1
|
Liu H, Wang Z, Xu J, Ji F, Luo S, Zhong X, Zhao Y, Zheng Z. Self-assembled pea vicilin nanoparticles as nanocarriers for improving the antioxidant activity, environmental stability and sustained-release property of curcumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2467-2476. [PMID: 37986244 DOI: 10.1002/jsfa.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/22/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND The application of curcumin (Cur) in the food industry is usually limited by its low water solubility and poor stability. This study aimed to fabricate self-assembled nanoparticles using pea vicilin (7S) through a pH-shifting method (pH 7-pH 12-pH 7) to develop water-soluble nanocarriers of Cur. RESULTS Intrinsic fluorescence, far-UV circular dichroism spectra and transmission electron microscopy analysis demonstrated that the structure of 7S could be unfolded at pH 12.0 and refolded when the pH shifted to 7.0. The assembled 7S-Cur exhibited a high loading ability of 81.63 μg mg-1 for Cur and homogeneous particle distribution. Cur was encapsulated in the 7S hydrophobic nucleus in an amorphous form and combined through hydrophobic interactions and hydrogen bonding, resulting in the static fluorescence quenching of 7S. Compared with free Cur, the retention rates of Cur in 7S-Cur were approximately 1.12 and 1.70 times higher under UV exposure at 365 nm or heating at 75 °C for 120 min, respectively, as well as 7S-Cur showing approximately 1.50 times higher antioxidant activity. During simulated gastrointestinal experiments, 7S-Cur exhibited a better sustained-release property than free Cur. CONCLUSION The self-assembled 7S nanocarriers prepared using a pH-shifting method effectively improved the antioxidant activity, environmental stability and sustained-release property of Cur. Therefore, 7S isolated from pea protein could be used as potential nanocarriers for Cur. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huihui Liu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Zijun Wang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Jingjing Xu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Fuyun Ji
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Shuizhong Luo
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Xiyang Zhong
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Yanyan Zhao
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
2
|
Lin H, Fu S, Hu C, Zhang W, He J. Characterization, interfacial rheology, and storage stability of Pickering emulsions stabilized by complex of whey protein isolate fiber and zein derived from micro-endosperm maize. Int J Biol Macromol 2024; 261:129948. [PMID: 38311140 DOI: 10.1016/j.ijbiomac.2024.129948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
In present study, we characterized the formation, interfacial rheology, and storage stability of emulsions stabilized by microendosperm maize-derived zein (M-Zein)/whey protein isolate fiber (WPIF) nanoparticles. Microendosperm maize is a newly developed, oleic acid-rich oilseed resource. Recent research has shown that M-Zein possesses unique hydrophobic properties. Combining it with WPIF may enhance its performance as a stabilizer. Optimization of weight ratios for M-Zein/WPIF composites, guided by particle size analysis, fluorescence spectroscopy, three-phase contact angle (θ), and interfacial rheological analysis, revealed that a 4: 6 mass ratio at pH 7 yielded favorable wettability (θ = 91.2°). Interfacial rheology analysis showed that the combination of WPIF reduced M-Zein's interfacial tension to 7.2 mN/m and 36.7 mN/m at oil-water and air-water interfaces, respectively. The M-Zein/WPIF complex exhibited an elastic protein layer at the oil-water interface. Further investigations into nanoparticle concentration, oil phase volume, and pH revealed that emulsions containing 3 % nanoparticles (w/w), 50 % oil phase volume, and pH 7 showed the best storage stability. This research highlights the development of M-Zein/WPIF composited nanoparticles with superior storage stability and interfacial rheology. Additionally, it introduces a novel application for M-Zein, which elevates the value proposition of microendosperm maize.
