1
|
Cupellini L, Gwizdala M, Krüger TPJ. Energetic Landscape and Terminal Emitters of Phycobilisome Cores from Quantum Chemical Modeling. J Phys Chem Lett 2024; 15:9746-9756. [PMID: 39288324 DOI: 10.1021/acs.jpclett.4c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Phycobilisomes (PBs) are giant antenna supercomplexes of cyanobacteria that use phycobilin pigments to capture sunlight and transfer the collected energy to membrane-bound photosystems. In the PB core, phycobilins are bound to particular allophycocyanin (APC) proteins. Some phycobilins are thought to be terminal emitters (TEs) with red-shifted fluorescence. However, the precise identification of TEs is still under debate. In this work, we employ multiscale quantum-mechanical calculations to disentangle the excitation energy landscape of PB cores. Using the recent atomistic PB structures from Synechoccoccus PCC 7002 and Synechocystis PCC 6803, we compute the spectral properties of different APC trimers and assign the low-energy pigments. We show that the excitation energy of APC phycobilins is determined by geometric and electrostatic factors and is tuned by the specific protein-protein interactions within the core. Our findings challenge the simple picture of a few red-shifted bilins in the PB core and instead suggest that the red-shifts are established by the entire TE-containing APC trimers. Our work provides a theoretical microscopic basis for the interpretation of energy migration and time-resolved spectroscopy in phycobilisomes.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- National Institute of Theoretical and Computational Sciences (NITheCS), https://nithecs.ac.za/
| |
Collapse
|
2
|
Assefa GT, Botha JL, van Heerden B, Kyeyune F, Krüger TPJ, Gwizdala M. ApcE plays an important role in light-induced excitation energy dissipation in the Synechocystis PCC6803 phycobilisomes. PHOTOSYNTHESIS RESEARCH 2024; 160:17-29. [PMID: 38407779 PMCID: PMC11006782 DOI: 10.1007/s11120-024-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Phycobilisomes (PBs) play an important role in cyanobacterial photosynthesis. They capture light and transfer excitation energy to the photosynthetic reaction centres. PBs are also central to some photoprotective and photoregulatory mechanisms that help sustain photosynthesis under non-optimal conditions. Amongst the mechanisms involved in excitation energy dissipation that are activated in response to excessive illumination is a recently discovered light-induced mechanism that is intrinsic to PBs and has been the least studied. Here, we used single-molecule spectroscopy and developed robust data analysis methods to explore the role of a terminal emitter subunit, ApcE, in this intrinsic, light-induced mechanism. We isolated the PBs from WT Synechocystis PCC 6803 as well as from the ApcE-C190S mutant of this strain and compared the dynamics of their fluorescence emission. PBs isolated from the mutant (i.e., ApcE-C190S-PBs), despite not binding some of the red-shifted pigments in the complex, showed similar global emission dynamics to WT-PBs. However, a detailed analysis of dynamics in the core revealed that the ApcE-C190S-PBs are less likely than WT-PBs to enter quenched states under illumination but still fully capable of doing so. This result points to an important but not exclusive role of the ApcE pigments in the light-induced intrinsic excitation energy dissipation mechanism in PBs.
Collapse
Affiliation(s)
- Gonfa Tesfaye Assefa
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Joshua L Botha
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Bertus van Heerden
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South Africa
| | - Farooq Kyeyune
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- Department of Physics, Faculty of Science, Kyambogo University, P.O. Box 1, Kyambogo, Kampala, Uganda
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South Africa
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Spain.
