1
|
Rybarczyk A, Sultan T, Hussain N, Azam HMH, Rafique S, Zdarta J, Jesionowski T. Fusion of enzymatic proteins: Enhancing biological activities and facilitating biological modifications. Adv Colloid Interface Sci 2025; 340:103473. [PMID: 40086016 DOI: 10.1016/j.cis.2025.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
The fusion of enzymatic proteins represents a dynamic frontier in biotechnology and enzymatic engineering. This in-depth review looks at the many different ways that fusion proteins can be used, showing their importance in biosensing, gene therapy, targeted drug delivery, and biocatalysis. Fusion proteins have shown an astounding ability to improve and fine-tune biological functions by combining the most beneficial parts of different enzymes. Our first step is to explain how protein fusion increases biological functions. This will provide a broad picture of how this phenomenon has changed many fields. We dissect the intricate mechanisms through which fusion proteins orchestrate cellular processes, underscoring their potential to revolutionize the landscape of molecular biology. We also explore the complicated world of structural analysis and design strategies, stressing the importance of molecular insights for making the fusion protein approach work better. These insights broaden understanding of the underlying principles and illuminate the path toward unlocking untapped potential. The review also introduces cutting-edge techniques for constructing fusion protein libraries, such as DNA shuffling and phage display. These new methods allow scientists to build a molecular orchestra with an unprecedented level of accuracy, and thus use fusion proteins to their full potential in various situations. In conclusion, we provide a glimpse into the current challenges and prospects in fusion protein research, shedding light on recent advancements that promise to reshape the future of biotechnology. As we make this interesting journey through the field of enzymatic protein combination, it becomes clear that the fusion paradigm is about to start a new era of innovation that will push the limits of what is possible in biology and molecular engineering.
Collapse
Affiliation(s)
- Agnieszka Rybarczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Talha Sultan
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Safa Rafique
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
2
|
Esquirol L, McNeale D, Douglas T, Vickers CE, Sainsbury F. Rapid Assembly and Prototyping of Biocatalytic Virus-like Particle Nanoreactors. ACS Synth Biol 2022; 11:2709-2718. [PMID: 35880829 DOI: 10.1021/acssynbio.2c00117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein cages are attractive as molecular scaffolds for the fundamental study of enzymes and metabolons and for the creation of biocatalytic nanoreactors for in vitro and in vivo use. Virus-like particles (VLPs) such as those derived from the P22 bacteriophage capsid protein make versatile self-assembling protein cages and can be used to encapsulate a broad range of protein cargos. In vivo encapsulation of enzymes within VLPs requires fusion to the coat protein or a scaffold protein. However, the expression level, stability, and activity of cargo proteins can vary upon fusion. Moreover, it has been shown that molecular crowding of enzymes inside VLPs can affect their catalytic properties. Consequently, testing of numerous parameters is required for production of the most efficient nanoreactor for a given cargo enzyme. Here, we present a set of acceptor vectors that provide a quick and efficient way to build, test, and optimize cargo loading inside P22 VLPs. We prototyped the system using a yellow fluorescent protein and then applied it to mevalonate kinases (MKs), a key enzyme class in the industrially important terpene (isoprenoid) synthesis pathway. Different MKs required considerably different approaches to deliver maximal encapsulation as well as optimal kinetic parameters, demonstrating the value of being able to rapidly access a variety of encapsulation strategies. The vector system described here provides an approach to optimize cargo enzyme behavior in bespoke P22 nanoreactors. This will facilitate industrial applications as well as basic research on nanoreactor-cargo behavior.
Collapse
Affiliation(s)
- Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Claudia E Vickers
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane 4000 Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia
| |
Collapse
|
3
|
Tremblay J, Goulet MC, Vorster J, Goulet C, Michaud D. Harnessing the functional diversity of plant cystatins to design inhibitor variants highly active against herbivorous arthropod digestive proteases. FEBS J 2021; 289:1827-1841. [PMID: 34799995 DOI: 10.1111/febs.16288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022]
Abstract
Protein engineering approaches have been proposed to improve the inhibitory properties of plant cystatins against herbivorous arthropod digestive proteases, generally involving the site-directed mutagenesis of functionally relevant amino acids or the selection of improved inhibitor variants by phage display approaches. Here, we propose a novel approach where the function-related structural elements of a cystatin are substituted by the corresponding elements of an alternative cystatin. Inhibitory assays were first performed with 20 representative plant cystatins and model Cys proteases, including arthropod proteases, to appreciate the extent of functional variability among the plant cystatin family. The most, and less, potent of these cystatins were then used as 'donors' of structural elements to create hybrids of tomato cystatin SlCYS8 used as a model 'recipient' inhibitor. In brief, inhibitory activities against Cys proteases strongly differed from one plant cystatin to another, with Ki (papain) values diverging by more than 30-fold and inhibitory rates against arthropod proteases varying by up to 50-fold depending on the enzymes assessed. In line with theoretical assumptions from docking models generated for different Cys protease-cystatin combinations, structural element substitutions had a strong impact on the activity of recipient cystatin SlCYS8, positive or negative depending on the basic inhibitory potency of the donor cystatin. Our data confirm the wide variety of cystatin inhibitory profiles among plant taxa. They also demonstrate the usefulness of these proteins as a pool of discrete structural elements for the design of cystatin variants with improved potency against herbivorous pest digestive Cys proteases.
Collapse
Affiliation(s)
- Jonathan Tremblay
- Département de phytologie, Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, Québec, Canada
| | - Marie-Claire Goulet
- Département de phytologie, Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, Québec, Canada
| | - Juan Vorster
- Department of Plant and Soil Sciences, The University of Pretoria, Pretoria, South Africa
| | - Charles Goulet
- Département de phytologie, Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, Québec, Canada
| | - Dominique Michaud
- Département de phytologie, Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, Québec, Canada
| |
Collapse
|
4
|
Byrne M, Kashyap A, Esquirol L, Ranson N, Sainsbury F. The structure of a plant-specific partitivirus capsid reveals a unique coat protein domain architecture with an intrinsically disordered protrusion. Commun Biol 2021; 4:1155. [PMID: 34615994 PMCID: PMC8494798 DOI: 10.1038/s42003-021-02687-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Persistent plant viruses may be the most common viruses in wild plants. A growing body of evidence for mutualism between such viruses and their hosts, suggests that they play an important role in ecology and agriculture. Here we present the capsid structure of a plant-specific partitivirus, Pepper cryptic virus 1, at 2.9 Å resolution by Cryo-EM. Structural features, including the T = 1 arrangement of 60 coat protein dimers, are shared with fungal partitiviruses and the picobirnavirus lineage of dsRNA viruses. However, the topology of the capsid is markedly different with protrusions emanating from, and partly comprising, the binding interface of coat protein dimers. We show that a disordered region at the apex of the protrusion is not required for capsid assembly and represents a hypervariable site unique to, and characteristic of, the plant-specific partitiviruses. These results suggest a structural basis for the acquisition of additional functions by partitivirus coat proteins that enables mutualistic relationships with diverse plant hosts.
