1
|
Li Y, Zhang W, Huang Y, Cui G, Zhang X. Exogenous silicon improved the cell wall stability by activating non-structural carbohydrates and structural carbohydrates metabolism in salt and drought stressed Glycyrrhiza uralensis stem. Int J Biol Macromol 2024; 283:137817. [PMID: 39561835 DOI: 10.1016/j.ijbiomac.2024.137817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
The plant cell wall is a crucial barrier against environmental stress, mainly composed of lignin and carbohydrates such as cellulose, hemicellulose, and pectin. This study explored the direct regulatory mechanism of silicon (Si) on cell wall components of Glycyrrhiza uralensis (G. uralensis) stems under salt and drought (S + D) stress and the indirect regulatory mechanism of non-structural carbohydrates on structural carbohydrates, mediated by uridine diphosphate glucose (UDPG), through joint physiological, biochemical, and transcriptomic analyses. Under S + D stress, Si increased the contents of cell wall components, altered the structure of cell wall, and directly promoted cell wall re-construction by regulating gene expression levels and enzyme activities related to cell wall biosynthesis. Meanwhile, Si facilitated the accumulation of carbohydrates by regulating enzyme activities and gene expression levels in the anabolic pathway of polysaccharides, thereby promoting UDPG conversion and indirectly providing substrates for cell wall synthesis. In conclusion, Si directly and indirectly facilitates the synthesis of cell wall components by regulating both cell wall metabolism and non-structural carbohydrates metabolism, thus reinforcing the cell wall, enhancing its stability, and improving the salt and drought tolerance of G. uralensis stems.
Collapse
Affiliation(s)
- Yi Li
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjin Zhang
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yufang Huang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Gaochang Cui
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Martínez-Rubio R, Centeno ML, García-Angulo P, Álvarez JM, Acebes JL, Encina A. The role of cell wall phenolics during the early remodelling of cellulose-deficient maize cells. PHYTOCHEMISTRY 2020; 170:112219. [PMID: 31794882 DOI: 10.1016/j.phytochem.2019.112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/24/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The habituation of cultured cells to cellulose biosynthesis inhibitors such as dichlobenil (dichlorobenzonitrile, DCB) has proven a valuable tool to elucidate the mechanisms involved in plant cell wall structural plasticity. Our group has demonstrated that maize cells cope with DCB through a modified cell wall in which cellulose is replaced by a more extensive network of highly cross-linked feruloylated arabinoxylans. In order to gain further insight into the contribution of phenolics to the early remodelling of cellulose-deficient cell walls, a comparative HPLC-PAD analysis was carried out of hydroxycinnamates esterified into nascent and cell wall polysaccharides obtained from non-habituated (NH) and habituated to low DCB concentrations (1.5 μM; H) maize suspension-cultured cells. Incipient DCB-habituated cell walls showed significantly higher levels of esterified ferulic acid and p-coumaric acid throughout the culture cycle. In terms of cell wall fortification, ferulic acid is associated to arabinoxylan crosslinking whereas the increase of p-coumaric suggests an early lignification response. As expected, the level of hydroxycinnamates esterified into nascent polysaccharides was also higher in DCB-habituated cells indicating an overexpression of phenylpropanoid pathway. Due to their key role in cell wall strengthening, special attention was paid into the dimerization pattern of ferulic acid. A quantitative comparison of diferulate dehydrodimers (DFAs) between cell lines and cell compartments revealed that an extra dimerization took place in H cells when both nascent and mature cell wall polysaccharides were analysed. In addition, qualitative differences in the ferulic acid coupling pattern were detected in H cells, allowing us to suggest that 8-O-4'-DFA and 8-5'-DFA featured the ferulic acid dimerization when it occurred in the protoplasmic and cell wall fractions respectively. Both qualitative and quantitative differences in the phenolic profile between NH and H cells point to a regioselectivity in the ferulate dehydrodimerization.
Collapse
Affiliation(s)
- Romina Martínez-Rubio
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain
| | - María Luz Centeno
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain
| | - Penélope García-Angulo
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain
| | - Jesús M Álvarez
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain
| | - José Luis Acebes
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain.
