1
|
Shi L, Liu S, Chen J, Wang H, Wang Z. Microglial polarization pathways and therapeutic drugs targeting activated microglia in traumatic brain injury. Neural Regen Res 2026; 21:39-56. [PMID: 39665832 PMCID: PMC12094552 DOI: 10.4103/nrr.nrr-d-24-00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/03/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Traumatic brain injury can be categorized into primary and secondary injuries. Secondary injuries are the main cause of disability following traumatic brain injury, which involves a complex multicellular cascade. Microglia play an important role in secondary injury and can be activated in response to traumatic brain injury. In this article, we review the origin and classification of microglia as well as the dynamic changes of microglia in traumatic brain injury. We also clarify the microglial polarization pathways and the therapeutic drugs targeting activated microglia. We found that regulating the signaling pathways involved in pro-inflammatory and anti-inflammatory microglia, such as the Toll-like receptor 4 /nuclear factor-kappa B, mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription, phosphoinositide 3-kinase/protein kinase B, Notch, and high mobility group box 1 pathways, can alleviate the inflammatory response triggered by microglia in traumatic brain injury, thereby exerting neuroprotective effects. We also reviewed the strategies developed on the basis of these pathways, such as drug and cell replacement therapies. Drugs that modulate inflammatory factors, such as rosuvastatin, have been shown to promote the polarization of anti-inflammatory microglia and reduce the inflammatory response caused by traumatic brain injury. Mesenchymal stem cells possess anti-inflammatory properties, and clinical studies have confirmed their significant efficacy and safety in patients with traumatic brain injury. Additionally, advancements in mesenchymal stem cell-delivery methods-such as combinations of novel biomaterials, genetic engineering, and mesenchymal stem cell exosome therapy-have greatly enhanced the efficiency and therapeutic effects of mesenchymal stem cells in animal models. However, numerous challenges in the application of drug and mesenchymal stem cell treatment strategies remain to be addressed. In the future, new technologies, such as single-cell RNA sequencing and transcriptome analysis, can facilitate further experimental studies. Moreover, research involving non-human primates can help translate these treatment strategies to clinical practice.
Collapse
Affiliation(s)
- Liping Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Jialing Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Yi Z, Song S, Bai Y, Zhang G, Wang Y, Chen Z, Chen X, Deng B, Liu X, Jin Z. Atoh8 expression inhibition promoted osteogenic differentiation of ADSCs and inhibited cell proliferation in vitro and rat bone defect models. Adipocyte 2025; 14:2494089. [PMID: 40356232 PMCID: PMC12077435 DOI: 10.1080/21623945.2025.2494089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Stem cell-based bone tissue engineering offers a promising approach for treating oral and cranio-maxillofacial bone defects. This study investigated the role of Atoh8, a key regulator in various cells, in the osteogenic potential of adipose-derived stem cells (ADSCs). ADSCs transfected with small interfering RNA (siRNA) targeting Atoh8 were evaluated for proliferation, migration, adhesion, and osteogenic capacity. In vivo, 20 SD rats were used to assess bone regeneration using Atoh8-knockdown ADSC sheets, with new bone formation quantified via micro-CT and histological analysis. Atoh8 knockdown in vitro reduced ADSC proliferation and migration but enhanced osteogenic differentiation and upregulation of osteogenic-related factors. This approach improved bone healing in rat defect models, accelerating repair both in vitro and in vivo. The findings underscore the clinical potential of ADSCs in bone tissue engineering and elucidate Atoh8's regulatory role in ADSC osteogenesis, providing a novel therapeutic strategy for enhancing bone regeneration through targeted modulation of stem cell differentiation pathways.
Collapse
Affiliation(s)
- Zian Yi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi’an, China
| | - Shuang Song
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yuxin Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Implantology, School of Stomatology, Air Force Medical University, Xi’an, China
| | - Guanhua Zhang
- Department of Stomatology, Electric Power Teaching Hospital, Capital Medical University, Beijing, China
| | - Yuxi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Implantology, School of Stomatology, Air Force Medical University, Xi’an, China
| | - Zijun Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Implantology, School of Stomatology, Air Force Medical University, Xi’an, China
| | - Xuefeng Chen
- Lianbang Research Institute of Oral Technology, Lianbang Hospital of Stomatology, Xi’an, China
| | - Banglian Deng
- Lianbang Research Institute of Oral Technology, Lianbang Hospital of Stomatology, Xi’an, China
| | - Xiangdong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Trauma and Orthognathic Surgery, School of Stomatology, Air Force Medical University, Xi’an, China
| | - Zuolin Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi’an, China
| |
Collapse
|
3
|
Yuan Y, Kuang M, Yu T, Huang S, Jiang F, Lu B, Cai M, Lu X. Adipogenic dedifferentiation enhances survival of human umbilical cord-derived mesenchymal stem cells under oxidative stress. Adipocyte 2025; 14:2467150. [PMID: 39976240 PMCID: PMC11845070 DOI: 10.1080/21623945.2025.2467150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/16/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Mesenchymal stem cells (MSCs) serve as ideal candidates for a broad range of cell-based therapies. However, cell ageing caused by long-term in vitro expansion and poor survival after in vivo delivery greatly limits their success in preclinical and clinical applications. Dedifferentiation represents a potential strategy for enhancing the retention and function of MSCs in hostile environments. In this study, we evaluated the cell phenotype, proliferation, and differentiation potential, as well as the anti-oxidative stress ability of human umbilical cord-derived MSCs (hMSCs) manipulated with adipogenic priming and subsequent dedifferentiation. After an in vitro differentiation and dedifferentiation procedure, the resultant dedifferentiated hMSCs (De-hMSCs) displayed properties similar to their original counterparts, including immunophenotype and mesodermal potential. Upon re-induction, De-hMSCs exhibited a significantly higher adipogenic differentiation capability than unmanipulated hMSCs. Importantly, De-hMSCs showed a significantly enhanced ability to resist tert-butyl hydroperoxide (t-BHP) induced apoptosis compared to undifferentiated hMSCs. Mechanisms involving bcl-2 family proteins and autophagy may contribute to the demonstrated advantages of dedifferentiation-reprogrammed hMSCs. These results indicate that adipogenic dedifferentiation promotes adipogenesis and cell persistence, as well as preserves the stemness of human umbilical cord-derived MSCs that have been committed to the adipocytic lineage. As a unique stem cell population, dedifferentiated MSCs may represent an attractive and promising candidate for MSC-based therapy.