| |
Collapse
|
3
|
Li Y, Li Q, Gillilan RE, Abbaspourrad A. Reversible disassembly-reassembly of C-phycocyanin in pressurization-depressurization cycles of high hydrostatic pressure. Int J Biol Macromol 2023; 253:127623. [PMID: 37879586 PMCID: PMC10842036 DOI: 10.1016/j.ijbiomac.2023.127623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Hydrostatic pressure can reversibly modulate protein-protein and protein-chromophore interactions of C-phycocyanin (C-PC) from Spirulina platensis. Small-angle X-ray scattering combined with UV-Vis spectrophotometry and protein modeling was used to explore the color and structural changes of C-PC under high pressure conditions at different pH levels. It was revealed that pressures up to 350 MPa were enough to fully disassemble C-PC from trimers to monomers at pH 7.0, or from monomers to detached subunits at pH 9.0. These disassemblies were accompanied by protein unfolding that caused these high-pressure induced structures to be more extended. These changes were reversible following depressurization. The trimer-to-monomer transition proceeded through a collection of previously unrecognized, L-shaped intermediates resembling C-PC dimers. Additionally, pressurized C-PC showed decayed Q-band absorption and fortified Soret-band absorption. This was evidence that the folded tetrapyrroles, which had folded at ambient pressure, formed semicyclic unfolded conformations at a high pressure. Upon depressurization, the peak intensity and shift all recovered stepwise, showing pressure can precisely manipulate C-PC's structure as well as its color. Overall, a protein-chromophore regulatory theory of C-PC was unveiled. The pressure-tunability could be harnessed to modify and stabilize C-PC's structure and photochemical properties for designing new delivery and optical materials.
Collapse
Affiliation(s)
- Ying Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Qike Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Richard E Gillilan
- Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, Ithaca, NY, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Sengupta A, Bandyopadhyay A, Schubert MG, Church GM, Pakrasi HB. Antenna Modification in a Fast-Growing Cyanobacterium Synechococcus elongatus UTEX 2973 Leads to Improved Efficiency and Carbon-Neutral Productivity. Microbiol Spectr 2023; 11:e0050023. [PMID: 37318337 PMCID: PMC10433846 DOI: 10.1128/spectrum.00500-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
Our planet is sustained by sunlight, the primary energy source made accessible to all life forms by photoautotrophs. Photoautotrophs are equipped with light-harvesting complexes (LHCs) that enable efficient capture of solar energy, particularly when light is limiting. However, under high light, LHCs can harvest photons in excess of the utilization capacity of cells, causing photodamage. This damaging effect is most evident when there is a disparity between the amount of light harvested and carbon available. Cells strive to circumvent this problem by dynamically adjusting the antenna structure in response to the changing light signals, a process known to be energetically expensive. Much emphasis has been laid on elucidating the relationship between antenna size and photosynthetic efficiency and identifying strategies to synthetically modify antennae for optimal light capture. Our study is an effort in this direction and investigates the possibility of modifying phycobilisomes, the LHCs present in cyanobacteria, the simplest of photoautotrophs. We systematically truncate the phycobilisomes of Synechococcus elongatus UTEX 2973, a widely studied, fast-growing model cyanobacterium and demonstrate that partial truncation of its antenna can lead to a growth advantage of up to 36% compared to the wild type and an increase in sucrose titer of up to 22%. In contrast, targeted deletion of the linker protein which connects the first phycocyanin rod to the core proved detrimental, indicating that the core alone is not enough, and it is essential to maintain a minimal rod-core structure for efficient light harvest and strain fitness. IMPORTANCE Light energy is essential for the existence of life on this planet, and only photosynthetic organisms, equipped with light-harvesting antenna protein complexes, can capture this energy, making it readily accessible to all other life forms. However, these light-harvesting antennae are not designed to function optimally under extreme high light, a condition which can cause photodamage and significantly reduce photosynthetic productivity. In this study, we attempt to assess the optimal antenna structure for a fast-growing, high-light tolerant photosynthetic microbe with the goal of improving its productivity. Our findings provide concrete evidence that although the antenna complex is essential, antenna modification is a viable strategy to maximize strain performance under controlled growth conditions. This understanding can also be translated into identifying avenues to improve light harvesting efficiency in higher photoautotrophs.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | | | - Max G. Schubert
