1
|
Bao C, Abraham SN. Mast cell-sensory neuron crosstalk in allergic diseases. J Allergy Clin Immunol 2024; 153:939-953. [PMID: 38373476 PMCID: PMC10999357 DOI: 10.1016/j.jaci.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mast cells (MCs) are tissue-resident immune cells, well-positioned at the host-environment interface for detecting external antigens and playing a critical role in mobilizing innate and adaptive immune responses. Sensory neurons are afferent neurons innervating most areas of the body but especially in the periphery, where they sense external and internal signals and relay information to the brain. The significance of MC-sensory neuron communication is now increasingly becoming recognized, especially because both cell types are in close physical proximity at the host-environment interface and around major organs of the body and produce specific mediators that can activate each other. In this review, we explore the roles of MC-sensory neuron crosstalk in allergic diseases, shedding light on how activated MCs trigger sensory neurons to initiate signaling in pruritus, shock, and potentially abdominal pain in allergy, and how activated sensory neurons regulate MCs in homeostasis and atopic dermatitis associated with contact hypersensitivity and type 2 inflammation. Throughout the review, we also discuss how these 2 sentinel cell types signal each other, potentially resulting in a positive feedback loop that can sustain inflammation. Unraveling the mysteries of MC-sensory neuron crosstalk is likely to unveil their critical roles in various disease conditions and enable the development of new therapeutic approaches to combat these maladies.
Collapse
Affiliation(s)
- Chunjing Bao
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC; Department of Immunology, Duke University Medical Center, Durham, NC; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC; Department of Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Xu P, Shao RR, He Y. Bibliometric analysis of recent research on the association between TRPV1 and inflammation. Channels (Austin) 2023; 17:2189038. [PMID: 36919561 PMCID: PMC10026872 DOI: 10.1080/19336950.2023.2189038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
TRPV1 channel is a sensitive ion channel activated by some noxious stimuli and has been reported to change many physiological functions after its activation. In this paper, we present a scientometric approach to explore the trends of the association between TRPV1 channel and inflammation and our goal is to provide creative directions for future research. The related literature was retrieved from Web of Science Core Collection and then analyzed by CiteSpace and VOSviewer. A total of 1533 documents were screened. The most productive country, institution, journal, author, cited journal, cited author, and references were the United States, University of California, San Francisco, Pain, Lu-yuan Lee, Nature, Michael J. Caterina, and Caterina MJ (Science, 2000), respectively. The most influential country and institution were Switzerland and University of California, San Francisco, respectively. The cooperation among countries or institutions was extensive. Amounts of documents were distributed in molecular, biology, genetics. TRPV1-associated neurons, neuropeptides, neuropathic pain, neuroinflammation, and neurogenic inflammation were mainly hotspots in this field. The research has presented valuable data about previous studies in the link of TRPV1 channel and inflammation.
Collapse
Affiliation(s)
- Pan Xu
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Ru-Ru Shao
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuan He
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
3
|
Bao C, Chen O, Sheng H, Zhang J, Luo Y, Hayes BW, Liang H, Liedtke W, Ji RR, Abraham SN. A mast cell-thermoregulatory neuron circuit axis regulates hypothermia in anaphylaxis. Sci Immunol 2023; 8:eadc9417. [PMID: 36930731 PMCID: PMC10331449 DOI: 10.1126/sciimmunol.adc9417] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023]
Abstract
IgE-mediated anaphylaxis is an acute life-threatening systemic reaction to allergens, including certain foods and venoms. Anaphylaxis is triggered when blood-borne allergens activate IgE-bound perivascular mast cells (MCs) throughout the body, causing an extensive systemic release of MC mediators. Through precipitating vasodilatation and vascular leakage, these mediators are believed to trigger a sharp drop in blood pressure in humans and in core body temperature in animals. We report that the IgE/MC-mediated drop in body temperature in mice associated with anaphylaxis also requires the body's thermoregulatory neural circuit. This circuit is activated when granule-borne chymase from MCs is deposited on proximal TRPV1+ sensory neurons and stimulates them via protease-activated receptor-1. This triggers the activation of the body's thermoregulatory neural network, which rapidly attenuates brown adipose tissue thermogenesis to cause hypothermia. Mice deficient in either chymase or TRPV1 exhibited limited IgE-mediated anaphylaxis, and, in wild-type mice, anaphylaxis could be recapitulated simply by systemically activating TRPV1+ sensory neurons. Thus, in addition to their well-known effects on the vasculature, MC products, especially chymase, promote IgE-mediated anaphylaxis by activating the thermoregulatory neural circuit.