Collapse
Affiliation(s)
- Yin Yuan
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Meina Kuang
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tengye Yu
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Sirui Huang
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fujie Jiang
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Biyi Lu
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingen Cai
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Lu
- School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Severo NC, Inês de Assumpção T, Silva Peixer MA, da Cunha Xavier M, Malard PF, Brunel HDSS, Lançoni R. Effectiveness of intraglandular allogeneic mesenchymal stem cell administration for treating chronic vesicular adenitis in bulls. Theriogenology 2025; 241:117419. [PMID: 40188642 DOI: 10.1016/j.theriogenology.2025.117419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/08/2025]
Abstract
This study aimed to evaluate the effects of the application of allogeneic mesenchymal stem cells (MSCs) bilaterally and intraglandularly in the vesicular glands of bulls affected by seminal vesiculitis. Twelve bulls that presented chronic vesiculitis with two or more recurrences were selected at Semen Collection and Processing Centres, based on the presence of pus in the semen, leukocytes on the motility and vigour evaluation slide, reactive to the California Mastitis Test - CMT (one cross or more) and the presence of leukocytes on a slide stained by Diff Quik staining with more than 5 polymorphonuclear cells (PMN) per field. Ultrasound examination of the vesicular glands was performed, and the clinical signs were definitive for the diagnosis. The proposed method of the intraglandular injection of MSCs involved application through the ischiorectal fossa with a long needle measuring 30-35 cm and a guide measuring 25-30 cm in length directly into the affected vesicular glands. The MSCs were cultured and frozen in the Bio Cell Cellular Therapy® laboratory (Brasilia, Brazil) and prepared by washing and centrifugation for intraglandular injection on the day of application. In total, 3x106 MSCs were injected into each vesicular gland. Data were evaluated for normality of residuals using the Shapiro-Wilk test. When the normality of the test was significant (P < 0.05), the data were transformed or outliers were removed and reevaluated. The "T-Test" was applied to identify statistical differences between variables before and after treatment. The probability of P ≤ 0.05 was considered a significant difference. Data were presented as the mean ± standard error of the mean (S.E.M.). Improvements were observed in the initial percent motility from 60.09 ± 4.8 to 69.89 ± 4.6 (P < 0.05), as well as in the post-thawing percent motility from 26.26 ± 6.77 to 42.5 ± 5 0.99 (P < 0.05). The number of doses produced increased significantly after treatment with MSCs, from 95.61 ± 23.31 units to 337.84 ± 67.75 units (P < 0.05) per ejaculate. The number of leukocytes observed per field decreased from 5.83 ± 0.48 to zero, demonstrating the recovery of the inflamed vesicular glands. Based on the results presented, it was concluded that the application of 3x106 MSCs in the vesicular glands of bulls with vesiculitis is safe and efficient, as it improved several parameters evaluated in this research, mainly the production of semen doses per ejaculate.
Collapse
Affiliation(s)
- Neimar Correa Severo
- School of Veterinary Medicine and Animal Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | | | | | - Renata Lançoni
- School of Veterinary Medicine and Animal Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
5
|
Yan Y, Kim BS, Chen X, Huang W, Lin L, Han W, Zhang Z, Zhang Y, Zhou G, Lei D, Chai G. 3D Printed Bioelastomer Scaffold for Mandibular Defect Repair Based on Rapid Distraction Therapy. Adv Healthc Mater 2025:e2405193. [PMID: 40491075 DOI: 10.1002/adhm.202405193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/15/2025] [Indexed: 06/11/2025]
Abstract
Mandibular distraction osteogenesis (MDO) is a widely recognized surgical method for treating mandibular hypoplasia. However, it still presents some limitations, including multiple hospital visits required by the long distraction period, and previous studies show that a shortened distraction period will easily lead to a non-union gap and suboptimal quality of the new bone. In this research, a 3D-printed customized PGS scaffold is constructed and combined it with rapid MDO to repair mandible defects. It not only accommodates the dynamically changing distraction gap but also meets the mandibular distraction model's high morphological requirements. The BMSCs-loaded PGS scaffolds also provide favorable osteogenic microenvironments. This approach helps shorten the distraction period and accelerates bone regeneration and osseointegration in the rapid distraction model of rabbit mandibles, showing promise for future clinical advancements in large-scale mandibular defect repair.
Collapse
Affiliation(s)
- Yingjie Yan
- Plastic and reconstructive surgery, Shanghai Red Cross Ninth People's Hospital: Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Byeong Seop Kim
- Plastic and reconstructive surgery, Shanghai Red Cross Ninth People's Hospital: Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Xiaojun Chen
- Plastic and reconstructive surgery, Shanghai Red Cross Ninth People's Hospital: Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Wenyi Huang
- Plastic and reconstructive surgery, Shanghai Red Cross Ninth People's Hospital: Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Li Lin
- Plastic and reconstructive surgery, Shanghai Red Cross Ninth People's Hospital: Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Wenqing Han
- Plastic and reconstructive surgery, Shanghai Red Cross Ninth People's Hospital: Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Ziwei Zhang
- Plastic and reconstructive surgery, Shanghai Red Cross Ninth People's Hospital: Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Yan Zhang
- Plastic and reconstructive surgery, Shanghai Red Cross Ninth People's Hospital: Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Guangdong Zhou
- Plastic and reconstructive surgery, Shanghai Red Cross Ninth People's Hospital: Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, P.R. China
| | - Dong Lei
- Plastic and reconstructive surgery, Shanghai Red Cross Ninth People's Hospital: Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, P.R. China
| | - Gang Chai
- Plastic and reconstructive surgery, Shanghai Red Cross Ninth People's Hospital: Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| |
Collapse
|
6
|
Mi Y, Wei D, Du B, Zhang R, Li J, Huang S, Zhang B, Ren J, Wu X. Effect of type 2 diabetes mellitus microenvironment on osteogenic capacity of bone marrow mesenchymal stem cells. Int Immunopharmacol 2025; 157:114724. [PMID: 40300360 DOI: 10.1016/j.intimp.2025.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
Type 2 diabetes mellitus (T2DM) often leads to delayed bone regeneration such as slow healing of fractures and bone defects. The number, status and osteogenic differentiation capacity of bone marrow mesenchymal stem cells (BMSCs) are extremely important in bone healing and bone regeneration. The T2DM microenvironment can have irreversible negative effects on BMSCs. In this paper, we review the molecular expression and altered proliferation, migration, and osteogenic differentiation capacity of BMSCs in the microenvironment of T2DM, it provides a new perspective to restore the normal function of T2DM-BMSCs, so as to save the damaged bone regeneration capacity.