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Liu H. Cyanobacterial Phycobilisome Allostery as Revealed by Quantitative Mass Spectrometry. Biochemistry 2023; 62:1307-1320. [PMID: 36943676 DOI: 10.1021/acs.biochem.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Phycobilisomes (PBSs) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. PBS, a multisubunit protein complex, has two major interfaces that comprise intrinsically disordered regions (IDRs): rod-core and core-membrane. IDRs do not form regular, three-dimensional structures on their own. Their presence in the photosynthetic pigment-protein complexes portends their structural and functional importance. A recent model suggests that PB-loop, an IDR located on the PBS subunit ApcE and C-terminal extension (CTE) of the PBS subunit ApcG, forms a structural protrusion on the PBS core-membrane side, facing the thylakoid membrane. Here, the structural synergy between the rod-core region and the core-membrane region was investigated using quantitative mass spectrometry (MS). The AlphaFold-predicted CpcG-CTE structure was first modeled onto the PBS rod-core region, guided and justified by the isotopically encoded structural MS data. Quantitative cross-linking MS analysis revealed that the structural proximity of the PB-loop in ApcE and ApcG-CTE is significantly disturbed in the absence of six PBS rods, which are attached to PBS via CpcG-CTE, indicative of drastic conformational changes and decreased structural integrity. These results suggest that CpcG-rod attachment on the PBS rod-core side is essentially required for the PBS core-membrane structural assembly. The hypothesized long-range synergy between the rod-core interface (where the orange carotenoid protein also functions) and the terminal energy emitter of PBS must have important regulatory roles in PBS core assembly, light-harvesting, and excitation energy transmission. These data also lend strategies that genetic truncation of the light-harvesting antennas aimed for improved photosynthetic productivity must rely on an in-depth understanding of their global structural integrity.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
6
|
Li C, Wang R, Wang J, Liu L, Li H, Zheng H, Ni J. A Highly Compatible Phototrophic Community for Carbon-Negative Biosynthesis. Angew Chem Int Ed Engl 2023; 62:e202215013. [PMID: 36378012 DOI: 10.1002/anie.202215013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
CO2 sequestration engineering is promising for carbon-negative biosynthesis, and artificial communities can solve more complex problems than monocultures. However, obtaining an ideal photosynthetic community is still a great challenge. Herein, we describe the development of a highly compatible photosynthetic community (HCPC) by integrating a sucrose-producing CO2 sequestration module and a super-coupled module. The cyanobacteria CO2 sequestration module was obtained using stepwise metabolic engineering and then coupled with the efficient sucrose utilization module Vibrio natriegens. Integrated omics analysis indicated that enhanced photosynthetic electron transport and extracellular vesicles promote intercellular communication. Additionally, the HCPC was used to channel CO2 into valuable chemicals, enabling the overall release of -22.27 to -606.59 kgCO2 e kg-1 in the end products. This novel light-driven community could facilitate circular economic implementation in the future.
Collapse
Affiliation(s)
- Chaofeng Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruoyu Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liangxu Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hengrun Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haotian Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Ni
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
The increasing role of structural proteomics in cyanobacteria. Essays Biochem 2022; 67:269-282. [PMID: 36503929 PMCID: PMC10070481 DOI: 10.1042/ebc20220095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Cyanobacteria, also known as blue–green algae, are ubiquitous organisms on the planet. They contain tremendous protein machineries that are of interest to the biotechnology industry and beyond. Recently, the number of annotated cyanobacterial genomes has expanded, enabling structural studies on known gene-coded proteins to accelerate. This review focuses on the advances in mass spectrometry (MS) that have enabled structural proteomics studies to be performed on the proteins and protein complexes within cyanobacteria. The review also showcases examples whereby MS has revealed critical mechanistic information behind how these remarkable machines within cyanobacteria function.
