1
|
Dang J, Chevalier K, Letavernier E, Tissandier C, Mouawad S, Debray D, Obadia M, Poujois A. Kidney involvement in Wilson's disease: a review of the literature. Clin Kidney J 2024; 17:sfae058. [PMID: 38660122 PMCID: PMC11040517 DOI: 10.1093/ckj/sfae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 04/26/2024] Open
Abstract
Wilson's disease (WD) is a rare inherited disease due to the mutation of the ATP7B gene, resulting in impaired hepatic copper excretion and its pathological accumulation in various organs such as the liver, the nervous system, or the kidneys. Whereas liver failure and neuropsychiatric disorders are the most common features, less is known about the renal complications. We conducted a review of the literature to define the characteristics and pathophysiology of kidney involvement during WD. This review shed light on strong evidence for direct copper toxicity to renal tubular cells. Excessive tubular copper accumulation might present with various degrees of tubular dysfunction, ranging from mild hydroelectrolytic and acid-base disorders to complete Fanconi syndrome. Proximal and distal renal tubular acidosis also favors development of nephrolithiasis, nephrocalcinosis, and bone metabolism abnormalities. Indirect complications might involve renal hypoperfusion as occurs in hepatorenal or cardiorenal syndrome, but also tubular casts' formation during acute hemolysis, rhabdomyolysis, or bile cast nephropathy. Acute kidney failure is not uncommon in severe WD patients, and independently increases mortality. Finally, specific and long-term therapy by D-penicillamin, one of the most efficient drugs in WD, can cause glomerular injuries, such as membranous nephropathy, minimal-change disease, and, rarely, severe glomerulonephritis. Altogether, our study supports the need for interdisciplinary evaluation of WD patients involving nephrologists, with regular monitoring of tubular and glomerular functions, to provide adequate prevention of renal and bone involvement.
Collapse
Affiliation(s)
- Julien Dang
- Assistance Publique des Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital de Bicêtre, Service de Néphrologie et Transplantation, Le Kremlin-Bicêtre, France
- Centre de Compétence Maladies Rares «Syndrome Néphrotique Idiopathique», Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Kevin Chevalier
- Hôpital Fondation Rothschild, Service de Neurologie, Paris, France
- Centre de Référence de la Maladie de Wilson et autres Maladies Rares Liées au Cuivre, Paris, France
| | - Emmanuel Letavernier
- AP-HP, Hôpital Tenon, Service des Explorations Fonctionnelles Multidisciplinaires, Paris, France
| | - Come Tissandier
- Assistance Publique des Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital de Bicêtre, Service de Néphrologie et Transplantation, Le Kremlin-Bicêtre, France
- Centre de Compétence Maladies Rares «Syndrome Néphrotique Idiopathique», Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Sarah Mouawad
- Assistance Publique des Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital de Bicêtre, Service de Néphrologie et Transplantation, Le Kremlin-Bicêtre, France
- Centre de Compétence Maladies Rares «Syndrome Néphrotique Idiopathique», Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Dominique Debray
- Hôpital Fondation Rothschild, Service de Neurologie, Paris, France
- Centre de Référence de la Maladie de Wilson et autres Maladies Rares Liées au Cuivre, Paris, France
| | - Mickaël Obadia
- Hôpital Fondation Rothschild, Service de Neurologie, Paris, France
- Centre de Référence de la Maladie de Wilson et autres Maladies Rares Liées au Cuivre, Paris, France
| | - Aurélia Poujois
- Hôpital Fondation Rothschild, Service de Neurologie, Paris, France
- Centre de Référence de la Maladie de Wilson et autres Maladies Rares Liées au Cuivre, Paris, France
| |
Collapse
|
2
|
Wang M, Zhang R, Dehaen W, Fang Y, Qian S, Ren Y, Cheng F, Guo Y, Guo C, Li Y, Deng Y, Cao Z, Peng C. Specific recognition, intracellular assay and detoxification of fluorescent curcumin derivative for copper ions. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126490. [PMID: 34252661 DOI: 10.1016/j.jhazmat.2021.126490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Recognition and excretion of metal ions play an important role in the diagnosis and treatment of various diseases and poisoning. Although copper (Cu) is a cofactor of many key enzymes in the human body, its accumulation caused by genetic ATP7B mutation or environmental pollution can lead to hepatotoxicity, renal failure, Wilson's disease, inflammation, and even Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, in this work, a difluoroboron curcumin derivative (DF-Cur) was used for the specific recognition of copper ions (Cu2+). DF-Cur could be further used to as a rapid diagnostic agent for the copper detection in cells and zebrafish at the nanomolar level. DF-Cur could significantly reduce the toxic damage caused by high Cu2+ dose. Inductively coupled plasma-mass spectrometry (ICP-MS) analysis indicated that DF-Cur could promote the excretion of copper ions in the urine and bile and reduce the accumulation of copper ions in vivo. In addition, DF-Cur could selectively detect cholesterol in the blood and adipose tissue in vivo by fluorescent staining. These results demonstrated that this molecule might represent a new and promising diagnostic and therapeutic agent to combat diseases related to copper ions accumulation.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruoqi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wim Dehaen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f-bus 02404, 3001 Leuven, Belgium
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Chemistry, KU Leuven, Celestijnenlaan 200f-bus 02404, 3001 Leuven, Belgium.