Collapse
Affiliation(s)
- Chunjing Bao
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey Zhang
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yikai Luo
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Byron W. Hayes
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Han Liang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wolfgang Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York NY 10010
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Soman N. Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC 27710, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| |
Collapse
|
4
|
Zyuzin J, Jendzjowsky N. Neuroanatomic and neurophysiologic evidence of pulmonary nociceptor and carotid chemoreceptor convergence in the nucleus tractus solitarius and nucleus ambiguus. J Neurophysiol 2022; 127:1511-1518. [PMID: 35443145 PMCID: PMC9142158 DOI: 10.1152/jn.00125.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary vagal nociceptors defend the airways. Cardiopulmonary vagal nociceptors synapse in the nucleus tractus solitarius (NTS). Evidence has demonstrated the convergence of cardiopulmonary nociceptors with afferents from carotid chemoreceptors. Whether sensory convergence occurs in motor nuclei and how sensory convergence affects reflexive efferent motor output directed toward the airways are critical knowledge gaps. Here, we show that distinct tracer injection into the pulmonary nociceptors and carotid chemoreceptors leads to co-labeled neurons in the nucleus tractus solitarius and nucleus ambiguus. Precise simultaneous stimulation delivered to pulmonary nociceptors and carotid chemoreceptors doubled efferent vagal output, enhanced phrenic pause, and subsequently augmented phrenic motor activity. These results suggest that multiple afferents are involved in protecting the airways and concurrent stimulation enhances airway defensive reflex output. NEW & NOTEWORTHY Sensory afferents have been shown to converge onto nucleus tractus solitarius primary neurons. Here, we show sensory convergence of two distinct sets of sensory afferents in motor nuclei of the nucleus ambiguus, which results in augmentation of airway defense motor output.
Collapse
Affiliation(s)
- Jekaterina Zyuzin
- Respiratory and Critical Care Medicine and Physiology and, Neurotherapeutics, The Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance California, United States
| | - Nicholas Jendzjowsky
- Respiratory and Critical Care Medicine and Physiology and, Neurotherapeutics, The Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance California, United States
| |
Collapse
|
5
|
Nociceptor Signalling through ion Channel Regulation via GPCRs. Int J Mol Sci 2019; 20:ijms20102488. [PMID: 31137507 PMCID: PMC6566991 DOI: 10.3390/ijms20102488] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
The prime task of nociceptors is the transformation of noxious stimuli into action potentials that are propagated along the neurites of nociceptive neurons from the periphery to the spinal cord. This function of nociceptors relies on the coordinated operation of a variety of ion channels. In this review, we summarize how members of nine different families of ion channels expressed in sensory neurons contribute to nociception. Furthermore, data on 35 different types of G protein coupled receptors are presented, activation of which controls the gating of the aforementioned ion channels. These receptors are not only targeted by more than 20 separate endogenous modulators, but can also be affected by pharmacotherapeutic agents. Thereby, this review provides information on how ion channel modulation via G protein coupled receptors in nociceptors can be exploited to provide improved analgesic therapy.