Collapse
|
8
|
Structures of a phycobilisome in light-harvesting and photoprotected states. Nature 2022; 609:835-845. [PMID: 36045294 DOI: 10.1038/s41586-022-05156-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Phycobilisome (PBS) structures are elaborate antennae in cyanobacteria and red algae1,2. These large protein complexes capture incident sunlight and transfer the energy through a network of embedded pigment molecules called bilins to the photosynthetic reaction centres. However, light harvesting must also be balanced against the risks of photodamage. A known mode of photoprotection is mediated by orange carotenoid protein (OCP), which binds to PBS when light intensities are high to mediate photoprotective, non-photochemical quenching3-6. Here we use cryogenic electron microscopy to solve four structures of the 6.2 MDa PBS, with and without OCP bound, from the model cyanobacterium Synechocystis sp. PCC 6803. The structures contain a previously undescribed linker protein that binds to the membrane-facing side of PBS. For the unquenched PBS, the structures also reveal three different conformational states of the antenna, two previously unknown. The conformational states result from positional switching of two of the rods and may constitute a new mode of regulation of light harvesting. Only one of the three PBS conformations can bind to OCP, which suggests that not every PBS is equally susceptible to non-photochemical quenching. In the OCP-PBS complex, quenching is achieved through the binding of four 34 kDa OCPs organized as two dimers. The complex reveals the structure of the active form of OCP, in which an approximately 60 Å displacement of its regulatory carboxy terminal domain occurs. Finally, by combining our structure with spectroscopic properties7, we elucidate energy transfer pathways within PBS in both the quenched and light-harvesting states. Collectively, our results provide detailed insights into the biophysical underpinnings of the control of cyanobacterial light harvesting. The data also have implications for bioengineering PBS regulation in natural and artificial light-harvesting systems.
Collapse
|
9
|
Arshad R, Saccon F, Bag P, Biswas A, Calvaruso C, Bhatti AF, Grebe S, Mascoli V, Mahbub M, Muzzopappa F, Polyzois A, Schiphorst C, Sorrentino M, Streckaité S, van Amerongen H, Aro EM, Bassi R, Boekema EJ, Croce R, Dekker J, van Grondelle R, Jansson S, Kirilovsky D, Kouřil R, Michel S, Mullineaux CW, Panzarová K, Robert B, Ruban AV, van Stokkum I, Wientjes E, Büchel C. A kaleidoscope of photosynthetic antenna proteins and their emerging roles. PLANT PHYSIOLOGY 2022; 189:1204-1219. [PMID: 35512089 PMCID: PMC9237682 DOI: 10.1093/plphys/kiac175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/17/2022] [Indexed: 05/17/2023]
Abstract
Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.
Collapse
Affiliation(s)
- Rameez Arshad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc 783 71, Czech Republic
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Francesco Saccon
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Pushan Bag
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå 901 87, Sweden
| | - Avratanu Biswas
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Claudio Calvaruso
- Institute for Molecular Biosciences, Goethe University of Frankfurt, Frankfurt 60438, Germany
| | - Ahmad Farhan Bhatti
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | - Steffen Grebe
- Department of Life Technologies, MolecularPlant Biology, University of Turku, Turku FI–20520, Finland
| | - Vincenzo Mascoli
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Moontaha Mahbub
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Botany, Jagannath University, Dhaka 1100, Bangladesh
| | - Fernando Muzzopappa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | - Alexandros Polyzois
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM UMR 8038 CNRS, Paris 75006, France
| | | | - Mirella Sorrentino
- Photon Systems Instruments, spol. s.r.o., Drásov, Czech Republic
- Department of Agricultural Sciences, University of Naples Federico II, Naples 80138, Italy
| | - Simona Streckaité
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | | | - Eva-Mari Aro
- Department of Life Technologies, MolecularPlant Biology, University of Turku, Turku FI–20520, Finland
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Egbert J Boekema
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Jan Dekker
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Stefan Jansson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå 901 87, Sweden