Collapse
Affiliation(s)
- Matthew Byrne
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Aseem Kashyap
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Neil Ranson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
- Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organization (CSIRO), Brisbane, QLD, 4001, Australia.
| |
Collapse
|
5
|
Development and Optimization of an Enzyme Immunoassay to Detect Serum Antibodies against the Hepatitis E Virus in Pigs, Using Plant-Derived ORF2 Recombinant Protein. Vaccines (Basel) 2021; 9:vaccines9090991. [PMID: 34579228 PMCID: PMC8473109 DOI: 10.3390/vaccines9090991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E is an emerging global disease, mainly transmitted via the fecal-oral route in developing countries, and in a zoonotic manner in the developed world. Pigs and wild boar constitute the primary Hepatitis E virus (HEV) zoonotic reservoir. Consumption of undercooked animal meat or direct contact with infected animals is the most common source of HEV infection in European countries. The purpose of this study is to develop an enzyme immunoassay (EIA) for the detection of anti-hepatitis E virus IgG in pig serum, using plant-produced recombinant HEV-3 ORF2 as an antigenic coating protein, and also to evaluate the sensitivity and specificity of this assay. A recombinant HEV-3 ORF2 110-610_6his capsid protein, transiently expressed by pEff vector in Nicotiana benthamiana plants was used to develop an in-house HEV EIA. The plant-derived HEV-3 ORF2 110-610_6his protein proved to be antigenically similar to the HEV ORF2 capsid protein and it can self-assemble into heterogeneous particulate structures. The optimal conditions for the in-house EIA (iEIA) were determined as follows: HEV-3 ORF2 110-610_6his antigen concentration (4 µg/mL), serum dilution (1:50), 3% BSA as a blocking agent, and secondary antibody dilution (1:20 000). The iEIA developed for this study showed a sensitivity of 97.1% (95% Cl: 89.9-99.65) and a specificity of 98.6% (95% Cl: 92.5-99.96) with a Youden index of 0.9571. A comparison between our iEIA and a commercial assay (PrioCHECK™ Porcine HEV Ab ELISA Kit, ThermoFisher Scientific, MA, USA) showed 97.8% agreement with a kappa index of 0.9399. The plant-based HEV-3 ORF2 iEIA assay was able to detect anti-HEV IgG in pig serum with a very good agreement compared to the commercially available kit.
Collapse
|
6
|
Buyel JF, Stöger E, Bortesi L. Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Res 2021; 30:401-426. [PMID: 33646510 PMCID: PMC8316201 DOI: 10.1007/s11248-021-00236-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Plants have provided humans with useful products since antiquity, but in the last 30 years they have also been developed as production platforms for small molecules and recombinant proteins. This initially niche area has blossomed with the growth of the global bioeconomy, and now includes chemical building blocks, polymers and renewable energy. All these applications can be described as "plant molecular farming" (PMF). Despite its potential to increase the sustainability of biologics manufacturing, PMF has yet to be embraced broadly by industry. This reflects a combination of regulatory uncertainty, limited information on process cost structures, and the absence of trained staff and suitable manufacturing capacity. However, the limited adaptation of plants and plant cells to the requirements of industry-scale manufacturing is an equally important hurdle. For example, the targeted genetic manipulation of yeast has been common practice since the 1980s, whereas reliable site-directed mutagenesis in most plants has only become available with the advent of CRISPR/Cas9 and similar genome editing technologies since around 2010. Here we summarize the applications of new genetic engineering technologies to improve plants as biomanufacturing platforms. We start by identifying current bottlenecks in manufacturing, then illustrate the progress that has already been made and discuss the potential for improvement at the molecular, cellular and organism levels. We discuss the effects of metabolic optimization, adaptation of the endomembrane system, modified glycosylation profiles, programmable growth and senescence, protease inactivation, and the expression of enzymes that promote biodegradation. We outline strategies to achieve these modifications by targeted gene modification, considering case-by-case examples of individual improvements and the combined modifications needed to generate a new general-purpose "chassis" for PMF.
Collapse
Affiliation(s)
- J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - E Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - L Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
7
|
Ma J, Ding X, Li Z, Wang S. Co-expression With Replicating Vector Overcoming Competitive Effects Derived by a Companion Protease Inhibitor in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:699442. [PMID: 34220920 PMCID: PMC8248793 DOI: 10.3389/fpls.2021.699442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/21/2021] [Indexed: 05/30/2023]
Abstract
Plant-based expression platforms are currently gaining acceptance as a viable alternative for the production of recombinant proteins (RPs), but the degradation of RPs by proteases in cells hinders their superb potentials. Co-expression of a protease inhibitor (PI) shows promise as a strategy to prevent RP from proteolytic degradation in plants. However, competitive effects behind the PI-RP co-expression system may mask or obfuscate the in situ protective effects of a companion PI. Here, we explored the competitive effects by co-expressing reteplase (rPA) with three unrelated PIs, namely NbPR4, HsTIMP, and SlCYS8, in Nicotiana benthamiana leaves. Remarkably, the accumulation of rPA was significantly repressed by each of the three PIs, suggesting that the competitive effects may be common among the PIs. The repression can be attenuated by reducing the PI inoculum dose in the co-inoculation mixtures, showing a negative correlation between the PI abundance of the PI-RP system and competitive effects. Interestingly, when a replicating vector was used to modulate the relative abundance of PI and RP in vivo, rPA was still boosted even at the maximal testing dose of PI, indicating that the competitive effects reduced to an ignorable level by this in vivo approach. Furthermore, a 7- to 12-fold increase of rPA was achieved, proving that it is a useful way for stimulating the potentials of a companion PI by overcoming competitive effects. And, this approach can be applied to molecular farming for improving the RP yields of plant expression systems.