Collapse
|
6
|
Li YJ, Dai C, Jiang M. Mechanisms of Probiotic VSL#3 in a Rat Model of Visceral Hypersensitivity Involves the Mast Cell-PAR2-TRPV1 Pathway. Dig Dis Sci 2019; 64:1182-1192. [PMID: 30560330 DOI: 10.1007/s10620-018-5416-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mast cells (MCs), PAR2 and TRPV1, play a key role in the regulation of visceral pain. Several studies have found that probiotics regulate visceral sensitivity. AIMS The purpose of the current study was to explore the role of MC-PAR2-TRPV1 in VH and the mechanism of VSL#3 in a rat model of VH. METHODS A total of 64 rats were randomly divided into eight groups: Control VH, VH + ketotifen, VH + FSLLRY-NH2, VH + SB366791, VH + VSL#3, VH + VSL#3 + capsaicin, and VH + VSL#3 + SLIGRL-NH2. The rat model of VH was induced by acetic acid enema and the partial limb restraint method. VH was assessed by the abdominal withdrawal reflex score. MCs in colonic tissue were detected by the toluidine blue staining assay. The expression of PAR2 and TRPV1 in DRGs (L6-S1) was measured by immunohistochemistry and Western blotting. RESULTS The established VH was abolished by treatment with ketotifen, a mast cell stabilizer FSLLRY-NH2, a PAR2 antagonist SB366791 a TRPV1 antagonist, and probiotic VSL#3 in rats. The administration of ketotifen or probiotic VSL#3 caused a decrease in mast cell number in the colon and decreased PAR2 and TRPV1 expression in DRGs. Intrathecal injection of FSLLRY-NH2 or SB366791 caused decreased expression of PAR2 and/or TRPV1 in DRGs in VH rats. SLIGRL-NH2, a PAR2 agonist, and capsaicin, a TRPV1 agonist, blocked the effects of probiotic VSL#3. CONCLUSIONS The probiotic VSL#3 decreases VH in rat model of VH. The mechanism may be related with the mast cell-PAR2-TRPV1 signaling pathway.
Collapse
Affiliation(s)
- Ying-Jie Li
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, No. 92 of Beier Road, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Cong Dai
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, No. 92 of Beier Road, Heping District, Shenyang City, 110001, Liaoning Province, China.
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, No. 92 of Beier Road, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
7
|
Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2017; 96:975-1024. [PMID: 27279650 DOI: 10.1152/physrev.00039.2015] [Citation(s) in RCA: 378] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| | - Bradley J Undem
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| |
Collapse
|
8
|
Gu QD, Joe DS, Gilbert CA. Activation of bitter taste receptors in pulmonary nociceptors sensitizes TRPV1 channels through the PLC and PKC signaling pathway. Am J Physiol Lung Cell Mol Physiol 2017; 312:L326-L333. [PMID: 28062485 DOI: 10.1152/ajplung.00468.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 11/22/2022] Open
Abstract
Bitter taste receptors (T2Rs), a G protein-coupled receptor family capable of detecting numerous bitter-tasting compounds, have recently been shown to be expressed and play diverse roles in many extraoral tissues. Here we report the functional expression of T2Rs in rat pulmonary sensory neurons. In anesthetized spontaneously breathing rats, intratracheal instillation of T2R agonist chloroquine (10 mM, 0.1 ml) significantly augmented chemoreflexes evoked by right-atrial injection of capsaicin, a specific activator for transient receptor potential vanilloid receptor 1 (TRPV1), whereas intravenous infusion of chloroquine failed to significantly affect capsaicin-evoked reflexes. In patch-clamp recordings with isolated rat vagal pulmonary sensory neurons, pretreatment with chloroquine (1-1,000 µM, 90 s) concentration dependently potentiated capsaicin-induced TRPV1-mediated inward currents. Preincubating with diphenitol and denatonium (1 mM, 90 s), two other T2R activators, also enhanced capsaicin currents in these neurons but to a lesser extent. The sensitizing effect of chloroquine was effectively prevented by the phospholipase C inhibitor U73122 (1 µM) or by the protein kinase C inhibitor chelerythrine (10 µM). In summary, our study showed that activation of T2Rs augments capsaicin-evoked TRPV1 responses in rat pulmonary nociceptors through the phospholipase C and protein kinase C signaling pathway.