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | - Roman Kouřil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc 783 71, Czech Republic
| | - Sylvie Michel
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM UMR 8038 CNRS, Paris 75006, France
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Klára Panzarová
- Photon Systems Instruments, spol. s.r.o., Drásov, Czech Republic
| | - Bruno Robert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | - Alexander V Ruban
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ivo van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | - Claudia Büchel
- Institute for Molecular Biosciences, Goethe University of Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
10
|
Squires A, Wang Q, Dahlberg P, Moerner WE. A bottom-up perspective on photodynamics and photoprotection in light-harvesting complexes using anti-Brownian trapping. J Chem Phys 2022; 156:070901. [DOI: 10.1063/5.0079042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Quan Wang
- Genomics, Princeton University, United States of America
| | | | - W. E. Moerner
- Department of Chemistry, Stanford University, United States of America
| |
Collapse
|
11
|
Puzorjov A, Dunn KE, McCormick AJ. Production of thermostable phycocyanin in a mesophilic cyanobacterium. Metab Eng Commun 2021; 13:e00175. [PMID: 34168957 PMCID: PMC8209669 DOI: 10.1016/j.mec.2021.e00175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 11/01/2022] Open
Abstract
Phycocyanin (PC) is a soluble phycobiliprotein found within the light-harvesting phycobilisome complex of cyanobacteria and red algae, and is considered a high-value product due to its brilliant blue colour and fluorescent properties. However, commercially available PC has a relatively low temperature stability. Thermophilic species produce more thermostable variants of PC, but are challenging and energetically expensive to cultivate. Here, we show that the PC operon from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (cpcBACD) is functional in the mesophile Synechocystis sp. PCC 6803. Expression of cpcBACD in an 'Olive' mutant strain of Synechocystis lacking endogenous PC resulted in high yields of thermostable PC (112 ± 1 mg g-1 DW) comparable to that of endogenous PC in wild-type cells. Heterologous PC also improved the growth of the Olive mutant, which was further supported by evidence of a functional interaction with the endogenous allophycocyanin core of the phycobilisome complex. The thermostability properties of the heterologous PC were comparable to those of PC from T. elongatus, and could be purified from the Olive mutant using a low-cost heat treatment method. Finally, we developed a scalable model to calculate the energetic benefits of producing PC from T. elongatus in Synechocystis cultures. Our model showed that the higher yields and lower cultivation temperatures of Synechocystis resulted in a 3.5-fold increase in energy efficiency compared to T. elongatus, indicating that producing thermostable PC in non-native hosts is a cost-effective strategy for scaling to commercial production.
Collapse
Affiliation(s)
- Anton Puzorjov
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Katherine E. Dunn
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH9 3DW, UK
| | - Alistair J. McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
12
|
Zheng L, Zheng Z, Li X, Wang G, Zhang K, Wei P, Zhao J, Gao N. Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes. Nat Commun 2021; 12:5497. [PMID: 34535665 PMCID: PMC8448738 DOI: 10.1038/s41467-021-25813-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
Phycobilisomes (PBS) are the major light-harvesting machineries for photosynthesis in cyanobacteria and red algae and they have a hierarchical structure of a core and peripheral rods, with both consisting of phycobiliproteins and linker proteins. Here we report the cryo-EM structures of PBS from two cyanobacterial species, Anabaena 7120 and Synechococcus 7002. Both PBS are hemidiscoidal in shape and share a common triangular core structure. While the Anabaena PBS has two additional hexamers in the core linked by the 4th linker domain of ApcE (LCM). The PBS structures predict that, compared with the PBS from red algae, the cyanobacterial PBS could have more direct routes for energy transfer to ApcD. Structure-based systematic mutagenesis analysis of the chromophore environment of ApcD and ApcF subunits reveals that aromatic residues are critical to excitation energy transfer (EET). The structures also suggest that the linker protein could actively participate in the process of EET in both rods and the cores. These results provide insights into the organization of chromophores and the mechanisms of EET within cyanobacterial PBS.