Collapse
Affiliation(s)
- Jiexue Ma
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan, China
| | - Xiangzhen Ding
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
| | - Zhiying Li
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
| | - Sheng Wang
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
| |
Collapse
|
8
|
Elfahmi E, Cahyani FM, Kristianti T, Suhandono S. Transformation of Amorphadiene Synthase and Antisilencing P19 Genes into Artemisia annua L. and its Effect on Antimalarial Artemisinin Production. Adv Pharm Bull 2020; 10:464-471. [PMID: 32665907 PMCID: PMC7335994 DOI: 10.34172/apb.2020.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/12/2020] [Accepted: 01/27/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose: The low content of artemisinin related to the biosynthetic pathway is influenced by the role of certain enzymes in the formation of artemisinin. The regulation of genes involved in artemisinin biosynthesis through genetic engineering is a choice to enhance the content. This research aims to transform ads and p19 gene as an antisilencing into Artemisia annua and to see their effects on artemisinin production. Methods: The presence of p19 and ads genes was confirmed through polymerase chain reaction (PCR) products and sequencing analysis. The plasmids, which contain ads and/or p19 genes, were transformed into Agrobacterium tumefaciens, and then inserted into leaves and hairy roots of A. annua by vacuum and syringe infiltration methods. The successful transformation was checked through the GUS histochemical test and the PCR analysis. Artemisinin levels were measured using HPLC. Results: The percentages of the blue area on leaves by using vacuum and syringe infiltration method and on hairy roots were up to 98, 92.55%, and 99.00% respectively. The ads-p19 sample contained a higher level of artemisinin (0.18%) compared to other samples. Transformed hairy root with co-transformation of ads-p19 contained 0.095% artemisinin, where no artemisinin was found in the control hairy root. The transformation of ads and p19 genes into A. annua plant has been successfully done and could enhance the artemisinin content on the transformed leaves with ads-p19 up to 2.57 folds compared to the untransformed leaves, while for p19, cotransformed and ads were up to 2.25, 1.29, and 1.14 folds respectively. Conclusion: Antisilencing p19 gene could enhance the transformation efficiency of ads and artemisinin level in A. annua.
Collapse
Affiliation(s)
- Elfahmi Elfahmi
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.,Biosciences and Biotechnology Research Center, Bandung Institute of Technology, Bandung, Indonesia
| | | | | | - Sony Suhandono
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
9
|
Muñoz-Talavera A, Gómez-Lim MÁ, Salazar-Olivo LA, Reinders J, Lim K, Escobedo-Moratilla A, López-Calleja AC, Islas-Carbajal MC, Rincón-Sánchez AR. Expression of the Biologically Active Insulin Analog SCI-57 in Nicotiana Benthamiana. Front Pharmacol 2019; 10:1335. [PMID: 31798448 PMCID: PMC6868099 DOI: 10.3389/fphar.2019.01335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/18/2019] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus is a growing problem worldwide; however, only 23% of low-income countries have access to insulin, and ironically it costs higher in such countries than high-income ones. Therefore, new strategies for insulin and insulin analogs production are urgently required to improve low-cost access to therapeutic products, so as to contain the diabetes epidemic. SCI-57 is an insulin analog with a greater affinity for the insulin receptor and lower thermal degradation than native insulin. It also shows native mitogenicity and insulin-like biological activity. In this work, SCI-57 was transiently expressed in the Nicotiana benthamiana (Nb) plant, and we also evaluated some of its relevant biological effects. An expression plasmid was engineered to translate an N-terminal ubiquitin and C-terminal endoplasmic reticulum-targeting signal KDEL, in order to increase protein expression and stability. Likewise, the effect of co-expression of influenza M2 ion channel (M2) on the expression of insulin analog SCI-57 (SCI-57/M2) was evaluated. Although using M2 increases yield, it tends to alter the SCI-57 amino acid sequence, possibly promoting the formation of oligomers. Purification of SCI-57 was achieved by FPLC cation exchange and ultrafiltration of N. benthamiana leaf extract (NLE). SCI-57 exerts its anti-diabetic properties by stimulating glucose uptake in adipocytes, without affecting the lipid accumulation process. Expression of the insulin analog in agroinfiltrated plants was confirmed by SDS-PAGE, RP-HPLC, and MS. Proteome changes related to the expression of heterologous proteins on N. benthamiana were not observed; up-regulated proteins were related to the agroinfiltration process. Our results demonstrate the potential for producing a biologically active insulin analog, SCI-57, by transient expression in Nb.
Collapse
Affiliation(s)
- Adriana Muñoz-Talavera
- Department of Physiology, Institute of Experimental and Clinical Therapeutics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Miguel Ángel Gómez-Lim
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato, Mexico
| | - Luis A Salazar-Olivo
- Division of Molecular Biology, Institute for Scientific and Technological Research of San Luis Potosí, San Luis Potosí, Mexico
| | - Jörg Reinders
- Scientific Support Unit Analytical Chemistry, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Katharina Lim
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Abraham Escobedo-Moratilla
- CONACYT-Consortium for Research, Innovation, and Development of the Drylands (CIIDZA), IPICYT, San Luis Potosí, Mexico
| | - Alberto Cristian López-Calleja
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato, Mexico
| | - María Cristina Islas-Carbajal
- Department of Physiology, Institute of Experimental and Clinical Therapeutics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Ana Rosa Rincón-Sánchez
- Institute of Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomic, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
10
|
Jutras PV, Grosse‐Holz F, Kaschani F, Kaiser M, Michaud D, van der Hoorn RA. Activity-based proteomics reveals nine target proteases for the recombinant protein-stabilizing inhibitor SlCYS8 in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1670-1678. [PMID: 30742730 PMCID: PMC6662110 DOI: 10.1111/pbi.13092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 05/23/2023]
Abstract
Co-expression of protease inhibitors like the tomato cystatin SlCYS8 is useful to increase recombinant protein production in plants, but key proteases involved in protein proteolysis are still unknown. Here, we performed activity-based protein profiling to identify proteases that are inhibited by SlCYS8 in agroinfiltrated Nicotiana benthamiana. We discovered that SlCYS8 selectively suppresses papain-like cysteine protease (PLCP) activity in both apoplastic fluids and total leaf extracts, while not affecting vacuolar-processing enzyme and serine hydrolase activity. A robust concentration-dependent inhibition of PLCPs occurred in vitro when purified SlCYS8 was added to leaf extracts, indicating direct cystatin-PLCP interactions. Activity-based proteomics revealed that nine different Cathepsin-L/-F-like PLCPs are strongly inhibited by SlCYS8 in leaves. By contrast, the activity of five other Cathepsin-B/-H-like PLCPs, as well as 87 Ser hydrolases, was unaffected by SlCYS8. SlCYS8 expression prevented protein degradation by inhibiting intermediate and mature isoforms of granulin-containing proteases from the Resistant-to-Desiccation-21 (RD21) PLCP subfamily. Our data underline the key role of endogenous PLCPs on recombinant protein degradation and reveal candidate proteases for depletion strategies.