Collapse
Affiliation(s)
- Qihai David Gu
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia
| | - Deanna S Joe
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia
| | - Carolyn A Gilbert
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia
| |
Collapse
|
9
|
Taylor-Clark TE. Oxidative stress as activators of sensory nerves for cough. Pulm Pharmacol Ther 2015; 35:94-9. [PMID: 26095768 DOI: 10.1016/j.pupt.2015.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/17/2015] [Indexed: 02/07/2023]
Abstract
Excessive activation of the cough reflex is a major clinical problem in respiratory diseases. The cough reflex is triggered by activation of nociceptive sensory nerve terminals innervating the airways by noxious stimuli. Oxidative stress is a noxious stimuli associated with inhalation of pollutants and inflammatory airway disease. Here, we discuss recent findings that oxidative stress, in particular downstream of mitochondrial dysfunction, evokes increased electrical activity in airway nociceptive sensory nerves. Mechanisms include activation of transient receptor potential (TRP) channels and protein kinase C. Such mechanisms may contribute to excessive cough reflexes in respiratory diseases.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
10
|
Moss CR, Gilbert CA, Gabriel SA, Gu Q. Protease-activated receptor-2 inhibits BK channel activity in bronchopulmonary sensory neurons. Neurosci Lett 2015; 589:13-8. [PMID: 25578948 DOI: 10.1016/j.neulet.2015.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/27/2014] [Accepted: 01/07/2015] [Indexed: 11/17/2022]
Abstract
Activation of protease-activated receptor-2 (PAR2) contributes to airway inflammation and airway hypersensitivity, the hallmark features of allergic asthma; and a neurogenic mechanism involving hypersensitivity of bronchopulmonary sensory nerves has been indicated. Large-conductance Ca(2+)-activated potassium (BK) channels are known to play an important role in shaping neuronal excitability. The aim of this study was to investigate the potential regulation of BK channel activities by PAR2 activation in vagal bronchopulmonary sensory neurons. Our results showed that pretreatment with PAR2-activating peptide (PAR2-AP; 100μM, 120s), but not its control peptide PAR2-RP, significantly reduced BK current density in these neurons. Inhibition of phospholipase C, PKC, PKA or MEK/ERK signaling pathway did not prevent the suppression of BK current by PAR2 activation; whereas intracellular application of Ca(2+) chelator BAPTA-AM completely abolished the PAR2 regulation of BK current. In addition, our results demonstrated that activation of PAR2 increased excitability of bronchopulmonary sensory neurons, in a similar manner as displayed by a direct BK channel blockade. In summary, our data suggest that suppression of BK channel activity contributes to PAR2 activation-induced hyperexcitability of vagal bronchopulmonary sensory neurons.
Collapse
Affiliation(s)
- Charles R Moss
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College Street, Macon, GA 31207, USA
| | - Carolyn A Gilbert
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College Street, Macon, GA 31207, USA
| | - Sabry A Gabriel
- Department of Family Medicine, Mercer University School of Medicine and Medical Center of Central Georgia, Macon, GA 31207, USA
| | - Qihai Gu
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College Street, Macon, GA 31207, USA
| |
Collapse
|
11
|
Hadley SH, Bahia PK, Taylor-Clark TE. Sensory nerve terminal mitochondrial dysfunction induces hyperexcitability in airway nociceptors via protein kinase C. Mol Pharmacol 2014; 85:839-48. [PMID: 24642367 PMCID: PMC4014670 DOI: 10.1124/mol.113.091272] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/18/2014] [Indexed: 02/03/2023] Open
Abstract
Airway sensory nerve excitability is a key determinant of respiratory disease-associated reflexes and sensations such as cough and dyspnea. Inflammatory signaling modulates mitochondrial function and produces reactive oxygen species (ROS). Peripheral terminals of sensory nerves are densely packed with mitochondria; thus, we hypothesized that mitochondrial modulation would alter neuronal excitability. We recorded action potential firing from the terminals of individual bronchopulmonary C-fibers using a mouse ex vivo lung-vagal ganglia preparation. C-fibers were characterized as nociceptors or non-nociceptors based upon conduction velocity and response to transient receptor potential (TRP) channel agonists. Antimycin A (mitochondrial complex III Qi site inhibitor) had no effect on the excitability of non-nociceptors. However, antimycin A increased excitability in nociceptive C-fibers, decreasing the mechanical threshold by 50% and increasing the action potential firing elicited by a P2X2/3 agonist to 270% of control. Antimycin A-induced nociceptor hyperexcitability was independent of TRP ankyrin 1 or TRP vanilloid 1 channels. Blocking mitochondrial ATP production with oligomycin or myxothiazol had no effect on excitability. Antimycin A-induced hyperexcitability was dependent on mitochondrial ROS and was blocked by intracellular antioxidants. ROS are known to activate protein kinase C (PKC). Antimycin A-induced hyperexcitability was inhibited by the PKC inhibitor bisindolylmaleimide (BIM) I, but not by its inactive analog BIM V. In dissociated vagal neurons, antimycin A caused ROS-dependent PKC translocation to the membrane. Finally, H2O2 also induced PKC-dependent nociceptive C-fiber hyperexcitability and PKC translocation. In conclusion, ROS evoked by mitochondrial dysfunction caused nociceptor hyperexcitability via the translocation and activation of PKC.