| | - Shan Qian
- Department of Pharmaceutical Engineering, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuying Guo
- Department of Pharmaceutical Engineering, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Chuanjie Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Ağbaş A, Bay ED, Başaran MK, İkizceli T, Kayhan GK, Özlük Y. Nephrotic range proteinuria in an adolescent with a diagnosis of Wilson's disease: Answers. Pediatr Nephrol 2021; 36:2103-2106. [PMID: 33528637 DOI: 10.1007/s00467-021-04961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/12/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Ayşe Ağbaş
- Department of Pediatric Nephrology, Istanbul Haseki Training and Research Hospital, University of Health Sciences, Istanbul, Turkey. .,Çocuk Kliniği, Çocuk Nefroloji Bölümü, S.B.Ü Haseki Eğitim ve Araştırma Hastanesi, 34130, Fatih Istanbul, Turkey.
| | - Eda Dilara Bay
- Department of Pediatrics, Istanbul Haseki Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Meryem Keçeli Başaran
- Department of Pediatric Gastroenterology, Gaziosmanpaşa Training and Research Hospital, Istanbul, Turkey
| | - Türkan İkizceli
- Department of Radiology, Istanbul Haseki Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gözde Kılıç Kayhan
- Istanbul Faculty of Medicine, Department of Pathology, Istanbul University, Istanbul, Turkey
| | - Yasemin Özlük
- Istanbul Faculty of Medicine, Department of Pathology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Pfaff AR, Beltz J, King E, Ercal N. Medicinal Thiols: Current Status and New Perspectives. Mini Rev Med Chem 2020; 20:513-529. [PMID: 31746294 PMCID: PMC7286615 DOI: 10.2174/1389557519666191119144100] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
The thiol (-SH) functional group is found in a number of drug compounds and confers a unique combination of useful properties. Thiol-containing drugs can reduce radicals and other toxic electrophiles, restore cellular thiol pools, and form stable complexes with heavy metals such as lead, arsenic, and copper. Thus, thiols can treat a variety of conditions by serving as radical scavengers, GSH prodrugs, or metal chelators. Many of the compounds discussed here have been in use for decades, yet continued exploration of their properties has yielded new understanding in recent years, which can be used to optimize their clinical application and provide insights into the development of new treatments. The purpose of this narrative review is to highlight the biochemistry of currently used thiol drugs within the context of developments reported in the last five years. More specifically, this review focuses on thiol drugs that represent the standard of care for their associated conditions, including N-acetylcysteine, 2,3-meso-dimercaptosuccinic acid, British anti-Lewisite, D-penicillamine, amifostine, and others. Reports of novel dosing regimens, delivery strategies, and clinical applications for these compounds were examined with an eye toward emerging approaches to address a wide range of medical conditions in the future.
Collapse
Affiliation(s)
- Annalise R. Pfaff
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Justin Beltz
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Emily King
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| |
Collapse
|