Collapse
Affiliation(s)
- Philippe V. Jutras
- Department of Plant SciencesPlant Chemetics LaboratoryUniversity of OxfordOxfordUK
| | | | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuébecCanada
| | | |
Collapse
|
11
|
Abstract
Dozens of studies have assessed the practical value of plant cystatins as ectopic inhibitors of Cys proteases in biological systems. The potential of these proteins in crop protection to control herbivorous pests and pathogens has been documented extensively over the past 25 years. Their usefulness to regulate endogenous Cys proteases in planta has also been considered recently, notably to implement novel traits of agronomic relevance in crops or to generate protease activity-depleted environments in plants or plant cells used as bioreactors for recombinant proteins. After a brief update on the basic structural characteristics of plant cystatins, we summarize recent advances on the use of these proteins in plant biotechnology. Attention is also paid to the molecular improvement of their structural properties for the improvement of their protease inhibitory effects or the fine-tuning of their biological target range.
Collapse
|
12
|
Jackson MA, Yap K, Poth AG, Gilding EK, Swedberg JE, Poon S, Qu H, Durek T, Harris K, Anderson MA, Craik DJ. Rapid and Scalable Plant-Based Production of a Potent Plasmin Inhibitor Peptide. FRONTIERS IN PLANT SCIENCE 2019; 10:602. [PMID: 31156672 PMCID: PMC6530601 DOI: 10.3389/fpls.2019.00602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/24/2019] [Indexed: 05/03/2023]
Abstract
The backbone cyclic and disulfide bridged sunflower trypsin inhibitor-1 (SFTI-1) peptide is a proven effective scaffold for a range of peptide therapeutics. For production at laboratory scale, solid phase peptide synthesis techniques are widely used, but these synthetic approaches are costly and environmentally taxing at large scale. Here, we developed a plant-based approach for the recombinant production of SFTI-1-based peptide drugs. We show that transient expression in Nicotiana benthamiana allows for rapid peptide production, provided that asparaginyl endopeptidase enzymes with peptide-ligase functionality are co-expressed with the substrate peptide gene. Without co-expression, no target cyclic peptides are detected, reflecting rapid in planta degradation of non-cyclized substrate. We test this recombinant production system by expressing a SFTI-1-based therapeutic candidate that displays potent and selective inhibition of human plasmin. By using an innovative multi-unit peptide expression cassette, we show that in planta yields reach ~60 μg/g dry weight at 6 days post leaf infiltration. Using nuclear magnetic resonance structural analysis and functional in vitro assays, we demonstrate the equivalence of plant and synthetically derived plasmin inhibitor peptide. The methods and insights gained in this study provide opportunities for the large scale, cost effective production of SFTI-1-based therapeutics.
Collapse
Affiliation(s)
- Mark A. Jackson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Aaron G. Poth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Edward K. Gilding
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Joakim E. Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Simon Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Haiou Qu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Karen Harris
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marilyn A. Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Marques LÉC, Silva BB, Dutra RF, Florean EOPT, Menassa R, Guedes MIF. Transient Expression of Dengue Virus NS1 Antigen in Nicotiana benthamiana for Use as a Diagnostic Antigen. FRONTIERS IN PLANT SCIENCE 2019; 10:1674. [PMID: 32010161 PMCID: PMC6976532 DOI: 10.3389/fpls.2019.01674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/28/2019] [Indexed: 05/08/2023]
Abstract
Dengue is a viral disease that represents a significant threat to global public health since billions of people are now at risk of infection by this mosquito-borne virus. The implementation of extensive screening tests is indispensable to control this disease, and the Dengue virus non-structural protein 1 (NS1) is a promising antigen for the serological diagnosis of dengue fever. Plant-based systems can be a safe and cost-effective alternative for the production of dengue virus antigens. In this work, two strategies to produce the dengue NS1 protein in Nicotiana benthamiana leaves were evaluated: Targeting NS1 to five different subcellular compartments to assess the best subcellular organelle for the expression and accumulation of NS1, and the addition of elastin-like polypeptide (ELP) or hydrophobin (HFBI) fusion tags to NS1. The transiently expressed proteins in N. benthamiana were quantified by Western blot analysis. The NS1 fused to ELP and targeted to the ER (NS1 ELP-ER) showed the highest yield (445 mg/kg), approximately a forty-fold increase in accumulation levels compared to the non-fused protein (NS1-ER), representing the first example of transient expression of DENV NS1 in plant. We also demonstrated that NS1 ELP-ER was successfully recognized by a monoclonal anti-dengue virus NS1 glycoprotein antibody, and by sera from dengue virus-infected patients. Interestingly, it was found that transient production of NS1-ER and NS1 ELP-ER using vacuum infiltration of whole plants, which is easier to scale up, rather than syringe infiltration of leaves, greatly improved the accumulation of NS1 proteins. The generated plant made NS1, even without extensive purification, showed potential to be used for the development of the NS1 diagnostic tests in resource-limited areas where dengue is endemic.
Collapse
Affiliation(s)
- Lívia É. C. Marques
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza, Brazil
- *Correspondence: Lívia É. C. Marques,
| | - Bruno B. Silva
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza, Brazil
| | - Rosa Fireman Dutra
- Department of Biomedical Engineering, Biomedical Engineering Laboratory, Federal University of Pernambuco, Recife, Brazil
| | | | - Rima Menassa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Maria Izabel F. Guedes
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza, Brazil
| |
Collapse
|
14
|
Velasco-Arroyo B, Martinez M, Diaz I, Diaz-Mendoza M. Differential response of silencing HvIcy2 barley plants against Magnaporthe oryzae infection and light deprivation. BMC PLANT BIOLOGY 2018; 18:337. [PMID: 30522452 PMCID: PMC6282322 DOI: 10.1186/s12870-018-1560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/22/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Phytocystatins (PhyCys) act as endogenous regulators of cysteine proteases (CysProt) involved in various physiological processes. Besides, PhyCys are involved in plant reactions to abiotic stresses like drought or darkness and have been used as effective molecules against different pests and pathogens. The barley PhyCys-CysProt system is considered a model of protease-inhibitor regulation of protein turnover. Thirteen barley cystatins (HvCPI-1 to HvCPI-13) have been previously identified and characterized. Among them HvCPI-2 has been shown to have a relevant role in plant responses to pathogens and pests, as well as in the plant response to drought. RESULTS The present work explores the multiple role of this barley PhyCys in response to both, biotic and abiotic stresses, focusing on the impact of silencing this gene. HvIcy-2 silencing lines behave differentially against the phytopathogenic fungus Magnaporthe oryzae and a light deprivation treatment. The induced expression of HvIcy-2 by the fungal stress correlated to a higher susceptibility of silencing HvIcy-2 plants. In contrast, a reduction in the expression of HvIcy-2 and in the cathepsin-L and -B like activities in the silencing HvIcy-2 plants was not accompanied by apparent phenotypical differences with control plants in response to light deprivation. CONCLUSION These results highlight the specificity of PhyCys in the responses to diverse external prompts as well as the complexity of the regulatory events leading to the response to a particular stress. The mechanism of regulation of these stress responses seems to be focused in maintaining the balance of CysProt and PhyCys levels, which is crucial for the modulation of physiological processes induced by biotic or abiotic stresses.