Collapse
Affiliation(s)
- Stephen H Hadley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | | |
Collapse
|
12
|
Gu Q, Vysotskaya ZV, Moss CR, Kagira MK, Gilbert CA. Calcium-sensing receptor in rat vagal bronchopulmonary sensory neurons regulates the function of the capsaicin receptor TRPV1. Exp Physiol 2013; 98:1631-42. [PMID: 23913765 DOI: 10.1113/expphysiol.2013.074633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Extracellular calcium-sensing receptor (CaSR) has been known to play a critical role in the maintainance of systemic Ca(2+) homeostasis. Recent studies have shown that CaSR is also expressed in many tissues that are not directly related to plasma Ca(2+) regulation, such as the central and peripheral nervous system, where the function of this receptor remains to be defined. In this study, we aimed to investigate the expression of CaSR and its potential interaction with transient receptor potential vanilloid receptor type 1 (TRPV1) in rat vagal bronchopulmonary sensory neurons. Our immunohistochemical experiments demonstrated the expression of CaSR in these sensory neurons as well as in trachea and lung parenchyma. Results from our whole-cell patch-clamp recordings in isolated neurons showed that strong activation of CaSR with high concentrations of its agonists, including spermine, NPS R-568 and Ca(2+), inhibited the capsaicin-evoked whole-cell inward current. Blockade of CaSR with its antagonists NPS 2390 and NPS 2143 significantly enhanced the capsaicin-evoked TRPV1 current. These data suggest that CaSR is likely to be involved in the integration of primary bronchopulmonary sensory inputs in physiological and/or pathophysiological conditions.
Collapse
Affiliation(s)
- Qihai Gu
- Q. Gu: Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College Street, Macon, GA 31207, USA.
| | | | | | | | | |
Collapse
|
13
|
Tudpor K, Laínez S, Kwakernaak AJ, Kovalevskaya NV, Verkaart S, van Genesen S, van der Kemp A, Navis G, Bindels RJM, Hoenderop JGJ. Urinary plasmin inhibits TRPV5 in nephrotic-range proteinuria. J Am Soc Nephrol 2012; 23:1824-34. [PMID: 23024298 DOI: 10.1681/asn.2011111126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Urinary proteins that leak through the abnormal glomerulus in nephrotic syndrome may affect tubular transport by interacting with membrane transporters on the luminal side of tubular epithelial cells. Patients with nephrotic syndrome can develop nephrocalcinosis, which animal models suggest may develop from impaired transcellular Ca(2+) reabsorption via TRPV5 in the distal convoluted tubule (DCT). In nephrotic-range proteinuria, filtered plasminogen reaches the luminal side of DCT, where it is cleaved into active plasmin by urokinase. In this study, we found that plasmin purified from the urine of patients with nephrotic-range proteinuria inhibits Ca(2+) uptake in TRPV5-expressing human embryonic kidney 293 cells through the activation of protease-activated receptor-1 (PAR-1). Preincubation with a plasmin inhibitor, a PAR-1 antagonist, or a protein kinase C (PKC) inhibitor abolished the effect of plasmin on TRPV5. In addition, ablation of the PKC phosphorylation site S144 rendered TRPV5 resistant to the action of plasmin. Patch-clamp experiments showed that a decreased TRPV5 pore size and a reduced open probability accompany the plasmin-mediated reduction in Ca(2+) uptake. Furthermore, high-resolution nuclear magnetic resonance spectroscopy demonstrated specific interactions between calmodulin and residues 133-154 of the N-terminus of TRPV5 for both wild-type and phosphorylated (S144pS) peptides. In summary, PAR-1 activation by plasmin induces PKC-mediated phosphorylation of TRPV5, thereby altering calmodulin-TRPV5 binding, resulting in decreased channel activity. These results indicate that urinary plasmin could contribute to the downstream effects of proteinuria on the tubulointerstitium by negatively modulating TRPV5.
