser scanning microscopy (CLSM) and electron microscopy to assess the influence on cell morphology. Results Our data showed berberine was effective against MRSA at MIC values varying from 256 to 64 mg*L−1 for different MLST types. Berberine alone, and when combined with clindamycin and rifampicin separately, displayed excellent antibacterial activity which reduced the bacterial counts by 2lgCFU*mL within 24h and significantly weakened biofilm formation compared with control strain. Additionally, bacterial cytological profiling indicates that berberine destroyed the structure of the cell walls, membrane integrity and further changed the cell morphology with concentration increased. Conclusion In our study, berberine has excellent anti-MRSA activities and has synergistic antibacterial property when combined with clindamycin and rifamycin separately, and the mechanism of activities involves the destruction of cell wall and membrane.
Collapse
Affiliation(s)
- Shuai Xia
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Liyan Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Guoxing Wang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Jie Yang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Meiying Zhang
- Department of Emergency Center, Peking University First Hospital, Peking University, Beijing, 100050, People’s Republic of China
| | - Xuechen Wang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Jianrong Su
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
- Correspondence: Jianrong Su, Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong’an Road, Xicheng District, Beijing, 100050, People’s Republic of China, Email
| | - Miaorong Xie
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
- Miaorong Xie, Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong’an Road, Xicheng District, Beijing, 100050, People’s Republic of China, Email
| |
Collapse
|
14
|
Pohl CH. Recent Advances and Opportunities in the Study of Candida albicans Polymicrobial Biofilms. Front Cell Infect Microbiol 2022; 12:836379. [PMID: 35252039 PMCID: PMC8894716 DOI: 10.3389/fcimb.2022.836379] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023] Open
Abstract
It is well known that the opportunistic pathogenic yeast, Candida albicans, can form polymicrobial biofilms with a variety of bacteria, both in vitro and in vivo, and that these polymicrobial biofilms can impact the course and management of disease. Although specific interactions are often described as either synergistic or antagonistic, this may be an oversimplification. Polymicrobial biofilms are complex two-way interacting communities, regulated by inter-domain (inter-kingdom) signaling and various molecular mechanisms. This review article will highlight advances over the last six years (2016-2021) regarding the unique biology of polymicrobial biofilms formed by C. albicans and bacteria, including regulation of their formation. In addition, some of the consequences of these interactions, such as the influence of co-existence on antimicrobial susceptibility and virulence, will be discussed. Since the aim of this knowledge is to inform possible alternative treatment options, recent studies on the discovery of novel anti-biofilm compounds will also be included. Throughout, an attempt will be made to identify ongoing challenges in this area.
Collapse
|
15
|
Antunes JC, Domingues JM, Miranda CS, Silva AFG, Homem NC, Amorim MTP, Felgueiras HP. Bioactivity of Chitosan-Based Particles Loaded with Plant-Derived Extracts for Biomedical Applications: Emphasis on Antimicrobial Fiber-Based Systems. Mar Drugs 2021; 19:md19070359. [PMID: 34201803 PMCID: PMC8303307 DOI: 10.3390/md19070359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023] Open
Abstract
Marine-derived chitosan (CS) is a cationic polysaccharide widely studied for its bioactivity, which is mostly attached to its primary amine groups. CS is able to neutralize reactive oxygen species (ROS) from the microenvironments in which it is integrated, consequently reducing cell-induced oxidative stress. It also acts as a bacterial peripheral layer hindering nutrient intake and interacting with negatively charged outer cellular components, which lead to an increase in the cell permeability or to its lysis. Its biocompatibility, biodegradability, ease of processability (particularly in mild conditions), and chemical versatility has fueled CS study as a valuable matrix component of bioactive small-scaled organic drug-delivery systems, with current research also showcasing CS’s potential within tridimensional sponges, hydrogels and sutures, blended films, nanofiber sheets and fabric coatings. On the other hand, renewable plant-derived extracts are here emphasized, given their potential as eco-friendly radical scavengers, microbicidal agents, or alternatives to antibiotics, considering that most of the latter have induced bacterial resistance because of excessive and/or inappropriate use. Loading them into small-scaled particles potentiates a strong and sustained bioactivity, and a controlled release, using lower doses of bioactive compounds. A pH-triggered release, dependent on CS’s protonation/deprotonation of its amine groups, has been the most explored stimulus for that control. However, the use of CS derivatives, crosslinking agents, and/or additional stabilization processes is enabling slower release rates, following extract diffusion from the particle matrix, which can find major applicability in fiber-based systems within ROS-enriched microenvironments and/or spiked with microbes. Research on this is still in its infancy. Yet, the few published studies have already revealed that the composition, along with an adequate drug release rate, has an important role in controlling an existing infection, forming new tissue, and successfully closing a wound. A bioactive finishing of textiles has also been promoting high particle infiltration, superior washing durability, and biological response.
Collapse
|
16
|
Herbal Products and Their Active Constituents Used Alone and in Combination with Antifungal Drugs against Drug-Resistant Candida sp. Antibiotics (Basel) 2021; 10:antibiotics10060655. [PMID: 34072664 PMCID: PMC8229001 DOI: 10.3390/antibiotics10060655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Clinical isolates of Candida yeast are the most common cause of opportunistic fungal infections resistant to certain antifungal drugs. Therefore, it is necessary to detect more effective antifungal agents that would be successful in overcoming such infections. Among them are some herbal products and their active constituents.The purpose of this review is to summarize the current state of knowledge onherbal products and their active constituents havingantifungal activity against drug-resistant Candida sp. used alone and in combination with antifungal drugs.The possible mechanisms of their action on drug-resistant Candida sp. including (1) inhibition of budding yeast transformation into hyphae; (2) inhibition of biofilm formation; (3) inhibition of cell wall or cytoplasmic membrane biosynthesis; (4) ROS production; and (5) over-expression of membrane transporters will be also described.
Collapse
|
17
|
Khan F, Bamunuarachchi NI, Pham DTN, Tabassum N, Khan MSA, Kim YM. Mixed biofilms of pathogenic Candida-bacteria: regulation mechanisms and treatment strategies. Crit Rev Microbiol 2021; 47:699-727. [PMID: 34003065 DOI: 10.1080/1040841x.2021.1921696] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mixed-species biofilm is one of the most frequently recorded clinical problems. Mixed biofilms develop as a result of interactions between microorganisms of a single or multiple species (e.g. bacteria and fungi). Candida spp., particularly Candida albicans, are known to associate with various bacterial species to form a multi-species biofilm. Mixed biofilms of Candida spp. have been previously detected in vivo and on the surfaces of many biomedical instruments. Treating infectious diseases caused by mixed biofilms of Candida and bacterial species has been challenging due to their increased resistance to antimicrobial drugs. Here, we review and discuss the clinical significance of mixed Candida-bacteria biofilms as well as the signalling mechanisms involved in Candida-bacteria interactions. We also describe possible approaches for combating infections associated with mixed biofilms, such as the use of natural or synthetic drugs and combination therapy. The review presented here is expected to contribute to the advances in the biomedical field on the understanding of underlying interaction mechanisms of pathogens in mixed biofilm, and alternative approaches to treating the related infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea.,Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Dung Thuy Nguyen Pham
- Center of Excellence for Biochemistry and Natural Products, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|