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain
| |
Collapse
|
3
|
Nguyen-Phan TC, Fry SC. Functional and chemical characterization of XAF: a heat-stable plant polymer that activates xyloglucan endotransglucosylase/hydrolase (XTH). ANNALS OF BOTANY 2019; 124:131-148. [PMID: 31147677 PMCID: PMC6676392 DOI: 10.1093/aob/mcz050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/25/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Xyloglucan endotransglucosylase/hydrolase (XTH) proteins that possess xyloglucan endotransglucosylase (XET) activity contribute to cell-wall assembly and remodelling, orchestrating plant growth and development. Little is known about in-vivo XET regulation, other than at the XTH transcriptional level. Plants contain 'cold-water-extractable, heat-stable polymers' (CHPs) which are XTH-activating factors (XAFs) that desorb and thereby activate wall-bound XTHs. Because XAFs may control cell-wall modification in vivo, we have further explored their nature. METHODS Material was cold-water-extracted from 25 plant species; proteins were precipitated by heat-denaturation, then CHP was ethanol-precipitated. For XAF assays, CHP (or sub-fractions thereof) was applied to washed Arabidopsis thaliana cell walls, and the enzymes thus solubilized were assayed radiochemically for XET activity. In some experiments, the CHP was pre-treated with trifluoroacetic acid (TFA), alkali (NaOH) or glycanases. KEY RESULTS CHP specifically desorbed wall-bound XTHs, but not β-glucosidases, phosphatases or peroxidases. CHP preparations from 25 angiosperms all possessed XAF activity but had no consistent monosaccharide composition. Of 11 individual plant polymers tested, only gum arabic and tamarind xyloglucan were XAF-active, albeit less so than CHP. On gel-permeation chromatography, XAF-active cauliflower CHP eluted with a molecular weight of ~7000-140 000, although no specific sugar residue(s) co-eluted exactly with XAF activity. Cauliflower XAF activity survived cold alkali and warm dilute TFA (which break ester and glycofuranosyl linkages, respectively), but was inactivated by hot 2 m TFA (which breaks glycopyranosyl linkages). Cauliflower XAF activity was remarkably stable to diverse glycanases and glycosidases. CONCLUSIONS XAFs are naturally occurring heat-stable polymers that specifically desorb (thereby activating) wall-bound XTHs. Their XAF activity considerably exceeds that of gum arabic and tamarind xyloglucan, and they were not identifiable as any major plant polysaccharide. We propose that XAF is a specific, minor, plant polymer that regulates xyloglucan transglycosylation in vivo, and thus wall assembly and restructuring.
Collapse
Affiliation(s)
- Tu C Nguyen-Phan
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh, UK
| |
Collapse
|
4
|
Martínez-Rubio R, Acebes JL, Encina A, Kärkönen A. Class III peroxidases in cellulose deficient cultured maize cells during cell wall remodeling. PHYSIOLOGIA PLANTARUM 2018; 164:45-55. [PMID: 29464727 DOI: 10.1111/ppl.12710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Maize (Zea mays L.) suspension-cultured cells habituated to a cellulose biosynthesis inhibitor 2,6-dichlorobenzonitrile (DCB) have a modified cell wall, in which the reduction in the cellulose content is compensated by a network of highly cross-linked feruloylated arabinoxylans and the deposition of lignin-like polymers. For both arabinoxylan cross-linking and lignin polymerization, class III peroxidases (POXs) have been demonstrated to have a prominent role. For the first time, a comparative study of POX activity and isoforms in control and cellulose-impaired cells has been addressed, also taking into account their cellular distribution in different compartments. Proteins from the spent medium (SM), soluble cellular (SC), ionically (ICW) and covalently bound cell wall protein fractions were assayed for total and specific peroxidase activity by using coniferyl and sinapyl alcohol and ferulic acid as substrates. The isoPOX profile was obtained by isoelectric focusing. POX activity was higher in DCB-habituated than in non-habituated cells in all protein fractions at all cell culture stages. For all substrates assayed, SC and ICW fractions showed higher activity at the early log growth phase than at the late log phase. However, the highest POX activity in the spent medium was found at the late log phase. According to the isoPOX profiles, the highest diversity of isoPOXs was detected in the ICW and SM protein fractions. The latter fraction contained isoPOXs with higher activity in DCB-habituated cells. Some of the isoPOXs detected could be involved in cross-linking of arabinoxylans and in the lignin-like polymer formation in DCB-habituated cells.