Collapse
Affiliation(s)
- Kukiat Tudpor
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Essential role of mast cells in the visceral hyperalgesia induced by T. spiralis infection and stress in rats. Mediators Inflamm 2012; 2012:294070. [PMID: 22529522 PMCID: PMC3317356 DOI: 10.1155/2012/294070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/18/2011] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) deficient rats (Ws/Ws) were used to investigate the roles of MCs in visceral hyperalgesia. Ws/Ws and wild control (+/+) rats were exposed to T. spiralis or submitted to acute cold restraint stress (ACRS). Levels of proteinase-activated receptor 2 (PAR2) and nerve growth factor (NGF) were determined by immunoblots and RT-PCR analysis, and the putative signal pathways including phosphorylated extracellular-regulated kinase (pERK1/2) and transient receptor potential vanilloid receptor 1 (TRPV1) were further identified. Visceral hyperalgesia triggered by ACRS was observed only in +/+ rats. The increased expression of PAR2 and NGF was observed only in +/+ rats induced by T. spiralis and ACRS. The activation of pERK1/2 induced by ACRS occurred only in +/+ rats. However, a significant increase of TRPV1 induced by T. spiralis and ACRS was observed only in +/+ rats. The activation of PAR2 and NGF via both TRPV1 and pERK1/2 signal pathway is dependent on MCs in ACRS-induced visceral hyperalgesia rats.
Collapse
|
15
|
Gu Q, Lee LY. House dust mite potentiates capsaicin-evoked Ca2+ transients in mouse pulmonary sensory neurons via activation of protease-activated receptor-2. Exp Physiol 2011; 97:534-43. [PMID: 22125310 DOI: 10.1113/expphysiol.2011.060764] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
House dust mite (HDM) is a major source of allergen in house dust and has been suggested to be involved in the pathogenesis of asthma. In this study, we aimed to investigate whether HDM can modulate the sensitivity of pulmonary sensory neurons and, if so, to elucidate the underlying mechanism. Fura-2-based ratiometric Ca(2+) imaging was carried out to determine the effect of HDM extract on the capsaicin-evoked Ca(2+) transient in mouse vagal pulmonary sensory neurons. Pretreatment with HDM (50 μg ml(-1), 5 min) significantly enhanced the Ca(2+) transient evoked by capsaicin in these neurons isolated from wild-type mice. This potentiating effect of HDM was not antagonized by E-64, a selective cysteine protease inhibitor, but was completely prevented by AEBSF, a specific serine protease inhibitor. In addition, the potentiating effect of HDM on capsaicin-evoked Ca(2+) transient was absent in the pulmonary sensory neurons isolated from protease-activated receptor-2 (PAR(2)) knockout mice. Furthermore, the sensitizing effect of HDM was completely abolished by U73122, a phosholipase C inhibitor, or chelerythrine, a protein kinase C inhibitor. In summary, our results demonstrate that HDM, mainly through its serine protease activity, potentiates capsaicin-evoked Ca(2+) transient in mouse pulmonary sensory neurons via the activation of PAR(2) and the phosholipase C-protein kinase C intracellular transduction cascade.
Collapse
Affiliation(s)
- Qihai Gu
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA.