Collapse
Affiliation(s)
- Hong Lin
- Wuhan Polytechnic University, School of Food Science and Engineering, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, China; MOE Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, China.
| | - Sihan Fu
- Wuhan Polytechnic University, School of Food Science and Engineering, China
| | - Chun Hu
- Wuhan Polytechnic University, School of Food Science and Engineering, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, China; MOE Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, China
| | - Weinong Zhang
- Wuhan Polytechnic University, School of Food Science and Engineering, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, China; MOE Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, China
| | - Junbo He
- Wuhan Polytechnic University, School of Food Science and Engineering, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, China; MOE Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, China.
| |
Collapse
|
3
|
Alam S, Lee J, Sahebkar A. Curcumin in Cancer Prevention: Insights from Clinical Trials and Strategies to Enhance Bioavailability. Curr Pharm Des 2024; 30:1838-1851. [PMID: 38808709 DOI: 10.2174/0113816128303514240517054617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Cancer remains a leading cause of death worldwide, and current cancer drugs often have high costs and undesirable side effects. Additionally, the development of drug resistance can reduce their effectiveness over time. Natural products have gained attention as potential sources for the treatment and prevention of various diseases. Curcumin, an extract from turmeric (Curcuma longa), is a natural phenolic compound with diverse pharmacological properties, including antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, antiprotozoal, antidiabetic, antivenom, antiulcer, anticarcinogenic, antimutagenic, anticoagulant, and antifertility activities. Given the increasing interest in curcumin for cancer prevention, this review aims to comprehensively examine clinical trials investigating the use of curcumin in different types of cancer. Additionally, effective techniques and approaches to enhance the bioavailability of curcumin are discussed and summarized. This review article provides insights into the properties of curcumin and its potential as a future anticancer drug.
Collapse
Affiliation(s)
- Shabaz Alam
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewon Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Wang H, Song B, Zhou J, Gao G, Ding Y, Meng X, Ke L, Ding W, Zhang S, Chen T, Rao P. Fabrication and characterization of curcumin-loaded nanoparticles using licorice protein isolate from Radix Glycyrrhizae. Int J Biol Macromol 2024; 255:128235. [PMID: 37981268 DOI: 10.1016/j.ijbiomac.2023.128235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Licorice was widely used in food and herbal medicine. In its extract industry, a substantial amount of licorice protein was produced and discarded as waste. Herein, we extracted Licorice Protein Isolate (LPI) and explored its potential as a curcumin nanocarrier. Using a pH-driven method, we fabricated LPI-curcumin nanoparticles with diameters ranging from 129.30 ± 3.21 nm to 75.03 ± 1.19 nm, depending on the LPI/curcumin molar ratio. The formation of LPI-curcumin nanoparticles was primarily driven by hydrophobic interactions, with curcumin entrapped in LPI being in an amorphous form. These nanoparticles significantly enhanced curcumin properties in terms of solubility, photochemical stability, and stability under varying pH, storage, and physiological conditions. Moreover, the loaded curcumin exhibited a 2.58-fold increase in cellular antioxidant activity on RAW 264.7 cells and a 1.86-fold increase in antitumor activity against HepG2 cells compared to its free form. These findings suggested that LPI could potentially serve as a promising novel delivery material.
Collapse
Affiliation(s)
- Huiqin Wang
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China; College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Binbin Song
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jianwu Zhou
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China; College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Guanzhen Gao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China; College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China.