Collapse
Affiliation(s)
- Romina Martínez-Rubio
- Department of Engineering and Agricultural Sciences, Universidad de León, León, 24071, Spain
| | - José Luis Acebes
- Department of Engineering and Agricultural Sciences, Universidad de León, León, 24071, Spain
| | - Antonio Encina
- Department of Engineering and Agricultural Sciences, Universidad de León, León, 24071, Spain
| | - Anna Kärkönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790, Finland
| |
Collapse
|
5
|
Hernández-Altamirano JM, Largo-Gosens A, Martínez-Rubio R, Pereda D, Álvarez JM, Acebes JL, Encina A, García-Angulo P. Effect of ancymidol on cell wall metabolism in growing maize cells. PLANTA 2018; 247:987-999. [PMID: 29330614 DOI: 10.1007/s00425-018-2840-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Ancymidol inhibits the incorporation of cellulose into cell walls of maize cell cultures in a gibberellin-independent manner, impairing cell growth; the reduction in the cellulose content is compensated with xylans. Ancymidol is a plant growth retardant which impairs gibberellin biosynthesis. It has been reported to inhibit cellulose synthesis by tobacco cells, based on its cell-malforming effects. To ascertain the putative role of ancymidol as a cellulose biosynthesis inhibitor, we conducted a biochemical study of its effect on cell growth and cell wall metabolism in maize cultured cells. Ancymidol concentrations ≤ 500 µM progressively reduced cell growth and induced globular cell shape without affecting cell viability. However, cell growth and viability were strongly reduced by ancymidol concentrations ≥ 1.5 mM. The I50 value for the effect of ancymidol on FW gain was 658 µM. A reversal of the inhibitory effects on cell growth was observed when 500 µM ancymidol-treated cultures were supplemented with 100 µM GA3. Ancymidol impaired the accumulation of cellulose in cell walls, as monitored by FTIR spectroscopy. Cells treated with 500 µM ancymidol showed a ~ 60% reduction in cellulose content, with no further change as the ancymidol concentration increased. Cellulose content was partially restored by 100 µM GA3. Radiolabeling experiments confirmed that ancymidol reduced the incorporation of [14C]glucose into α-cellulose and this reduction was not reverted by the simultaneous application of GA3. RT-PCR analysis indicated that the cellulose biosynthesis inhibition caused by ancymidol is not related to a downregulation of ZmCesA gene expression. Additionally, ancymidol treatment increased the incorporation of [3H]arabinose into a hemicellulose-enriched fraction, and up-regulated ZmIRX9 and ZmIRX10L gene expression, indicating an enhancement in the biosynthesis of arabinoxylans as a compensatory response to cellulose reduction.
Collapse
Affiliation(s)
- J Mabel Hernández-Altamirano
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain
| | - Asier Largo-Gosens
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Nacional Andrés Bello, 8370146, Santiago, Chile
| | - Romina Martínez-Rubio
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain
| | - Diego Pereda
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain
| | - Jesús M Álvarez
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain
| | - José L Acebes
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain.
| | - Antonio Encina
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain
| | - Penélope García-Angulo
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain
| |
Collapse
|
6
|
Xia X, Zhang HM, Offler CE, Patrick JW. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells. FRONTIERS IN PLANT SCIENCE 2017; 8:2035. [PMID: 29259611 PMCID: PMC5723425 DOI: 10.3389/fpls.2017.02035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans-differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta. Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated.