| | | |
Collapse
|
16
|
Boesmans W, Owsianik G, Tack J, Voets T, Vanden Berghe P. TRP channels in neurogastroenterology: opportunities for therapeutic intervention. Br J Pharmacol 2011; 162:18-37. [PMID: 20804496 PMCID: PMC3012403 DOI: 10.1111/j.1476-5381.2010.01009.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 07/02/2010] [Accepted: 08/17/2010] [Indexed: 12/14/2022] Open
Abstract
The members of the superfamily of transient receptor potential (TRP) cation channels are involved in a plethora of cellular functions. During the last decade, a vast amount of evidence is accumulating that attributes an important role to these cation channels in different regulatory aspects of the alimentary tract. In this review we discuss the expression patterns and roles of TRP channels in the regulation of gastrointestinal motility, enteric nervous system signalling and visceral sensation, and provide our perspectives on pharmacological targeting of TRPs as a strategy to treat various gastrointestinal disorders. We found that the current knowledge about the role of some members of the TRP superfamily in neurogastroenterology is rather limited, whereas the function of other TRP channels, especially of those implicated in smooth muscle cell contractility (TRPC4, TRPC6), visceral sensitivity and hypersensitivity (TRPV1, TRPV4, TRPA1), tends to be well established. Compared with expression data, mechanistic information about TRP channels in intestinal pacemaking (TRPC4, TRPC6, TRPM7), enteric nervous system signalling (TRPCs) and enteroendocrine cells (TRPM5) is lacking. It is clear that several different TRP channels play important roles in the cellular apparatus that controls gastrointestinal function. They are involved in the regulation of gastrointestinal motility and absorption, visceral sensation and visceral hypersensitivity. TRP channels can be considered as interesting targets to tackle digestive diseases, motility disorders and visceral pain. At present, TRPV1 antagonists are under development for the treatment of heartburn and visceral hypersensitivity, but interference with other TRP channels is also tempting. However, their role in gastrointestinal pathophysiology first needs to be further elucidated.
Collapse
Affiliation(s)
- Werend Boesmans
- TARGID – Translational Research Center for Gastrointestinal DisordersKULeuven, Leuven, Belgium
| | | | - Jan Tack
- TARGID – Translational Research Center for Gastrointestinal DisordersKULeuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel ResearchKULeuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- TARGID – Translational Research Center for Gastrointestinal DisordersKULeuven, Leuven, Belgium
| |
Collapse
|
17
|
Pereira U, Boulais N, Lebonvallet N, Lefeuvre L, Gougerot A, Misery L. Development of an in vitro coculture of primary sensitive pig neurons and keratinocytes for the study of cutaneous neurogenic inflammation. Exp Dermatol 2010; 19:931-5. [PMID: 20849537 DOI: 10.1111/j.1600-0625.2010.01119.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cutaneous neurogenic inflammation (CNI) is often associated with skin disorders. Activated sensory neurons secrete neuropeptides, such as substance P (SP), which initiate or aggravate inflammation in the skin. The discovery of new molecules acting on these neurons is hampered by the difficulty of reproducing the interactions between nerve endings and skin in vitro. We developed an in vitro model based on the coculture of porcine primary keratinocytes and sensory neurons, which mimics skin innervation. To test the relevance of this model, we compared the effects of different substances on CNI by measuring SP secretion in vitro using a sensitive enzyme immunoassay. Collectively, our results indicate that the use of porcine cells could be very useful to perform an in vitro model of CNI. By adding capsaicin, which induces the secretion of SP by neurons, to the culture, we show that our model mimics CNI in vitro, allowing us to screen for molecules that inhibit this inflammatory response. Such a model can be used to test the effects of different substances on CNI and may be useful for dermatological or cosmetic applications. Based on our screen, we found that extracts of Laminaria digitata and Vernonia sublutea inhibit CNI.
Collapse
Affiliation(s)
- Ulysse Pereira
- Laboratory of Nervous Factors and Tissue Structure EA 4326, University of Western Brittany, Brest, France
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Protease-activated receptors (PARs) are members of a subfamily of G-protein-coupled receptors that regulate diverse cell functions in response to proteolytic cleavage of an anchored peptide domain that acts as a 'tethered' receptor-activating ligand. PAR-1 and PAR-2 in particular are present throughout the gastrointestinal (GI) tract and play prominent roles in the regulation of GI epithelial function, motility, inflammation and nociception. In a recent article in Neurogastroenterology and Motility, Wang et al. demonstrate, for the first time, that PAR-1 and PAR-2 are present on preganglionic parasympathetic neurons within the rat brainstem. As in other cellular systems, proteases such as thrombin and trypsin activate PAR-1 and PAR-2 on neurons of the dorsal motor nucleus of the vagus (DMV), leading to an increase in intracellular calcium levels via signal transduction mechanisms involving activation of phospholipase C and inositol triphosphate (IP3). The authors also report that the level of PAR-1 and PAR-2 transcripts in DMV tissue is increased following experimental colitis, suggesting that inflammatory conditions may modulate neuronal behavior or induce plasticity within central vagal neurocircuits. It seems reasonable to hypothesize, therefore, that the activity and behavior of vagal efferent motoneurons may be modulated directly by local and/or systemic proteases released during inflammation. This, in turn, may contribute to the increased incidence of functional GI disorders, including gastric dysmotility, delayed emptying and gastritis observed in patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- K N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033-0850, USA.