Collapse
Affiliation(s)
- Blanca Velasco-Arroyo
- Centro de Biotecnologia y Genomica de Plantas (CBGP, UPM-INIA), Universidad Politecnica de Madrid (UPM) - Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Madrid, Pozuelo de Alarcon Spain
| | - Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas (CBGP, UPM-INIA), Universidad Politecnica de Madrid (UPM) - Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Madrid, Pozuelo de Alarcon Spain
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas (CBGP, UPM-INIA), Universidad Politecnica de Madrid (UPM) - Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Madrid, Pozuelo de Alarcon Spain
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Mercedes Diaz-Mendoza
- Centro de Biotecnologia y Genomica de Plantas (CBGP, UPM-INIA), Universidad Politecnica de Madrid (UPM) - Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Madrid, Pozuelo de Alarcon Spain
| |
Collapse
|
15
|
Jutras PV, Goulet M, Lavoie P, D'Aoust M, Sainsbury F, Michaud D. Recombinant protein susceptibility to proteolysis in the plant cell secretory pathway is pH-dependent. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1928-1938. [PMID: 29618167 PMCID: PMC6181212 DOI: 10.1111/pbi.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 05/07/2023]
Abstract
Cellular engineering approaches have been proposed to mitigate unintended proteolysis in plant protein biofactories, involving the design of protease activity-depleted environments by gene silencing or in situ inactivation with accessory protease inhibitors. Here, we assessed the impact of influenza virus M2 proton channel on host protease activities and recombinant protein processing in the cell secretory pathway of Nicotiana benthamiana leaves. Transient co-expression assays with M2 and GFP variant pHluorin were first conducted to illustrate the potential of proton export from the Golgi lumen to promote recombinant protein yield. A fusion protein-based system involving protease-sensitive peptide linkers to attach inactive variants of tomato cystatin SlCYS8 was then designed to relate the effects of M2 on protein levels with altered protease activities in situ. Secreted versions of the cystatin fusions transiently expressed in leaf tissue showed variable 'fusion to free cystatin' cleavage ratios, in line with the occurrence of protease forms differentially active against the peptide linkers in the secretory pathway. Variable ratios were also observed for the fusions co-expressed with M2, but the extent of fusion cleavage was changed for several fusions, positively or negatively, as a result of pH increase in the Golgi. These data indicating a remodelling of endogenous protease activities upon M2 expression confirm that the stability of recombinant proteins in the plant cell secretory pathway is pH-dependent. They suggest, in practice, the potential of M2 proton channel to modulate the stability of protease-susceptible secreted proteins in planta via a pH-related, indirect effect on host resident proteases.
Collapse
Affiliation(s)
- Philippe V. Jutras
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQCCanada
| | - Marie‐Claire Goulet
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQCCanada
| | | | | | - Frank Sainsbury
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQldAustralia
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQCCanada
| |
Collapse
|
16
|
Grosse‐Holz F, Madeira L, Zahid MA, Songer M, Kourelis J, Fesenko M, Ninck S, Kaschani F, Kaiser M, van der Hoorn RA. Three unrelated protease inhibitors enhance accumulation of pharmaceutical recombinant proteins in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1797-1810. [PMID: 29509983 PMCID: PMC6131417 DOI: 10.1111/pbi.12916] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 05/21/2023]
Abstract
Agroinfiltrated Nicotiana benthamiana is a flexible and scalable platform for recombinant protein (RP) production, but its great potential is hampered by plant proteases that degrade RPs. Here, we tested 29 candidate protease inhibitors (PIs) in agroinfiltrated N. benthamiana leaves for enhancing accumulation of three unrelated RPs: glycoenzyme α-Galactosidase; glycohormone erythropoietin (EPO); and IgG antibody VRC01. Of the previously described PIs enhancing RP accumulation, we found only cystatin SlCYS8 to be effective. We identified three additional new, unrelated PIs that enhance RP accumulation: N. benthamiana NbPR4, NbPot1 and human HsTIMP, which have been reported to inhibit cysteine, serine and metalloproteases, respectively. Remarkably, accumulation of all three RPs is enhanced by each PI similarly, suggesting that the mechanism of degradation of unrelated RPs follows a common pathway. Inhibitory functions HsTIMP and SlCYS8 are required to enhance RP accumulation, suggesting that their target proteases may degrade RPs. Different PIs additively enhance RP accumulation, but the effect of each PI is dose-dependent. Activity-based protein profiling (ABPP) revealed that the activities of papain-like Cys proteases (PLCPs), Ser hydrolases (SHs) or vacuolar processing enzymes (VPEs) in leaves are unaffected upon expression of the new PIs, whereas SlCYS8 expression specifically suppresses PLCP activity only. Quantitative proteomics indicates that the three new PIs affect agroinfiltrated tissues similarly and that they all increase immune responses. NbPR4, NbPot1 and HsTIMP can be used to study plant proteases and improve RP accumulation in molecular farming.