Collapse
Affiliation(s)
- Lvqin Zheng
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Zhenggao Zheng
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China ,grid.410645.20000 0001 0455 0905College of Life Science, Qingdao University, 266071 Qingdao, China
| | - Xiying Li
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Guopeng Wang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Kun Zhang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Peijun Wei
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Jindong Zhao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China ,grid.429211.d0000 0004 1792 6029Key Laboratory of Phycology of CAS, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, Hubei China
| | - Ning Gao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| |
Collapse
|
13
|
Niu NN, Lu L, Peng PP, Fu ZJ, Miao D, Zhou M, Noy D, Zhao KH. The phycobilisome core-membrane linkers from Synechocystis sp. PCC 6803 and red-algae assemble in the same topology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1420-1431. [PMID: 34171163 DOI: 10.1111/tpj.15389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/06/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
The phycobilisomes (PBSs) of cyanobacteria and red-algae are unique megadaltons light-harvesting protein-pigment complexes that utilize bilin derivatives for light absorption and energy transfer. Recently, the high-resolution molecular structures of red-algal PBSs revealed how the multi-domain core-membrane linker (LCM ) specifically organizes the allophycocyanin subunits in the PBS's core. But, the topology of LCM in these structures was different than that suggested for cyanobacterial PBSs based on lower-resolution structures. Particularly, the model for cyanobacteria assumed that the Arm2 domain of LCM connects the two basal allophycocyanin cylinders, whereas the red-algal PBS structures revealed that Arm2 is partly buried in the core of one basal cylinder and connects it to the top cylinder. Here, we show by biochemical analysis of mutations in the apcE gene that encodes LCM , that the cyanobacterial and red-algal LCM topologies are actually the same. We found that removing the top cylinder linker domain in LCM splits the PBS core longitudinally into two separate basal cylinders. Deleting either all or part of the helix-loop-helix domain at the N-terminal end of Arm2, disassembled the basal cylinders and resulted in degradation of the part containing the terminal emitter, ApcD. Deleting the following 30 amino-acids loop severely affected the assembly of the basal cylinders, but further deletion of the amino-acids at the C-terminal half of Arm2 had only minor effects on this assembly. Altogether, the biochemical data are consistent with the red-algal LCM topology, suggesting that the PBS cores in cyanobacteria and red-algae assemble in the same way.
Collapse
Affiliation(s)
- Nan-Nan Niu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Lu Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Pan-Pan Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Zhi-Juan Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Dan Miao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Dror Noy
- MIGAL-Galilee Research Institute, S. Industrial Zone, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
14
|
Structural implications for a phycobilisome complex from the thermophilic cyanobacterium Thermosynechococcus vulcanus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148458. [PMID: 34062150 DOI: 10.1016/j.bbabio.2021.148458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022]
Abstract
Phycobilisomes (PBSs) are huge, water-soluble light-harvesting complexes used by oxygenic photosynthetic organisms. The structures of some subunits of the PBSs, including allophycocyanin (APC) and phycocyanin (PC), have been solved by X-ray crystallography previously. However, there are few reports on the overall structures of PBS complexes in photosynthetic organisms. Here, we report the overall structure of the PBS complex isolated from the cyanobacterium Thermosynechococcus vulcanus, determined by negative-staining electron microscopy (EM). Intact PBS complexes were purified by trehalose density gradient centrifugation with a high-concentration phosphate buffer and then subjected to a gradient-fixation preparation using glutaraldehyde. The final map constructed by the single-particle analysis of EM images showed a hemidiscoidal structure of the PBS, consisting of APC cores and peripheral PC rods. The APC cores are composed of five cylinders: A1, A2, B, C1, and C2. Each of the cylinders is composed of three (A1 and A2), four (B), or two (C1 and C2) APC trimers. In addition, there are eight PC rods in the PBS: one bottom pair (Rb and Rb'), one top pair (Rt and Rt'), and two side pairs (Rs1/Rs1' and Rs2/Rs2'). Comparison with the overall structures of PBSs from other organisms revealed structural characteristics of T. vulcanus PBS.
Collapse
|