| | - Yanan Ding
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Xiangyu Meng
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Lijing Ke
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Wei Ding
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Suyun Zhang
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Tianbao Chen
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Pingfan Rao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China; College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| |
Collapse
|
5
|
Li X, He Y, Zhang S, Gu Q, McClements DJ, Chen S, Liu X, Liu F. Lactoferrin-Based Ternary Composite Nanoparticles with Enhanced Dispersibility and Stability for Curcumin Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18166-18181. [PMID: 36893425 DOI: 10.1021/acsami.2c20816] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Curcumin has been reported to exhibit free radical antioxidant, anti-inflammatory, and anticancer activities, which are beneficial for nutraceutical applications. However, its application for this purpose is limited by its poor water solubility, stability, and bioavailability. These problems can be overcome using food-grade colloidal particles that encapsulate, protect, and deliver curcumin. These colloidal particles can be assembled from structure-forming food components that may also exhibit protective effects, such as proteins, polysaccharides, and polyphenols. In this study, lactoferrin (LF), (-)-epigallocatechin gallate (EGCG), and hyaluronic acid (HA) were used to fabricate composite nanoparticles using a simple pH-shift method. We showed that curcumin could be successfully loaded into these LF-EGCG-HA nanoparticles (d = 145 nm). The encapsulation efficiency (86%) and loading capacity (5.8%) of curcumin within these nanoparticles were relatively high. Encapsulation improved the thermal, light, and storage stabilities of the curcumin. Moreover, the curcumin-loaded nanoparticles exhibited good redispersibility after dehydration. The in vitro digestion properties, cellular uptake, and anticancer effects of the curcumin-loaded nanoparticles were then explored. Compared to free curcumin, the bioaccessibility and cellular uptake of the curcumin were significantly improved after encapsulation in the nanoparticles. Furthermore, the nanoparticles significantly promoted the apoptosis of colorectal cancer cells. This study suggests that food-grade biopolymer nanoparticles can be used to improve the bioavailability and bioactivity of an important nutraceutical.
Collapse
Affiliation(s)
- Xueqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiyang He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingzhuo Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan 430000, Hubei, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Racz LZ, Racz CP, Pop LC, Tomoaia G, Mocanu A, Barbu I, Sárközi M, Roman I, Avram A, Tomoaia-Cotisel M, Toma VA. Strategies for Improving Bioavailability, Bioactivity, and Physical-Chemical Behavior of Curcumin. Molecules 2022; 27:molecules27206854. [PMID: 36296447 PMCID: PMC9608994 DOI: 10.3390/molecules27206854] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/23/2022] Open
Abstract
Curcumin (CCM) is one of the most frequently explored plant compounds with various biological actions such as antibacterial, antiviral, antifungal, antineoplastic, and antioxidant/anti-inflammatory properties. The laboratory data and clinical trials have demonstrated that the bioavailability and bioactivity of curcumin are influenced by the feature of the curcumin molecular complex types. Curcumin has a high capacity to form molecular complexes with proteins (such as whey proteins, bovine serum albumin, β-lactoglobulin), carbohydrates, lipids, and natural compounds (e.g., resveratrol, piperine, quercetin). These complexes increase the bioactivity and bioavailability of curcumin. The current review provides these derivatization strategies for curcumin in terms of biological and physico-chemical aspects with a strong focus on different type of proteins, characterization methods, and thermodynamic features of protein–curcumin complexes, and with the aim of evaluating the best performances. The current literature review offers, taking into consideration various biological effects of the CCM, a whole approach for CCM-biomolecules interactions such as CCM-proteins, CCM-nanomaterials, and CCM-natural compounds regarding molecular strategies to improve the bioactivity as well as the bioavailability of curcumin in biological systems.
Collapse
Affiliation(s)
- Levente Zsolt Racz
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Csaba Pal Racz
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Lucian-Cristian Pop
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Gheorghe Tomoaia