Collapse
Affiliation(s)
| | - Luisa Madeira
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Muhammad Awais Zahid
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Molly Songer
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Jiorgos Kourelis
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Mary Fesenko
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Sabrina Ninck
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstrEssenGermany
| | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstrEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstrEssenGermany
| | | |
Collapse
|
17
|
Grosse‐Holz F, Kelly S, Blaskowski S, Kaschani F, Kaiser M, van der Hoorn RA. The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1068-1084. [PMID: 29055088 PMCID: PMC5902771 DOI: 10.1111/pbi.12852] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 05/06/2023]
Abstract
Infiltration of disarmed Agrobacterium tumefaciens into leaves of Nicotiana benthamiana (agroinfiltration) facilitates quick and safe production of antibodies, vaccines, enzymes and metabolites for industrial use (molecular farming). However, yield and purity of proteins produced by agroinfiltration are hampered by unintended proteolysis, restricting industrial viability of the agroinfiltration platform. Proteolysis may be linked to an immune response to agroinfiltration, but understanding of the response to agroinfiltration is limited. To identify the proteases, we studied the transcriptome, extracellular proteome and active secretome of agroinfiltrated leaves over a time course, with and without the P19 silencing inhibitor. Remarkably, the P19 expression had little effect on the leaf transcriptome and no effect on the extracellular proteome. 25% of the detected transcripts changed in abundance upon agroinfiltration, associated with a gradual up-regulation of immunity at the expense of photosynthesis. By contrast, 70% of the extracellular proteins increased in abundance, in many cases associated with increased efficiency of extracellular delivery. We detect a dynamic reprogramming of the proteolytic machinery upon agroinfiltration by detecting transcripts encoding for 975 different proteases and protease homologs. The extracellular proteome contains peptides derived from 196 proteases and protease homologs, and activity-based proteomics displayed 17 active extracellular Ser and Cys proteases in agroinfiltrated leaves. We discuss unique features of the N. benthamiana protease repertoire and highlight abundant extracellular proteases in agroinfiltrated leaves, being targets for reverse genetics. This data set increases our understanding of the plant response to agroinfiltration and indicates ways to improve a key expression platform for both plant science and molecular farming.
Collapse
Affiliation(s)
| | - Steven Kelly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Svenja Blaskowski
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | | |
Collapse
|
18
|
Nausch H, Broer I. Cyanophycinase CphE from P. alcaligenes produced in different compartments of N. benthamiana degrades high amounts of cyanophycin in plant extracts. Appl Microbiol Biotechnol 2017; 101:2397-2413. [PMID: 27942753 DOI: 10.1007/s00253-016-8020-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022]
Abstract
One of the major constraints in pig and poultry farming is the supply of protein-rich forage, containing sufficient amounts of key amino acids such as arginine (Ufaz and Galili 2008). Since these are underrepresented in plant proteins, the usage of plants as feed is limited. The heterologous production of the cyanobacterial storage polymer cyanophycin granule polypeptide (CGP) in plastids increases the amount of arginine substantially (Huhns et al. 2008; Huhns et al. 2009; Nausch et al. 2016a). CGP degradation releases arginine-aspartate dipeptides. CGP is stable in plants because its degradation is exclusively restricted to bacterial cyanophycinases (CGPases; Law et al. 2009). Since animals are also unable to digest CGP, CGPases need to be co-delivered with CGP-containing plant feed in order to release the dipeptides in the gastrointestinal tract of animals during digestion. Therefore, an extracellular CGPase, CphE from Pseudomonas alcaligenes DIP-1, was targeted to the cytosol, ER, and apoplasm of Nicotiana benthamiana. Translocation to the chloroplast was not successful. Although CphE accumulated in high amounts in the cytosol, only moderate levels were present in the ER, while the enzyme was nearly undetectable in the apoplasm. This correlates with the higher instability of post-translationally modified CphE in crude plant extracts. In addition, the production in the ER led to an increased number and size of necroses compared with cytosolic expression and might therefore interfere with the endogenous metabolism in the ER. Due to the high and robust enzyme activity, even moderate CphE concentrations were sufficient to degrade CGP in plant extracts.
Collapse
Affiliation(s)
- Henrik Nausch
- Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, University of Rostock, Justus-von-Liebig Weg 8, 18059, Rostock, VM, Germany.
| | - Inge Broer
- Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, University of Rostock, Justus-von-Liebig Weg 8, 18059, Rostock, VM, Germany
| |
Collapse
|
19
|
Jutras PV, Marusic C, Lonoce C, Deflers C, Goulet MC, Benvenuto E, Michaud D, Donini M. An Accessory Protease Inhibitor to Increase the Yield and Quality of a Tumour-Targeting mAb in Nicotiana benthamiana Leaves. PLoS One 2016; 11:e0167086. [PMID: 27893815 PMCID: PMC5125672 DOI: 10.1371/journal.pone.0167086] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022] Open
Abstract
The overall quality of recombinant IgG antibodies in plants is dramatically compromised by host endogenous proteases. Different approaches have been developed to reduce the impact of endogenous proteolysis on IgGs, notably involving site-directed mutagenesis to eliminate protease-susceptible sites or the in situ mitigation of host protease activities to minimize antibody processing in the cell secretory pathway. We here characterized the degradation profile of H10, a human tumour-targeting monoclonal IgG, in leaves of Nicotiana benthamiana also expressing the human serine protease inhibitor α1-antichymotrypsin or the cysteine protease inhibitor tomato cystatin SlCYS8. Leaf extracts revealed consistent fragmentation patterns for the recombinant antibody regardless of leaf age and a strong protective effect of SlCYS8 in specific regions of the heavy chain domains. As shown using an antigen-binding ELISA and LC-MS/MS analysis of antibody fragments, SlCYS8 had positive effects on both the amount of fully-assembled antibody purified from leaf tissue and the stability of biologically active antibody fragments containing the heavy chain Fc domain. Our data confirm the potential of Cys protease inhibitors as convenient antibody-stabilizing expression partners to increase the quality of therapeutic antibodies in plant protein biofactories.
Collapse
Affiliation(s)
| | - Carla Marusic
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | - Chiara Lonoce
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | - Carole Deflers
- Département de phytologie, Université Laval, Québec Quebec, Canada
| | | | - Eugenio Benvenuto
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | | | - Marcello Donini
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| |
Collapse
|
20
|
Mandal MK, Ahvari H, Schillberg S, Schiermeyer A. Tackling Unwanted Proteolysis in Plant Production Hosts Used for Molecular Farming. FRONTIERS IN PLANT SCIENCE 2016; 7:267. [PMID: 27014293 PMCID: PMC4782010 DOI: 10.3389/fpls.2016.00267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/19/2016] [Indexed: 05/17/2023]
Abstract
Although the field of molecular farming has significantly matured over the last years, some obstacles still need to be resolved. A major limiting factor for a broader application of plant hosts for the production of valuable recombinant proteins is the low yield of intact recombinant proteins. These low yields are at least in part due to the action of endogenous plant proteases on the foreign recombinant proteins. This mini review will present the current knowledge of the proteolytic enzymes involved in the degradation of different target proteins and strategies that are applied to suppress undesirable proteolytic activities in order to safeguard recombinant proteins during the production process.