| |
Collapse
|
19
|
Current World Literature. Curr Opin Support Palliat Care 2010; 4:46-51. [DOI: 10.1097/spc.0b013e3283372479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Kwong K, Nassenstein C, de Garavilla L, Meeker S, Undem BJ. Thrombin and trypsin directly activate vagal C-fibres in mouse lung via protease-activated receptor-1. J Physiol 2010; 588:1171-7. [PMID: 20142268 DOI: 10.1113/jphysiol.2009.181669] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nature of protease-activated receptors (PARs) capable of activating respiratory vagal C-fibres in the mouse was investigated. Infusing thrombin or trypsin via the trachea strongly activated vagal lung C-fibres with action potential discharge, recorded with the extracellular electrode positioned in the vagal sensory ganglion. The intensity of activation was similar to that observed with the TRPV1 agonist, capsaicin. This was mimicked by the PAR1-activating peptide TFLLR-NH(2), whereas the PAR2-activating peptide SLIGRL-NH(2) was without effect. Patch clamp recording on cell bodies of capsaicin-sensitive neurons retrogradely labelled from the lungs revealed that TFLLR-NH(2) consistently evokes a large inward current. RT-PCR revealed all four PARs were expressed in the vagal ganglia. However, when RT-PCR was carried out on individual neurons retrogradely labelled from the lungs it was noted that TRPV1-positive neurons (presumed C-fibre neurons) expressed PAR1 and PAR3, whereas PAR2 and PAR4 were rarely expressed. The C-fibres in mouse lungs isolated from PAR1(-/-) animals responded normally to capsaicin, but failed to respond to trypsin, thrombin, or TFLLR-NH(2). These data show that the PAR most relevant for evoking action potential discharge in vagal C-fibres in mouse lungs is PAR1, and that this is a direct neuronal effect.
Collapse
Affiliation(s)
- Kevin Kwong
- Johns Hopkins University, Department of Medicine, Division of Clinical Immunology, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
21
|
Gu Q, Lee LY. Regulation of acid signaling in rat pulmonary sensory neurons by protease-activated receptor-2. Am J Physiol Lung Cell Mol Physiol 2009; 298:L454-61. [PMID: 20044436 DOI: 10.1152/ajplung.00381.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Airway acidification has been consistently observed in airway inflammatory conditions and is known to cause cardiorespiratory symptoms that are, at least in part, mediated through the activation of bronchopulmonary C fibers and the subsequent reflexes. Protease-activated receptor-2 (PAR(2)) is expressed in a variety of cells in the lung and airways and is believed to play a role in airway inflammation and hyperresponsiveness. This study was carried out to investigate the effect of PAR(2) activation on the acid signaling in rat bronchopulmonary C-fiber sensory neurons. Our RT-PCR results revealed the expression of mRNAs for transient receptor potential vanilloid receptor 1 (TRPV1) and four functional acid-sensing ion channel (ASIC) subunits 1a, 1b, 2a, and 3 in these sensory neurons. Preincubation of SLIGRL-NH(2), a specific PAR(2)-activating peptide, markedly enhanced the Ca(2+) transient evoked by extracellular acidification. Pretreatment with PAR(2) agonists significantly potentiated both acid-evoked ASIC- and TRPV1-like whole cell inward currents. Activation of PAR(2) also potentiated the excitability of these neurons to acid, but not electrical stimulation. In addition, the potentiation of acid-evoked responses was not prevented by inhibiting either PLC or PKC nor was mimicked by activation of PKC. In conclusion, activation of PAR(2) modulates the acid signaling in pulmonary sensory neurons, and the interaction may play a role in the pathogenesis of airway inflammatory conditions, where airway acidification and PAR(2) activation can occur simultaneously.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Physiology, University of Kentucky Medical Center, 800 Rose St., Lexington, KY 40536-0298, USA.
| | | |
Collapse
|