Collapse
Affiliation(s)
- Yanling Mi
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Danni Wei
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Bingli Du
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Ran Zhang
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Jiadi Li
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Shuo Huang
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Binbin Zhang
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Juan Ren
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| | - Xiuping Wu
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| |
Collapse
|
7
|
Izawa H, Xiang C, Ogawa S, Hisanaga I, Yoshimoto T. Amelioration of female menopausal syndrome by intravenous administration of autologous menstrual blood-derived stem cells. Regen Ther 2025; 29:192-201. [PMID: 40225052 PMCID: PMC11992397 DOI: 10.1016/j.reth.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/29/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Menopausal syndrome is characterized by a wide range of physical and psychological symptoms in women aged 40s-50s as a result of hormonal fluctuations and age-related decline. Various treatments have been used to manage the symptoms, including hormone replacement therapy, but no effective causal therapies have yet been identified. Regenerative medicine has gained considerable attention as a promising approach to age-related problems, and mesenchymal stem cell therapies have been extensively studied. Recently, menstrual blood has emerged as a novel cell source of stem cells, called menstrual blood-derived stem cells (MenSCs), due to its non-invasive, regular and consistent collection from women. In this study, we have investigated the therapeutic potential of intravenous administration of autologous MenSCs on female menopausal syndromes. Methods Menstrual blood was collected from 15 patients aged 30s-60s with ovarian dysfunction using a menstrual cup, and MenSCs were isolated, cultured and expanded. Patients received either 3 × 107 cells or 1 × 108 cells intravenously 1 to 5 times at intervals of more than 1 month. Patient-reported symptoms were assessed using the Simplified Menopausal Index at pre-treatment and after 1, 3, 6, and 12 months, and safety assessments were performed. Serum estradiol and follicle-stimulating hormone levels were also measured by immunoassay. Results Almost all patients who received MenSCs experienced a sharp reduction in menopausal symptoms, including vasomotor, neuropsychiatric, and motor symptoms, one month after the first administration, and these symptoms remained low for 6 months. The Simplified Menopausal Index score was significantly reduced after treatment. The reducing potency of 1 × 108 MenSCs was greater than that of 3 × 107 MenSCs. Patients who received a higher number of MenSCs showed an increasing trend in estradiol levels and a decreasing trend in follicle-stimulating hormone levels. When MenSCs were administered to postmenopausal patients, this trend was more pronounced. Overall, no apparent serious adverse events were observed during these treatments. Conclusions The present results suggest that the administration of MenSCs improved menopausal symptoms and regulated hormonal balance without any serious adverse events. This is the first report on the promising therapeutic potential of cell-based therapy using autologous MenSCs for female menopausal syndrome.
Collapse
Affiliation(s)
- Hiromi Izawa
- Jingu-Gaien Woman Life Clinic, Shibuya-ku, Tokyo, Japan
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Beijing, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Seiji Ogawa
- Jingu-Gaien Woman Life Clinic, Shibuya-ku, Tokyo, Japan
- Fujita Medical Innovation Center Tokyo, Reproduction Center, Ota-ku, Tokyo, Japan
| | - Ichiro Hisanaga
- Jingu-Gaien Woman Life Clinic, Shibuya-ku, Tokyo, Japan
- Dai Nippon Printing Co., Ltd., Human Engineering Laboratory, Shinjuku-ku, Tokyo, Japan
- Ritsumeikan University, Art Research Center, Kyoto-shi, Kyoto, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
8
|
Saadh MJ, Ahmed HH, Sanghvi G, Bin Awang Isa MZ, Singh P, Kaur K, Kumar MR, Husseen B. Recent advances in the delivery of microRNAs via exosomes derived from MSCs, and their role in regulation of ferroptosis. Pathol Res Pract 2025; 270:155984. [PMID: 40315562 DOI: 10.1016/j.prp.2025.155984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025]
Abstract
Mesenchymal stem cell (MSC) therapy, with its unique properties, has garnered interest in cancer treatment. Exosomes (EXOs)-derived from MSC retain the paracrine components of MSCs and demonstrate increased stability, minimal immunogenicity, and low risk of unintended tumorigenesis. Enhanced endocytosis methods make them versatile delivery vehicles for therapeutic cargo. MSC-EXOs can either promote or inhibit carcinogenesis, mediated by paracrine factors and various RNA molecules, particularly microRNAs (miRNAs). The prospect of using MSC-EXOs as a delivery tool for antitumor miRNAs in solid tumor therapy is promising. Exosomes' intrinsic tumor-targeting abilities and low immunogenicity make them ideal for delivering miRNAs, which have shown potential as cancer therapeutics. miRNAs within MSC-EXOs molecules can stimulate tumor growth or induce non-apoptotic cell death pathways, such as ferroptosis, depending on context. Ferroptosis is a kind of controlled cell death that is associated with the pathophysiology of several illnesses and includes iron metabolism. There is growing evidence that miRNAs carried by exosomes derived from MSCs may control ferroptosis in tumor cells by altering key genes related to antioxidant defense, lipid peroxidation, and iron metabolism. Understanding their complex mechanisms in the tumor microenvironment and optimizing their cargo are critical steps toward harnessing their full therapeutic potential. This review provides a comprehensive overview of MSC-EXOs and their role in cancer treatment. We also discuss the potential of MSC-EXOs as delivery vehicles for miRNAs to enhance therapeutic efficacy, as well as the role of exosomal miRNAs in the induction of ferroptosis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | | | - Priyanka Singh
- NIMS School of Allied Sciences and Technology, NIMS University, Jaipur, Rajasthan 303121, India
| | - Kiranjeet Kaur
- Chandigarh Pharmacy College, Chandigarh Group of colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
9
|
Chen X, Xia Y, Min M, Qin L, Liu Y. Optimal dose of bone marrow mesenchymal stem cell transplantation for experimental ulcerative colitis. Regen Ther 2025; 29:177-183. [PMID: 40225050 PMCID: PMC11986536 DOI: 10.1016/j.reth.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 04/15/2025] Open
Abstract