Collapse
|
7
|
de Castro M, Martínez-Rubio R, Acebes JL, Encina A, Fry SC, García-Angulo P. Phenolic metabolism and molecular mass distribution of polysaccharides in cellulose-deficient maize cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:475-495. [PMID: 28474461 DOI: 10.1111/jipb.12549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
As a consequence of the habituation to low levels of dichlobenil (DCB), cultured maize cells presented an altered hemicellulose cell fate with a lower proportion of strongly wall-bound hemicelluloses and an increase in soluble extracellular polymers released into the culture medium. The aim of this study was to investigate the relative molecular mass distributions of polysaccharides as well as phenolic metabolism in cells habituated to low levels of DCB (1.5 μM). Generally, cell wall bound hemicelluloses and sloughed polymers from habituated cells were more homogeneously sized and had a lower weight-average relative molecular mass. In addition, polysaccharides underwent massive cross-linking after being secreted into the cell wall, but this cross-linking was less pronounced in habituated cells than in non-habituated ones. However, when relativized, ferulic acid and p-coumaric acid contents were higher in this habituated cell line. Feasibly, cells habituated to low levels of DCB synthesized molecules with a lower weight-average relative molecular mass, although cross-linked, as a part of their strategy to compensate for the lack of cellulose.
Collapse
Affiliation(s)
- María de Castro
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Romina Martínez-Rubio
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| | - José L Acebes
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Penélope García-Angulo
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| |
Collapse
|
8
|
Largo-Gosens A, Encina A, de Castro M, Mélida H, Acebes JL, García-Angulo P, Álvarez JM. Early habituation of maize (Zea mays) suspension-cultured cells to 2,6-dichlorobenzonitrile is associated with the enhancement of antioxidant status. PHYSIOLOGIA PLANTARUM 2016; 157:193-204. [PMID: 26612685 DOI: 10.1111/ppl.12411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
The cellulose biosynthesis inhibitor 2,6-dichlorobenzonitrile (DCB) has been widely used to gain insights into cell wall composition and architecture. Studies of changes during early habituation to DCB can provide information on mechanisms that allow tolerance/habituation to DCB. In this context, maize-cultured cells with a reduced amount of cellulose (∼20%) were obtained by stepwise habituation to low DCB concentrations. The results reported here attempt to elucidate the putative role of an antioxidant strategy during incipient habituation. The short-term exposure to DCB of non-habituated maize-cultured cells induced a substantial increase in oxidative damage. Concomitantly, short-term treated cells presented an increase in class III peroxidase and glutathione S-transferase activities and total glutathione content. Maize cells habituated to 0.3-1 µM DCB (incipient habituation) were characterized by a reduction in the relative cell growth rate, an enhancement of ascorbate peroxidase and class III peroxidase activities, and a net increment in total glutathione content. Moreover, these cell lines showed increased levels of glutathione S-transferase activity. Changes in antioxidant/conjugation status enabled 0.3 and 0.5 µM DCB-habituated cells to control lipid peroxidation levels, but this was not the case of maize cells habituated to 1 μM DCB, which despite showing an increased antioxidant capacity were not capable of reducing the oxidative damage to control levels. The results reported here confirm that exposure and incipient habituation of maize cells to DCB are associated with an enhancement in antioxidant/conjugation activities which could play a role in incipient DCB habituation of maize-cultured cells.
Collapse
Affiliation(s)
- Asier Largo-Gosens
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - María de Castro
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid, Madrid, E-28223, Spain
| | - José L Acebes
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - Penélope García-Angulo
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - Jesús M Álvarez
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| |
Collapse
|
9
|
|
10
|
Mélida H, Largo-Gosens A, Novo-Uzal E, Santiago R, Pomar F, García P, García-Angulo P, Acebes JL, Álvarez J, Encina A. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:357-72. [PMID: 25735403 DOI: 10.1111/jipb.12346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/25/2015] [Indexed: 05/23/2023]
Abstract
Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.
Collapse
Affiliation(s)
- Hugo Mélida
- Plant Physiology Laboratory, Faculty of Biological and Environmental Sciences, University of León, E-24071 León, Spain; Centre for Plant Biotechnology and Genomics (CBGP), Politechnical University of Madrid, E-28223 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|