Collapse
Affiliation(s)
| | | | | | - Andreas Schiermeyer
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied EcologyAachen, Germany
| |
Collapse
|
21
|
Sainsbury F, Jutras PV, Vorster J, Goulet MC, Michaud D. A Chimeric Affinity Tag for Efficient Expression and Chromatographic Purification of Heterologous Proteins from Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:141. [PMID: 26913045 PMCID: PMC4753422 DOI: 10.3389/fpls.2016.00141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/27/2016] [Indexed: 05/23/2023]
Abstract
The use of plants as expression hosts for recombinant proteins is an increasingly attractive option for the production of complex and challenging biopharmaceuticals. Tools are needed at present to marry recent developments in high-yielding gene vectors for heterologous expression with routine protein purification techniques. In this study, we designed the Cysta-tag, a new purification tag for immobilized metal affinity chromatography (IMAC) of plant-made proteins based on the protein-stabilizing fusion partner SlCYS8. We show that the Cysta-tag may be used to readily purify proteins under native conditions, and then be removed enzymatically to isolate the protein of interest. We also show that commonly used protease recognition sites for linking purification tags are differentially stable in leaves of the commonly used expression host Nicotiana benthamiana, with those linkers susceptible to cysteine proteases being less stable then serine protease-cleavable linkers. As an example, we describe a Cysta-tag experimental scheme for the one-step purification of a clinically useful protein, human α1-antitrypsin, transiently expressed in N. benthamiana. With potential applicability to the variety of chromatography formats commercially available for IMAC-based protein purification, the Cysta-tag provides a convenient means for the efficient and cost-effective purification of recombinant proteins from plant tissues.
Collapse
Affiliation(s)
- Frank Sainsbury
- Département de Phytologie–Centre de Recherche et d’Innovation sur les Végétaux, Université Laval, QuébecQC, Canada
- Centre for Biomolecular Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, BrisbaneQLD, Australia
| | - Philippe V. Jutras
- Département de Phytologie–Centre de Recherche et d’Innovation sur les Végétaux, Université Laval, QuébecQC, Canada
- Centre for Biomolecular Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, BrisbaneQLD, Australia
| | - Juan Vorster
- Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Marie-Claire Goulet
- Département de Phytologie–Centre de Recherche et d’Innovation sur les Végétaux, Université Laval, QuébecQC, Canada
| | - Dominique Michaud
- Département de Phytologie–Centre de Recherche et d’Innovation sur les Végétaux, Université Laval, QuébecQC, Canada
| |
Collapse
|
22
|
Robert S, Jutras PV, Khalf M, D'Aoust MA, Goulet MC, Sainsbury F, Michaud D. Companion Protease Inhibitors for the In Situ Protection of Recombinant Proteins in Plants. Methods Mol Biol 2016; 1385:115-26. [PMID: 26614285 DOI: 10.1007/978-1-4939-3289-4_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We previously described a procedure for the use of plant protease inhibitors as "companion" accessory proteins to prevent unwanted proteolysis of clinically useful recombinant proteins in leaf crude protein extracts (Benchabane et al. Methods Mol Biol 483:265-273, 2009). Here we describe the use of these inhibitors for the protection of recombinant proteins in planta, before their extraction from leaf tissues. A procedure is first described involving inhibitors co-expressed along-and co-migrating-with the protein of interest in host plant cells. An alternative, single transgene scheme is then described involving translational fusions of the recombinant protein and companion inhibitor. These approaches may allow for a significant improvement of protein steady-state levels in leaves, comparable to yield improvements observed with protease-deficient strains of less complex protein expression hosts such as E. coli or yeasts.
Collapse
Affiliation(s)
- Stéphanie Robert
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | - Philippe V Jutras
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | - Moustafa Khalf
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | | | - Marie-Claire Goulet
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | - Frank Sainsbury
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Dominique Michaud
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada.
| |
Collapse
|
23
|
Munger A, Simon MA, Khalf M, Goulet MC, Michaud D. Cereal cystatins delay sprouting and nutrient loss in tubers of potato, Solanum tuberosum. BMC PLANT BIOLOGY 2015; 15:296. [PMID: 26691165 PMCID: PMC4687224 DOI: 10.1186/s12870-015-0683-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/13/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Recent studies have reported agronomically useful ectopic effects for recombinant protease inhibitors expressed in leaves of transgenic plants, including improved tolerance to abiotic stress conditions and partial resistance to necrotrophic pathogens. Here we assessed the effects of these proteins on the post-dormancy sprouting of storage organs, using as a model potato tubers expressing cysteine protease inhibitors of the cystatin protein superfamily. RESULTS Sprout emergence and distribution, soluble proteins, starch and soluble sugars were monitored in tubers of cereal cystatin-expressing clones stored for several months at 4 °C. Cystatin expression had a strong repressing effect on sprout growth, associated with an apparent loss of apical dominance and an increased number of small buds at the skin surface. Soluble protein content remained high for up to 48 weeks in cystatin-expressing tubers compared to control (untransformed) tubers, likely explained by a significant stabilization of the major storage protein patatin, decreased hydrolysis of the endogenous protease inhibitor multicystatin and low cystatin-sensitive cysteine protease activity in tuber tissue. Starch content decreased after several months in cystatin-expressing tubers but remained higher than in control tubers, unlike sucrose showing a slower accumulation in the transgenics. Plantlet emergence, storage protein processing and height of growing plants showed similar time-course patterns for control and transgenic tubers, except for a systematic delay of 2 or 3 d in the latter group likely due to limited sprout size at sowing. CONCLUSIONS Our data point overall to the onset of metabolic interference effects for cereal cystatins in sprouting potato tubers. They suggest, in practice, the potential of endogenous cysteine proteases as relevant targets for the development of potato varieties with longer storage capabilities.
Collapse
Affiliation(s)
- Aurélie Munger
- Centre de recherche et d'innovation sur les végétaux|Biotechnologie Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Marie-Aube Simon
- Centre de recherche et d'innovation sur les végétaux|Biotechnologie Université Laval, Québec, QC, G1V 0A6, Canada.