Objective To investigate the optimal dose of bone marrow mesenchymal stem cell-transplantation for the ulcerative colitis rat. Methods The BMSC of SD rat were isolated, cultured and labelled with DAPI. SD rats were randomly distributed into 3 groups, Colitis was induced with immune-combined TNBS/ethanol in group A、B、C, 3 groups received caudal vein injection of 1 mL fluids, which contain cell number 1 × 106、5 × 106、1 × 107 separately. 5 rats in each group were sacrificed at day 7 and 14 after injection, Cryostat sections of gut, The number of BMSCs in colon and normal tissue surrounded was observed with fluorescent microscope. Results The DAPI marked BMSCs could been seen in the colic mucosa in each group on day 7、14, more cells in colon than the surrounding normal tissue, compared with 1 × 106 group, More cells in 5 × 106 group (P < 0.05), there were no significant difference (P > 0.05) between 5 × 106 group and 1 × 107 group. There were more cells in colon on 14 day than 7 day, and less in the surrounding normal tissue on 14 day than 7 day. Conclusions The density 5 × 106 is proper of bone mesenchymal stem cells for treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Pathology, Wuhan No.1 Hospital, Wuhan, 430030, China
| | - Yan Xia
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Min Min
- School of Clinical Medicine, School of Medicine, Hubei University of Science and Technology, Xianning, 437100, China
| | - Lingzhi Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yangsheng Liu
- Department of Neurology, Xianning First People's Hospital, Zhongnan Hospital of Wuhan University, Xianning Hospital, Xianning, 437100, China
| |
Collapse
|
10
|
Kawano Y, Kawano H, Busch S, Li AJ, Zhang J, Salama NA, Quarato ER, Georger M, Vdovichenko N, Azadniv M, Byun DK, LaMere EA, LaMere MW, Liesveld JL, Becker MW, Calvi LM. Monocytes/macrophages contamination disrupts functional and transcriptional characteristics of murine bone marrow- and bone-derived stromal cells. JBMR Plus 2025; 9:ziaf047. [PMID: 40329992 PMCID: PMC12054994 DOI: 10.1093/jbmrpl/ziaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 05/08/2025] Open
Abstract
Stromal cells are critical regulators of hematopoietic stem/progenitor cells and skeletal homeostasis. Although precise systems for functional analysis are critical to investigate mechanistically bone and bone marrow (BM)-derived stromal cells, the establishment of reproducible, highly enriched ex vivo methods for stromal cell isolation, culture and evaluation have been challenging, leading to inconsistent data on stromal cell function. In this work, we carefully tested ex vivo culture of murine stromal cells from BM and bone and discovered abundant and persistent contamination of monocytes and macrophages. We succeeded in establishing highly enriched ex vivo culture system for stromal cells by eliminating persistent monocytes and macrophages using selection against the immunological markers F4/80, Ly6C, and CD45. Transcriptional and functional assays of enriched stromal cell culture revealed differential characteristics of stromal cells from different origins, a dormant signature for bone-derived cells and a highly proliferative progenitor-like signature for BM-derived cells. Monocyte and macrophage contamination reduced signatures of immature stromal cells such as expression levels of SOX9 and CD140a as well as the cells' ability to support hematopoietic stem and progenitor cells based on our growth factor-free co-culture system of hematopoietic cells and stromal cells followed by in vivo functional assays. The inhibitory effects of macrophages on stromal cells may be explained by their potent production of inflammatory cytokines such as CXCL2, CCL3, and complement factor (C1q) confirmed by protein immunoassay of culture supernatant, as well as the differential contribution of pre-osteoblasts to the stromal cell population. This study highlights the functional diversity of stromal cells depending on the microenvironment of origin while addressing a critical limitation of murine ex vivo systems. Our robust culture system enables the study of isolated stromal cells function as well as the impact of stromal cells-macrophage crosstalk.
Collapse
Affiliation(s)
- Yuko Kawano
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Hiroki Kawano
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Stephanie Busch
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Allison J Li
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Jane Zhang
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Emily R Quarato
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Mary Georger
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Nataliia Vdovichenko
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Mitra Azadniv
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Daniel K Byun
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Elizabeth A LaMere
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Mark W LaMere
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Jane L Liesveld
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Michael W Becker
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| |
Collapse
|
11
|
Ouchi T, Ando M, Kurashima R, Kimura M, Saito N, Iwasaki A, Sekiya H, Nakajima K, Hasegawa T, Mizoguchi T, Shibukawa Y. Pericytes Are Odontoblast Progenitor Cells Depending on ER Stress. J Dent Res 2025; 104:656-667. [PMID: 39905276 PMCID: PMC12075889 DOI: 10.1177/00220345241307944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Odontoblasts are terminally differentiated cells that exhibit mechanosensitivity and mineralization capacity. Mechanosensitive ion channels such as Piezo1 are present in odontoblasts and are associated with their physiological functions via Ca2+ signaling. Both Ca2+ signals via Ca2+ influx from mechanosensitive ion channels and Ca2+ release from Ca2+ stores function as secondary messenger systems for various biological phenomena. The endoplasmic reticulum (ER) serves as an intracellular Ca2+ store that mobilizes intracellular Ca2+. Changes in Ca2+ concentration inside the ER are among the factors that cause ER stress. Perivascular cells are located around odontoblasts in the dental pulp. Although such formation indicates that perivascular cells interact with odontoblasts, their detailed profiles under developmental and pathological conditions remain unclear. In this study, we revealed that pericyte marker, neural/glial antigen 2 (NG2)-positive cells, in cell-rich zones (CZs) can differentiate into Piezo1-positive odontoblasts following genetic odontoblast depletion in mice, and modeled as odontoblast death after severe dentin injury and as reparative dentin formation. NG2-positive pericytes differentiated into odontoblasts faster than glial cells. To determine how NG2-positive cells differentiate into Piezo1-positive odontoblasts, we focused on the ER-stress sensor protein, activating transcription factor 6a (ATF6a). After genetic odontoblast depletion, NG2-positive cells regenerated in the odontoblast layer and were capable of acting as functional odontoblasts. In the presence of extracellular Ca2+, the application of a sarco/ER Ca2+-ATPase (SERCA) inhibitor, thapsigargin, known as an ER-stress inducer, increased the intracellular Ca2+ concentration in the odontoblast lineage cells (OLCs). The increase was significantly inhibited by the application of a pharmacologic Piezo1 inhibitor, indicating that ER stress by SERCA inhibition augmented Piezo1-induced responses in odontoblast progenitor cells. However, the physiological activation of Gq-coupled receptors by adenosine diphosphate did not induce Piezo1 activation. Gene silencing of ATF6a and/or NG2 impaired the mineralization of OLCs. Overall, ATF6a orchestrates the differentiation of NG2-positive pericytes into functional odontoblasts that act as sensory receptor cells and dentin-forming cells.