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 47 Gen. Traian Mosoiu Str., RO-400132 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., RO-050044 Bucharest, Romania
| | - Aurora Mocanu
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Ioana Barbu
- Faculty of Biology and Geology, Babes-Bolyai University, 4-6 Clinicilor Str., RO-400006 Cluj-Napoca, Romania
| | | | - Ioana Roman
- Institute of Biological Research, Branch of NIRDBS Bucharest, 48 Republicii Str., RO-400015 Cluj-Napoca, Romania
| | - Alexandra Avram
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Maria Tomoaia-Cotisel
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., RO-050044 Bucharest, Romania
| | - Vlad-Alexandru Toma
- Faculty of Biology and Geology, Babes-Bolyai University, 4-6 Clinicilor Str., RO-400006 Cluj-Napoca, Romania
- Institute of Biological Research, Branch of NIRDBS Bucharest, 48 Republicii Str., RO-400015 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
7
|
Ling M, Yan C, Huang X, Xu Y, He C, Zhou Z. Phosphorylated walnut protein isolate as a nanocarrier for enhanced water solubility and stability of curcumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5700-5710. [PMID: 35388485 DOI: 10.1002/jsfa.11917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The low solubility and poor dispersion of alkaline-extracted walnut protein isolate (AWPI) limit its application as a protein-based carrier for the delivery of poorly soluble nutraceuticals, including curcumin. This work investigated the physicochemical characteristics of phosphorylated walnut protein isolate (PWPI) extracted using sodium tripolyphosphate (STP) and evaluated its encapsulation ability. RESULTS The results of phosphorus determination, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy confirmed the phosphorylation of the extracted PWPI. Circular dichroism (CD) analysis indicated that PWPI contained higher α-helix and lower β-sheet contents than AWPI. The PWPI prepared at pH 9.0 and 11.0 showed significantly improved solubility, similar surface hydrophobicity, and increased surface charges compared to the AWPI. Fluorescence quenching experiments indicated that the binding affinity of curcumin to PWPI was significantly higher than that of AWPI. When bound to PWPI, the solubility of curcumin in aqueous solution was greatly enhanced, with an 8700-fold increase at a nanocomplex concentration of 10 mg mL-1 . The complexation of curcumin with PWPI significantly improved the storage stability of curcumin. Additionally, the PWPI-curcumin nanocomplexes showed significantly increased antioxidant capacity. CONCLUSION Phosphorylated walnut protein isolate showed greatly improved solubility and strong encapsulation ability, making it a promising nanocarrier for curcumin. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Ling
- School of Food Science and Bioengineering, Xihua University, Chengdu, PR China
| | - Chunjun Yan
- School of Food Science and Bioengineering, Xihua University, Chengdu, PR China
| | - Xuan Huang
- School of Food Science and Bioengineering, Xihua University, Chengdu, PR China
| | - Yanfei Xu
- School of Food Science and Bioengineering, Xihua University, Chengdu, PR China
| | - Changwei He
- School of Food Science and Bioengineering, Xihua University, Chengdu, PR China
| | - Zheng Zhou
- School of Food Science and Bioengineering, Xihua University, Chengdu, PR China
| |
Collapse
|
8
|
Nanocarriers for β-Carotene Based on Milk Protein. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Wang ZJ, Xu JJ, Ji FY, Luo SZ, Li XJ, Mu DD, Jiang ST, Zheng Z. Fabrication and characterization of soy β-conglycinin-dextran-polyphenol nanocomplexes: Improvement on the antioxidant activity and sustained-release property of curcumin. Food Chem 2022; 395:133562. [PMID: 35763923 DOI: 10.1016/j.foodchem.2022.133562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/04/2022]
Abstract
In this study, glycated soy β-conglycinin (β-CG) stabilized curcumin (Cur) composites were fabricated by a unique reversible self-assembly character of β-conglycinin-dextran conjugates (β-CG-DEX). Intrinsic fluorescence and far-UV CD spectra revealed that glycation did not affect the self-assembly property of β-CG in the pH-shifting treatment. The structure of β-CG-DEX could be unfolded at pH 12.0 and reassembled during acidification (from pH 12.0 to 7.0). Meanwhile, β-CG-DEX-3d, which was incubated at 60 °C for 3 days, exhibited a high loading capacity (123.4 mg/g) for curcumin, which far exceeds that (74.90 mg/g) of β-CG-Cur. Moreover, the reassembled β-CG-DEX-3d-Cur showed eminent antioxidant activity of approximately 1.5 times higher than that of free curcumin. During the simulated gastrointestinal condition, compared with β-CG-Cur, β-CG-DEX-3d-Cur nanoparticles showed a more stable and sustained release of curcumin. Thus, β-CG-DEX has immense potential to become a new delivery carrier for hydrophobic food components by means of a self-assembly strategy.