- Present address: Services aux entreprises et formation continue, Cégep de St-Jérôme, St-Jérôme, J7Z 4 V2, QC, Canada.
| | - Moustafa Khalf
- Centre de recherche et d'innovation sur les végétaux|Biotechnologie Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Marie-Claire Goulet
- Centre de recherche et d'innovation sur les végétaux|Biotechnologie Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétaux|Biotechnologie Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
24
|
Jutras PV, D'Aoust MA, Couture MMJ, Vézina LP, Goulet MC, Michaud D, Sainsbury F. Modulating secretory pathway pH by proton channel co-expression can increase recombinant protein stability in plants. Biotechnol J 2015; 10:1478-86. [PMID: 25914077 DOI: 10.1002/biot.201500056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/19/2015] [Accepted: 04/21/2015] [Indexed: 11/10/2022]
Abstract
Eukaryotic expression systems are used for the production of complex secreted proteins. However, recombinant proteins face considerable biochemical challenges along the secretory pathway, including proteolysis and pH variation between organelles. As the use of synthetic biology matures into solutions for protein production, various host-cell engineering approaches are being developed to ameliorate host-cell factors that can limit recombinant protein quality and yield. We report the potential of the influenza M2 ion channel as a novel tool to neutralize the pH in acidic subcellular compartments. Using transient expression in the plant host, Nicotiana benthamiana, we show that ion channel expression can significantly raise pH in the Golgi apparatus and that this can have a strong stabilizing effect on a fusion protein separated by an acid-susceptible linker peptide. We exemplify the utility of this effect in recombinant protein production using influenza hemagglutinin subtypes differentially stable at low pH; the expression of hemagglutinins prone to conformational change in mildly acidic conditions is considerably enhanced by M2 co-expression. The co-expression of a heterologous ion channel to stabilize acid-labile proteins and peptides represents a novel approach to increasing the yield and quality of secreted recombinant proteins in plants and, possibly, in other eukaryotic expression hosts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frank Sainsbury
- Département de phytologie, Université Laval, Québec, Canada.
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, Australia.
| |
Collapse
|
25
|
Mageroy MH, Parent G, Germanos G, Giguère I, Delvas N, Maaroufi H, Bauce É, Bohlmann J, Mackay JJ. Expression of the β-glucosidase gene Pgβglu-1 underpins natural resistance of white spruce against spruce budworm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:68-80. [PMID: 25302566 PMCID: PMC4404995 DOI: 10.1111/tpj.12699] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 05/04/2023]
Abstract
Periodic outbreaks of spruce budworm (SBW) affect large areas of ecologically and economically important conifer forests in North America, causing tree mortality and reduced forest productivity. Host resistance against SBW has been linked to growth phenology and the chemical composition of foliage, but the underlying molecular mechanisms and population variation are largely unknown. Using a genomics approach, we discovered a β-glucosidase gene, Pgβglu-1, whose expression levels and function underpin natural resistance to SBW in mature white spruce (Picea glauca) trees. In phenotypically resistant trees, Pgβglu-1 transcripts were up to 1000 times more abundant than in non-resistant trees and were highly enriched in foliage. The encoded PgβGLU-1 enzyme catalysed the cleavage of acetophenone sugar conjugates to release the aglycons piceol and pungenol. These aglycons were previously shown to be active against SBW. Levels of Pgβglu-1 transcripts and biologically active acetophenone aglycons were substantially different between resistant and non-resistant trees over time, were positively correlated with each other and were highly variable in a natural white spruce population. These results suggest that expression of Pgβglu-1 and accumulation of acetophenone aglycons is a constitutive defence mechanism in white spruce. The progeny of resistant trees had higher Pgβglu-1 gene expression than non-resistant progeny, indicating that the trait is heritable. With reported increases in the intensity of SBW outbreaks, influenced by climate, variation of Pgβglu-1 transcript expression, PgβGLU-1 enzyme activity and acetophenone accumulation may serve as resistance markers to better predict impacts of SBW in both managed and wild spruce populations.
Collapse
Affiliation(s)
- Melissa H Mageroy
- Michael Smith Laboratories, University of British ColumbiaVancouver, BC, Canada, V6T 1Z4
| | - Geneviève Parent
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Gaby Germanos
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Isabelle Giguère
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Nathalie Delvas
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Halim Maaroufi
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Éric Bauce
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British ColumbiaVancouver, BC, Canada, V6T 1Z4
| | - John J Mackay
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
- Department of Plant Sciences, University of OxfordOxford, OX1 3RB, UK
- *For correspondence (e-mail )
| |
Collapse
|
26
|
Pereira EO, Kolotilin I, Conley AJ, Menassa R. Production and characterization of in planta transiently produced polygalacturanase from Aspergillus niger and its fusions with hydrophobin or ELP tags. BMC Biotechnol 2014; 14:59. [PMID: 24970673 PMCID: PMC4083859 DOI: 10.1186/1472-6750-14-59] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Pectinases play an important role in plant cell wall deconstruction and have potential in diverse industries such as food, wine, animal feed, textile, paper, fuel, and others. The demand for such enzymes is increasing exponentially, as are the efforts to improve their production and to implement their use in several industrial processes. The goal of this study was to examine the potential of producing polygalacturonase I from Aspergillus niger in plants and to investigate the effects of subcellular compartmentalization and protein fusions on its accumulation and activity. RESULTS Polygalacturonase I from Aspergillus niger (AnPGI) was transiently produced in Nicotiana benthamiana by targeting it to five different cellular compartments: apoplast, endoplasmic reticulum (ER), vacuole, chloroplast and cytosol. Accumulation levels of 2.5%, 3.0%, and 1.9% of total soluble protein (TSP) were observed in the apoplast, ER, and vacuole, respectively, and specific activity was significantly higher in vacuole-targeted AnPGI compared to the same enzyme targeted to the ER or apoplast. No accumulation was found for AnPGI when targeted to the chloroplast or cytosol. Analysis of AnPGI fused with elastin-like polypeptide (ELP) revealed a significant increase in the protein accumulation level, especially when targeted to the vacuole where the protein doubles its accumulation to 3.6% of TSP, while the hydrophobin (HFBI) fusion impaired AnPGI accumulation and both tags impaired activity, albeit to different extents. The recombinant protein showed activity against polygalacturonic acid with optimum conditions at pH 5.0 and temperature from 30 to 50°C, depending on its fusion. In vivo analysis of reducing sugar content revealed a higher release of reducing sugars in plant tissue expressing recombinant AnPGI compared to wild type N. benthamiana leaves. CONCLUSION Our results demonstrate that subcellular compartmentalization of enzymes has an impact on both the target protein accumulation and its activity, especially in the case of proteins that undergo post-translational modifications, and should be taken into consideration when protein production strategies are designed. Using plants to produce heterologous enzymes for the degradation of a key component of the plant cell wall could reduce the cost of biomass pretreatment for the production of cellulosic biofuels.
Collapse
Affiliation(s)
- Eridan Orlando Pereira
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, Western University, London, ON N6A 5B7, Canada
- Current address: Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700 - Campus do Itaperi, Fortaleza 60714-903, Brazil
| | - Igor Kolotilin
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | | | - Rima Menassa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|