Collapse
Affiliation(s)
- T. Ouchi
- Department of Physiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - M. Ando
- Department of Physiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - R. Kurashima
- Department of Physiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - M. Kimura
- Department of Physiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - N. Saito
- Department of Dental Anesthesiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - A. Iwasaki
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - H. Sekiya
- Department of Endodontics, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - K. Nakajima
- Department of Endodontics, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - T. Hasegawa
- Department of Physiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Oral Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - T. Mizoguchi
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Y. Shibukawa
- Department of Physiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
12
|
Xiang R, Jiali H, Xingxin L, Min W, Peng J, Neng N, Jing Z, Yizhou Z, Jinbo H, Meili G. IFN-γ Synergizes with TNF-α to Induce RIPK1-Independent Necroptosis of Mesenchymal Stem/Stromal Cells. Adv Biol (Weinh) 2025:e00577. [PMID: 40432483 DOI: 10.1002/adbi.202400577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/30/2025] [Indexed: 05/29/2025]
Abstract
IFN-γ and TNF-α are two vital inflammatory factors elevated aberrantly in many diseases. Such an inflammatory microenvironment is detrimental to residual cells such as mesenchymal stem cells (MSCs), yet the precise mechanisms are not fully understood. IFN-γ and TNF-α have distinct effects on the immunoregulatory properties of MSCs, and they have been proposed as optimal priming factors to enhance the immunosuppressive capacity of engineered MSCs. Thus, the overall effects of IFN-γ and/or TNF-α exposure on MSCs needs to be elucidated. Here, it is found that IFN-γ and TNF-α synergistically induce cell death of MSCs via necroptosis. When MSCs are exposed to both IFN-γ and TNF-α, their morphological features and biological functions are impaired. Mechanistically revealed by RNA-Sequencing, the injured MSCs undergo a unique cell death process, namely necroptosis. Compared with controls, IFN-γ synergized with TNF-α to increase the expression of RIPK1, RIPK3, MLKL, and all other genes associated with necroptosis. Rescue experiments further demonstrate that this process can be reversed by RIPK3 and MLKL inhibitors but not by the RIPK1 inhibitor, suggesting a RIPK1-independent pathway. Collectively, this study discloses an inflammatory injury mechanism of MSCs, which may shed new light on revealing the MSCs deficits in many inflammatory diseases with expectations to inspire potential targeted therapies. In addition, inflammatory impairment should be taken into consideration when delivering cell therapy based on MSCs primed with IFN-γ and TNF-α.
Collapse
Affiliation(s)
- Ren Xiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Huo Jiali
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Li Xingxin
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Wang Min
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Jin Peng
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Nie Neng
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Zhang Jing
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Zheng Yizhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Huang Jinbo
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Ge Meili
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| |
Collapse
|
13
|
Jin J, Li Q, Zhang Y, Ji P, Wang X, Zhang Y, Yuan Z, Jiang J, Tian G, Cai M, Feng P, Wu Y, Wang P, Liu W. METTL9 mediated N1-Histidine methylation of SLC39A7 confers ferroptosis resistance and inhibits adipogenic differentiation in mesenchymal stem cells. Mol Med 2025; 31:206. [PMID: 40414869 DOI: 10.1186/s10020-025-01271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/16/2025] [Indexed: 05/27/2025] Open
Abstract
Osteoporosis is a prevalent systemic metabolic disease, and an imbalance in the adipogenic and osteogenic differentiation of mesenchymal stem cells (MSCs) plays a crucial role in its pathogenesis. Thus, elucidating the mechanisms that regulate MSC lineage allocation is urgently needed. METTL9 was recently characterized as a novel N1-histidine methyltransferase that performs a wide range of functions. however, the role of METTL9 in the imbalance of MSC differentiation in osteoporosis remains unclear. In this study, we found that METTL9 expression was downregulated in osteoporosis, and further adipogenic functional experiments revealed that METTL9 negatively regulated the adipogenic differentiation of MSCs both in vitro and in vivo. Mechanistically, METTL9 mediated methylation of SLC39A7 at the His45 and His49 residues suppressed ferroptosis through the endoplasmic reticulum (ER) stress regulatory protein kinase R-like endoplasmic reticulum kinase (PERK)/ATF4 signaling pathway and the downstream protein SLC7A11. Moreover, SLC7A11 transported cystine for intracellular glutathione synthesis, eliminating intracellular reactive oxygen species (ROS) and inhibiting MSC adipogenic differentiation. Additionally, METTL9 overexpression significantly alleviated bone loss in ovariectomy (OVX) model mice. In summary, our results suggest that the METTL9/SLC39A7 axis may be a promising diagnostic and therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Jiahao Jin
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Quanfeng Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Yunhui Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Pengfei Ji
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Xinlang Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Yibin Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Zihao Yuan
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Jianan Jiang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Guangqi Tian
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Mingxi Cai
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Pei Feng
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
| | - Yanfeng Wu
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China.
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China.
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China.
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China.
| |
Collapse
|
14
|
Wang Z, Hu Y, Li M, Chen X, Zhou C, Xu Z, Chen K, Wu L. GPx3 marks adipocyte lineage commitment in bone marrow stromal cells. J Orthop Surg Res 2025; 20:502. [PMID: 40410842 PMCID: PMC12102944 DOI: 10.1186/s13018-025-05908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Accepted: 05/10/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Bone marrow adipose tissue (BMAT) plays an essential role in skeletal health and systemic metabolism, particularly under conditions of ageing and osteoporosis. Despite increasing recognition of BMAT as an active endocrine organ, the molecular mechanisms underlying its formation and expansion remain incompletely understood. METHODS We conducted a transcriptomic re-analysis of publicly available datasets focused on the adipogenic differentiation of bone marrow stromal cells (BMSCs). Differential gene expression and pathway enrichment analyses were performed to identify key molecular changes. Validation was conducted at both the transcript and protein levels. Furthermore, re-analysis of single-cell RNA sequencing (scRNA-seq) data was employed to determine the cell type-specific expression of candidate genes within the bone marrow. Functional assays using RNA interference were carried out to investigate the role of glutathione peroxidase 3 (GPx3) in adipogenesis. RESULTS Our analysis revealed a consistent activation of oxidative stress-related pathways during adipogenic differentiation. Among the upregulated antioxidant enzymes, GPx3 was selectively increased during adipogenic-but not osteogenic-differentiation. This pattern was validated at both mRNA and protein levels in vitro. scRNA-seq analysis showed that GPx3 expression is predominantly localized in BMSCs and adipocytes, with reduced expression observed in aged mice, corresponding to elevated levels of adipocyte-related genes. In vitro functional experiments demonstrated that GPx3 knockdown significantly promoted adipogenic differentiation of BMSCs. CONCLUSION These findings indicate that GPx3 is closely associated with adipocyte lineage commitment within the bone marrow microenvironment and may serve as a key modulator of BMSC fate. This study underscores the potential role of antioxidant enzymes such as GPx3 in the regulation of age-related bone-fat imbalance and highlights their relevance in metabolic bone disorders.