Collapse
Affiliation(s)
- Zi-Jun Wang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Jing-Jing Xu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Fu-Yun Ji
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Shui-Zhong Luo
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Xing-Jiang Li
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Dong-Dong Mu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Shao-Tong Jiang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
10
|
Liu H, Zhang Y, Zhang J, Xiong Y, Peng S, McClements DJ, Zou L, Liang R, Liu W. Utilization of protein nanoparticles to improve the dispersibility, stability, and functionality of a natural pigment: Norbixin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
pH-driven self-assembly of alcohol-free curcumin-loaded propylene glycol alginate nanoparticles. Int J Biol Macromol 2022; 195:302-308. [PMID: 34920055 DOI: 10.1016/j.ijbiomac.2021.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 12/28/2022]
Abstract
The purpose of this paper was to explore the application of propylene glycol alginate (PGA) alone in alcohol-free curcumin-loaded nanoparticles (PGA/Cur) prepared by a pH-driven method to solve the curcumin shortcomings of low water solubility, stability and bioavailability. One of the bright spots of PGA/Cur was its extremely high loading capacity. PGA/Cur formed a spherical structure mainly by hydrophobic interaction and hydrogen bonding, making curcumin amorphous. PGA/Cur exhibited stability at pH 4.0-8.0 due to its high surface charges. PGA/Cur still showed a unimodal size distribution even under 3000 mM ionic strength. Heating caused uneven size distribution, but the smaller size still presented its thermostability. PGA/Cur exhibited good physical stability and slowed down the curcumin degradation with t1/2 of 37.47 days during storage. PGA/Cur could maintain structural integrity in gastric acid and released curcumin in the intestine, thus improving the bioaccessibility of curcumin. Additionally, PGA/Cur displayed the solubilization after lyophilization.
Collapse
|
12
|
Yuan Y, Ma M, Xu Y, Wang D. Construction of biopolymer-based nanoencapsulation of functional food ingredients using the pH-driven method: a review. Crit Rev Food Sci Nutr 2021; 63:5724-5738. [PMID: 34969342 DOI: 10.1080/10408398.2021.2023858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biopolymer-based nanoencapsulation presents great performance in the delivery of functional food ingredients. In recent years, the pH-driven method has received considerable attention due to its unique characteristics of low energy and organic solvent-free during the construction of biopolymer-based nanoencapsulation. This review summarized the fundamental knowledge of pH-driven biopolymer-based nanoencapsulation. The principle of the pH-driven method is the protonation reaction of functional food ingredients that change with pH. The stability of functional food ingredients in an alkaline environment is a prerequisite for the adoption of this method. pH regulator is also an important influencing factor. Different coating materials used to the pH-driven nanoencapsulation were discussed, including single and composite materials, mainly focusing on proteins. Besides, the application evaluations of pH-driven nanoencapsulation in food were analyzed. The future development trends will be the influence of pH regulators on the carrier, the design of new non-protein-based carriers, the quantification of driving forces, the absorption mechanism of encapsulated nutrients, and the molecular interaction between the wall material and the intestinal mucosa. In conclusion, pH-driven biopolymer-based nanoencapsulation of functional food ingredients will have broad prospects for development.
Collapse
Affiliation(s)
- Yongkai Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Mengjie Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
13
|
Elbialy NS, Aboushoushah SF, Mohamed N. Bioinspired synthesis of protein/polysaccharide-decorated folate as a nanocarrier of curcumin to potentiate cancer therapy. Int J Pharm 2021; 613:121420. [PMID: 34958897 DOI: 10.1016/j.ijpharm.2021.121420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Curcumin is a promising anticancer agent, but its clinical utilization has been hindered by its low solubility and bioaccessibility. To overcome these obstacles, we developed a natural protein-polysaccharide nanocomplex made from casein nanoparticles coated with a double layer of alginate and chitosan and decorated with folic acid (fCs-Alg@CCasNPs) for use as a nanocarrier for curcumin. The developed nanoformulation showed a drug encapsulation efficiency = 75%. The measured size distribution of fCs-Alg@CCasNPs was 333.8 ± 62.35 nm with a polydispersity index (PDI) value of 0.179. The recorded zeta potential value of fCs-Alg@CCasNPs was 28.5 mV. Morphologically, fCs-Alg@CCasNPs appeared spherical, as shown by transmission electron microscopy (TEM). The successful preparation of fCs-Alg@CCasNPs was confirmed by Fourier transform infrared (FTIR) spectroscopy of all the constituents forming the nanoformulation. Further in vitro investigations indicated the stability of fCs-Alg@CCasNPs as well as their controlled and sustained release of curcumin in the tumor microenvironment. Compared with free curcumin, fCs-Alg@CCasNPs induced a higher cytotoxic effect against a pancreatic cancer cell line. The in vivo pharmacokinetics of fCs-Alg@CCasNPs showed a significant AUC0-24 = 2307 ng.h/ml compared to 461 ng.h/ml of free curcumin; these results indicated high curcumin bioavailability in plasma. The in vivo results of tumor weight, the amount of DNA damage measured by comet assay and histopathological examination revealed that treating mice with fCs-Alg@CCasNPs (either intratumorally or intraperitonially) prompted higher therapeutic efficacy against Ehrlich carcinoma than treatment with free curcumin. Therefore, the incorporation of curcumin with protein/polysaccharide/folate is an innovative approach that can synergistically enhance curcumin bioavailability and potentiate cancer therapy with considerable biosafety.