Collapse
Affiliation(s)
- Zhongxiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Yangyang Hu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Mao Li
- Department of Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiaojun Chen
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Chengyu Zhou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zhiyang Xu
- The First Clinical School, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Kai Chen
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia.
| | - Lichuang Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
15
|
Ruan T, Han J, Xue C, Wang F, Lin J. Mesenchymal stem cells protect the integrity of the alveolar epithelial barrier through extracellular vesicles by inhibiting MAPK-mediated necroptosis. Stem Cell Res Ther 2025; 16:250. [PMID: 40390004 PMCID: PMC12090679 DOI: 10.1186/s13287-025-04388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 05/09/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Alveolar‒capillary barrier disruption is a hallmark of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). The contribution of necroptosis to the compromised alveolar-barrier in ALI remains unclear. Mesenchymal stem cells (MSCs) may contribute to tissue repair in ALI and ARDS. Here we evaluated the efficacy and explored the molecular mechanisms of menstrual blood-derived endometrial stem cells (MenSCs) and MenSC-derived extracellular vesicles (MenSC-EVs) in ALI-induced alveolar epithelial barrier dysfunction. METHODS Human lung epithelial cells were stimulated with endotoxin and treated with MenSCs or MenSC-EVs, and their barrier properties were evaluated. Lipopolysaccharide (LPS)-injured mice were treated with MenSCs or MSC-EVs, and the degree of lung injury and the alveolar epithelial barrier of the lung tissue were assessed. RESULTS We found that MenSCs reduced lung injury and restored alveolar-barrier integrity in lung tissue. In vitro, MenSCs reduced paracellular permeability and restored barrier integrity in human lung epithelial cells. MenSC-EVs replicated all these MenSC-mediated changes. Mechanistic research revealed that MenSCs inhibited MAPK signaling and necroptosis. JNK inhibition SP600125, and ERK inhibition U0126 or inhibition of necroptosis with Nec-1 or GSK872 diminished the beneficial anti-epithelial barrier dysfunction effects of MenSCs or MenSC-EVs. CONCLUSIONS Our results suggest that human menstrual blood-derived endometrial stem cells mitigate lung injury and improve alveolar barrier properties by inhibiting MAPK-mediated necroptosis through extracellular vesicles, supporting the application of MenSCs or MenSC-derived extracellular vesicles to treat ALI or ARDS.
Collapse
Affiliation(s)
- Tao Ruan
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jiaming Han
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chengxu Xue
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Fengyuan Wang
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Juntang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
16
|
Dupont S. Mechano-metabolism on the rise. Curr Opin Cell Biol 2025; 95:102529. [PMID: 40381432 DOI: 10.1016/j.ceb.2025.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 05/20/2025]
Abstract
Cells respond to the physical and geometrical tissue properties by multiple mechanotransduction mechanisms that can profoundly influence cells' decision-making, extending to cell metabolism. This review incorporates the most recent findings on this topic, organized along the idea that the mechano-metabolic connection serves three main functions, namely to inform systemic metabolism on the general functioning of a tissue/organ, to tune cells' energy production with the mechanical requirements imposed by their surroundings, and to coordinate cell metabolism with cell fate choices induced in response to mechanical cues. This connection highlights the pervasive influence of mechanical cues on cell activity, opens interesting questions on its physiological and pathological roles, and lays the foundations for exploiting the mechano-metabolism axis to design new therapeutic approaches.
Collapse
Affiliation(s)
- Sirio Dupont
- Department of Molecular Medicine, University of Padova, via Bassi 58/B, 35131, Padova, IT, Italy.
| |
Collapse
|
17
|
Wang F, Yin L, Hu Y. Progress of extracellular vesicles-based system for tumor therapy. J Control Release 2025; 381:113570. [PMID: 39993635 DOI: 10.1016/j.jconrel.2025.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The increasing number of new cancer cases and cancer-related deaths worldwide highlights the urgent need to develop novel anti-tumor treatment methods to alleviate the current challenging situation. Nearly all organisms are capable of secreting extracellular vesicles (EVs), and these nano-scale EVs carrying biological molecules play an important role in intercellular communication, further affecting various physiological and pathological processes. Notably, EVs from different sources have differences in their characteristics and functions. Consequently, diverse EVs have been utilized as drug or vaccine delivery carriers for improving anti-tumor treatment due to their good safety, ease of modification and unique properties, and achieved satisfactory results. Meanwhile, the clinical trials of EV-based platform for tumor therapy are also continuously being conducted. Therefore, in this review, we summarize the recent research progress of EV-based tumor treatment methods, including the introduction of main sources and unique functions of EVs, the application of EVs in tumor treatment as well as their prospects and challenges. Additionally, considering the unique advantages of artificial EVs over natural EVs, we also highlighted their characteristics and applications in tumor treatments. We believe that this review will help researchers develop novel EV-based anti-tumor platforms through a bottom-up design and accelerate the development in this field.
Collapse
Affiliation(s)
- Fei Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-tech Institute, Renai Road 150, Suzhou Industrial Park, Suzhou 215123, China
| | - Le Yin
- Affiliated Tongzhou Hospital of Xinglin College, Nantong University, 999 Jianshe Road, Jinsha Town, Tongzhou District, Nantong, Jiangsu 226300, China.
| | - Yong Hu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-tech Institute, Renai Road 150, Suzhou Industrial Park, Suzhou 215123, China.
| |
Collapse
|
18
|
Mao W, Liu X, Chen C, Luo T, Yan Z, Wu L, An Z. Roles for Exosomes from Various Cellular Sources in Spinal Cord Injury. Mol Neurobiol 2025:10.1007/s12035-025-05040-y. [PMID: 40347375 DOI: 10.1007/s12035-025-05040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/04/2025] [Indexed: 05/12/2025]
Abstract
Spinal cord injury (SCI) is a severe disorder characterized by regeneration challenges in the central nervous system (CNS), resulting in permanent paralysis, loss of sensation, and abnormal autonomic functions. The complex pathophysiology of SCI poses challenges to traditional treatments, highlighting the urgent need for novel treatment approaches. Exosomes have emerged as promising candidates for SCI therapy because of their ability to deliver a wide range of bioactive molecules, such as RNAs, proteins, and lipids, to target cells with minimal immunogenicity, which contribute to anti-inflammatory, anti-apoptotic, autophagic, angiogenic, neurogenic, and axon remodeling activities. In this study, we classified exosomes from different sources into four categories based on the characteristics of the donor cells (mesenchymal stem cells, neurogenic cells, immune cells, vascular-associated cells) and provided a detailed summary and discussion of the current research progress and future directions for each source. We also conducted an in-depth investigation into the applications of engineered exosomes in SCI therapy, focusing on their roles in drug delivery and combination with surface engineering technologies and tissue engineering strategies. Finally, the challenges and prospects of exosomal clinical applications in SCI repair are described.
Collapse
Grants
- (No.202301039) Key Science and Technology planning project of Tongxiang City, Zhejiang Province, China
- (No.202301039) Key Science and Technology planning project of Tongxiang City, Zhejiang Province, China
- (No.202301039) Key Science and Technology planning project of Tongxiang City, Zhejiang Province, China
- (No.202301039) Key Science and Technology planning project of Tongxiang City, Zhejiang Province, China
- (No.202301039) Key Science and Technology planning project of Tongxiang City, Zhejiang Province, China
- (No.202301039) Key Science and Technology planning project of Tongxiang City, Zhejiang Province, China
- (No.202301039) Key Science and Technology planning project of Tongxiang City, Zhejiang Province, China
- (Zhejiang Health Commission Traditional Chinese Medicine [2019] No.1)). "13th Five-Year Plan" Traditional Chinese Medicine Key Specialty Construction Project of Zhejiang Province, China
- (Zhejiang Health Commission Traditional Chinese Medicine [2019] No.1)). "13th Five-Year Plan" Traditional Chinese Medicine Key Specialty Construction Project of Zhejiang Province, China
- (Zhejiang Health Commission Traditional Chinese Medicine [2019] No.1)). "13th Five-Year Plan" Traditional Chinese Medicine Key Specialty Construction Project of Zhejiang Province, China
- (Zhejiang Health Commission Traditional Chinese Medicine [2019] No.1)). "13th Five-Year Plan" Traditional Chinese Medicine Key Specialty Construction Project of Zhejiang Province, China
- (Zhejiang Health Commission Traditional Chinese Medicine [2019] No.1)). "13th Five-Year Plan" Traditional Chinese Medicine Key Specialty Construction Project of Zhejiang Province, China
- (Zhejiang Health Commission Traditional Chinese Medicine [2019] No.1)). "13th Five-Year Plan" Traditional Chinese Medicine Key Specialty Construction Project of Zhejiang Province, China
Collapse
Affiliation(s)
- Wangnan Mao
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinghao Liu
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Chen
- Orthopedic Traumatology II, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Tongfu Luo
- The Second People's Hospital of Tongxiang City, Jiaxing, China
| | - Zheng Yan
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lianguo Wu
- Orthopedic Traumatology II, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Zhongcheng An
- Orthopedic Traumatology II, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
19
|
Liu J, Lin Z, Wu H, Zhang J, Wang F, Wang L, Lu S, Gao J. Dual-regulation biomimetic composite nerve scaffold with oriented structure and conductive function for skin peripheral nerve injury repair. Colloids Surf B Biointerfaces 2025; 253:114768. [PMID: 40347663 DOI: 10.1016/j.colsurfb.2025.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Skin peripheral nerve injury repair still faces significant clinical challenges. Although nerve tissue engineering scaffolds show potential, issues such as limited functionality and low repair efficiency persist. This study developed a dual-regulation biomimetic composite nerve scaffold with oriented structure and conductive function to promote nerve injury repair. The structural layer was a chitosan (CS)/polycaprolactone (PCL) oriented nanofiber membrane, which could promote cell adhesion and induce directional growth of cells. The functional layer was a CS/sodium alginate (SA) ionic conductive hydrogel, which could enhance endogenous electric fields to promote cell proliferation and differentiation. The two layers were combined through physical crosslinking, avoiding the use of chemical adhesives and preserving the surface morphology of the nanofibrous membrane and the porous structure of the hydrogel. The biomimetic composite nerve scaffold exhibited layered degradability, excellent orientation, conductivity, and biocompatibility. Cell experiments indicated that the scaffold effectively induced directional migration, growth, and differentiation of cells and enhanced cell activity, thereby providing a favorable microenvironment for nerve regeneration. This study not only overcomes the limitation of functional singularity in traditional nerve scaffolds but also aligns with the forefront trend in tissue engineering toward multifunctional and biomimetic materials. It demonstrates great potential for treating complex conditions such as traumatic nerve defects and post-surgical nerve regeneration and has broad application prospects in the field of neural tissue engineering.
Collapse
Affiliation(s)
- Jinzhi Liu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Zhiyuan Lin
- Hantech Medical Device Co. Ltd., No.288 Sanheng Road, Changhe Industrial Park, Cixi, Ningbo 315326, China
| | - Huanyou Wu
- Hantech Medical Device Co. Ltd., No.288 Sanheng Road, Changhe Industrial Park, Cixi, Ningbo 315326, China
| | - Jianming Zhang
- Hantech Medical Device Co. Ltd., No.288 Sanheng Road, Changhe Industrial Park, Cixi, Ningbo 315326, China
| | - Fujun Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China
| | - Lu Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China
| | - Shuliang Lu
- Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Jing Gao
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China.
| |
Collapse
|
20
|
Ramanathan M, Rahman MM, Shijirbold A, Mahmod MR, Miyauchi H, Matsuzaki Y, Kanno T, Fujita Y. Evaluation of Outgrowth Potential of Rat Pheochromocytoma Cells Supplied with Highly Purified Rapidly Expanding Clones and Potential Application to Trigeminal Nerve Regeneration. NEUROSCI 2025; 6:39. [PMID: 40407612 PMCID: PMC12101362 DOI: 10.3390/neurosci6020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND Mesenchymal stem/stromal cells (MSCs) are non-hematopoietic, plastic-adherent, and self-renewing cells capable of in vitro trilineage differentiation into fat, bone, and cartilage tissue. Suggestively, MSCs have additional plasticity, as demonstrated by their ability to differentiate in vitro into myocytes, neuron-like cells, and hepatocytes. MSCs are ideal for therapeutic application owing to their numerous advantages; they exhibit limited growth and differentiation abilities, leading to heterogeneous cell populations with inconsistent functions. However, highly purified MSCs, namely, rapidly expanding clones (RECs) that are isolated by single-cell sorting, display uniform functionality. RECs have the potential to offer many benefits, such as transplantable cells for treating several disorders of bone, heart, peripheral nerves, brain, and other organs. This study aimed to assess the effects of RECs on the pheochromocytoma (PC12) cell line, a well-known neuronal cell model. METHODS PC12 cells were cultured under the following conditions: co-culture with RECs, treatment with REC-derived conditioned medium (CM), or co-culture with RECs using Transwell inserts for 7 days. The cells were stained with anti-βIII-tubulin antibody; the lengths of neurites were measured by image analysis. RESULTS Regarding the co-culture with RECs, PC12's outgrowth was significantly increased. The RECs expressed nerve growth factor (NGF), a neurotrophic factor that could act on PC12 cells to trigger cellular differentiation. CONCLUSIONS Our findings suggest that RECs via direct culture, intercellular communication in Transwell culture, and RECs CM promoted PC12 cell survival and outgrowth via NGF signaling.