Collapse
Affiliation(s)
- Nihal S Elbialy
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Samia F Aboushoushah
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Noha Mohamed
- Associate Professor Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| |
Collapse
|
14
|
Entrapment of Hydrophilic and Hydrophobic Molecules in Beads Prepared from Isolated Denatured Whey Protein. Pharmaceutics 2021; 13:pharmaceutics13071001. [PMID: 34371693 PMCID: PMC8309121 DOI: 10.3390/pharmaceutics13071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
The oral route of administration is by far the most convenient route, especially in the treatment of chronic conditions. However, many therapeutics present formulation difficulties which make them unsuitable for oral delivery. Recently, we synthesized a denatured whey protein isolate (dWPI) bead entrapped with insulin. Our present goal was to assess the suitability of this delivery system to the delivery of other potential molecules, both hydrophilic and hydrophobic. Beads of 1.2–1.5 mm in diameter were entrapped with four payloads representing a range of solubilities. The water-soluble payloads were sodium fluorescein (SF) and FITC dextran 4000 Da (FD4), while the hydrophobic ones were Fast Green and curcumin. Encapsulation efficiency (EE) was 73%, 84%, 70%, and 83% for SF, FD4, Fast Green, and curcumin-loaded beads, respectively. The corresponding loading capacity for each bead was 0.07%, 1.1%, 0.75%, and 1.1%, respectively. Each payload produced different release profiles in simulated gastric fluid (SGF) and simulated intestinal fluids (SIF). SF released steadily in both SGF and SIF. FD4 and curcumin release was not substantial in any buffers, while Fast Green release was low in SGF and high in SIF. The differences in release behaviour were likely due to the varying properties of the payloads. The effect of proteolysis on beads suggested that enzymatic degradation of the whey bead may promote payload release. The beads swelled rapidly in SGF compared to SIF, which likely contributed to the release from the beads, which was largely governed by solvent diffusion and polymer relaxation. Our results offer a systematic examination of the behaviour of hydrophilic and hydrophobic payloads in a dWPI delivery system. These beads may be further designed to orally deliver poorly permeable macromolecules and poorly soluble small molecules of pharmaceutical interest.
Collapse
|
15
|
Development of pH-driven zein/tea saponin composite nanoparticles for encapsulation and oral delivery of curcumin. Food Chem 2021; 364:130401. [PMID: 34174648 DOI: 10.1016/j.foodchem.2021.130401] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
The purpose of this paper was to overcome the challenges of curcumin by zein/tea saponin composite nanoparticles (Z/TSNPs) without any organic reagents and high-energy equipment. The spherical Z/TSNPs exhibited good physical stability, the conditions of which included pH at 5.0-8.0, heating at 80 ℃, ionic strength within 100 mM, and storage at 25 ℃ for 30 days. Meanwhile, Z/TSNPs showed excellent redispersibility. Z/TSNPs were used to encapsulate and deliver curcumin (Cur-Z/TSNPs), showing encapsulation efficiency and loading capacity of 83.73% and 22.33%, respectively. Cur-Z/TSNPs exhibited good chemical stability during storage, and the effect of light on Cur-Z/TSNPs was smaller than that of free curcumin. Furthermore, Cur-Z/TSNPs improved the solubilization and bioaccessibility of curcumin about 290 and 5 times, respectively. Besides, the encapsulation changed the crystalline state of curcumin to amorphous, and the pH-driven mechanism was probably related to hydrogen bonding, hydrophobic and electrostatic interactions.
Collapse
|
16
|
Mohammadian M, Salami M, Moghadam M, Amirsalehi A, Emam-Djomeh Z. Mung bean protein as a promising biopolymeric vehicle for loading of curcumin: Structural characterization, antioxidant properties, and in vitro release kinetics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Fabrication of whey protein isolate-sodium alginate nanocomplex for curcumin solubilization and stabilization in a model fat-free beverage. Food Chem 2021; 348:129102. [PMID: 33508599 DOI: 10.1016/j.foodchem.2021.129102] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/04/2020] [Accepted: 01/10/2021] [Indexed: 12/29/2022]
Abstract
The present study aimed to fabricate whey protein isolate (WPI)-sodium alginate (ALG) nanocomplexes for curcumin (CUR) stabilization in a model fat-free beverage. Mass ratio of 5:1 at pH 5.0 in the absence of NaCl was optimized for WPI-ALG nanocomplex fabrication. Mean particle size and zeta-potential of CUR-WPI-ALG nanocomplex was 209.9 nm and -39.1 mV at pH 5.0, respectively. Highest loading amount (LA) of CUR in CUR-WPI-ALG nanocomplex were 15.26 μg/mg. No obvious precipitates were observed for CUR-WPI-ALG nanocomplex under simulated food processing and storage conditions including high sucrose, high NaCl, and thermal treatment at 90 °C for 2 h. Fluorescence results confirmed that the spontaneous interaction between CUR and WPI-ALG nanocomplex was primarily motivated by hydrophobic interaction and hydrogen bonding. Compared with CUR (free), chemical stability (UV light, and heat), and DPPH scavenging capacities of CUR in CUR-WPI-ALG nanocomplex were strikingly improved.
Collapse
|
18
|
Wang Y, Zhang L, Wang P, Xu X, Zhou G. pH-shifting encapsulation of curcumin in egg white protein isolate for improved dispersity, antioxidant capacity and thermal stability. Food Res Int 2020; 137:109366. [PMID: 33233068 DOI: 10.1016/j.foodres.2020.109366] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 11/15/2022]
Abstract
Curcumin (Cur) has many functions, such as antioxidant and anti-inflammatory. However, its poor solubility and thermal stability at aqueous solutions limit its application in the food industry. In this study, egg white protein isolate (EPI) was complexed with Cur via a pH-shifting method. The effects of ultimate pH (from 5.0 to 7.0) on the physicochemical properties of the complex were studied. Cur could reach 84.4% encapsulation efficiency at pH 6.0. Meanwhile, the EPI complex could remain stable at pH 7.0 after 30 days and protect Cur from thermal degradation, thereby improving the Cur retention rate with the increasing ultimate pH. Compared with those of EPI and free Cur, the antioxidant capacity of the complex was enhanced effectively. The EPI-Cur complex was certified using UV-vis and fluorescence spectra. The fluorescence results indicated that Cur and EPI are combined through a static quenching and with a strong affinity of 1.8 × 105 M-1 at pH 6.0. In summary, this work provides a biocompatible and straightforward method for the development of nanoparticles based on egg white protein isolates, which can be used as a promising carrier for insoluble nutritional compounds.
Collapse
Affiliation(s)
- Yuexi Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Taghavi Kevij H, Salami M, Mohammadian M, Khodadadi M. Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the pH-driven method. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Zhan X, Dai L, Zhang L, Gao Y. Entrapment of curcumin in whey protein isolate and zein composite nanoparticles using pH-driven method. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105839] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|