Collapse
Affiliation(s)
- Mrunalini Ramanathan
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo City 693-8501, Shimane, Japan; (M.R.); (A.S.)
| | - Md. Mahbobur Rahman
- Department of Anatomy and Developmental Biology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo City 693-8501, Shimane, Japan
| | - Ankhtsetseg Shijirbold
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo City 693-8501, Shimane, Japan; (M.R.); (A.S.)
| | - Md. Rashel Mahmod
- Department of Anatomy and Developmental Biology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo City 693-8501, Shimane, Japan
| | - Hiromi Miyauchi
- PuREC Co., Ltd., 89-1 Enya-cho, Izumo City 693-8501, Shimane, Japan
| | - Yumi Matsuzaki
- PuREC Co., Ltd., 89-1 Enya-cho, Izumo City 693-8501, Shimane, Japan
- Department of Life Science, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo City 693-8501, Shimane, Japan
| | - Takahiro Kanno
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo City 693-8501, Shimane, Japan; (M.R.); (A.S.)
| | - Yuki Fujita
- Department of Anatomy and Developmental Biology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo City 693-8501, Shimane, Japan
| |
Collapse
|
21
|
Xiong J, Guo Q, Luo X. Cellular senescence in age-related musculoskeletal diseases. Front Med 2025:10.1007/s11684-025-1125-7. [PMID: 40314896 DOI: 10.1007/s11684-025-1125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/16/2024] [Indexed: 05/03/2025]
Abstract
Aging is typically associated with decreased musculoskeletal function, leading to reduced mobility and increased frailty. As a hallmark of aging, cellular senescence plays a crucial role in various age-related musculoskeletal diseases, including osteoporosis, osteoarthritis, intervertebral disc degeneration, and sarcopenia. The detrimental effects of senescence are primarily due to impaired regenerative capacity of stem cells and the pro-inflammatory environment created by accumulated senescent cells. The secreted senescence-associated secretory phenotype (SASP) can induce senescence in neighboring cells, further amplifying senescent signals. Although the removal of senescent cells and the suppression of SASP factors have shown promise in alleviating disease progression and restoring musculoskeletal health in mouse models, clinical trials have yet to demonstrate significant efficacy. This review summarizes the mechanisms of cellular senescence in age-related musculoskeletal diseases and discusses potential therapeutic strategies targeting cellular senescence.
Collapse
Affiliation(s)
- Jinming Xiong
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Qiaoyue Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| |
Collapse
|
22
|
Dave U, Rubin J, Shah H, Gerhold C, McCormick JR, Bi AS, Yuh C, Rossi LA, Chahla J. Bone marrow aspirate concentrate (BMAC) harvested in the axial and appendicular skeleton does not differ in progenitor cell count: A systematic review and meta-analysis. J Orthop 2025; 63:216-223. [PMID: 40313480 PMCID: PMC12041762 DOI: 10.1016/j.jor.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction Bone marrow aspirate concentrate (BMAC) is a reliable source of progenitor cells that facilitate healing, and it is typically harvested from the iliac crest. The purpose of this systematic review and meta-analysis was to compare total nucleated cell (TNC) count and the presence of colony-forming units (CFUs) in BMAC harvested from axial versus appendicular harvest sites. Methods In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, PubMed, Embase, and Cochrane Library databases were searched in August 2024 for studies published after 2004. Studies were included if they evaluated cell counts within BMAC samples harvested from males and females of any age and were prospective. Studies that had no reported cell count within BMAC samples, had evaluations of biologic material other than BMAC, or were translational or cadaveric studies, as well as review articles or technical notes, were excluded. Patients were divided into two cohorts based on whether BMAC was harvested from their axial or appendicular skeleton. Results The initial search identified 2126 studies, of which 15 non-randomized prospective studies with a total of 583 patients were included. Each study had low risk of bias. In the axial skeleton, TNC counts ranged from 0.1-502 × 106 cells/mL, and CFU concentration ranged from 0 to 807 CFU/mL. In the appendicular skeleton, TNC counts ranged from 0.1-87 × 106 cells/mL and CFU counts ranged from 0 to 802.7 CFU/mL. No significant differences in TNC or CFU count in BMAC harvested from the axial versus appendicular skeleton were observed. Conclusions BMAC harvested from the axial and appendicular skeletons demonstrate significant variability in progenitor cell concentration. These findings suggest that harvesting at appendicular sites near the operative location allows the surgeon to extract sufficient quality BMAC as compared to harvest sites within the axial skeleton, such as the iliac crest. Level of evidence Level II, systematic review of level II studies.
Collapse
Affiliation(s)
- Udit Dave
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jared Rubin
- University of Illinois College of Medicine at Chicago, Chicago, IL, USA
| | - Harshal Shah
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Cameron Gerhold
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | | | - Andrew S. Bi
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Catherine Yuh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | | | - Jorge Chahla
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
23
|
Chen Z, Xu L, Yuan Y, Zhang S, Xue R. Metabolic crosstalk between platelets and cancer: Mechanisms, functions, and therapeutic potential. Semin Cancer Biol 2025; 110:65-82. [PMID: 39954752 DOI: 10.1016/j.semcancer.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Platelets, traditionally regarded as passive mediators of hemostasis, are now recognized as pivotal regulators in the tumor microenvironment, establishing metabolic feedback loops with tumor and immune cells. Tumor-derived signals trigger platelet activation, which induces rapid metabolic reprogramming, particularly glycolysis, to support activation-dependent functions such as granule secretion, morphological changes, and aggregation. Beyond self-regulation, platelets influence the metabolic processes of adjacent cells. Through direct mitochondrial transfer, platelets reprogram tumor and immune cells, promoting oxidative phosphorylation. Additionally, platelet-derived cytokines, granules, and extracellular vesicles drive metabolic alterations in immune cells, fostering suppressive phenotypes that facilitate tumor progression. This review examines three critical aspects: (1) the distinctive metabolic features of platelets, particularly under tumor-induced activation; (2) the metabolic crosstalk between activated platelets and other cellular components; and (3) the therapeutic potential of targeting platelet metabolism to disrupt tumor-promoting networks. By elucidating platelet metabolism, this review highlights its essential role in tumor biology and its therapeutic implications.
Collapse
Affiliation(s)
- Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Xu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yejv Yuan
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
24
|
Zhang P, Xin Y, Yuan H, Liu Z. Identification of the crucial roles of BAX high NK cells in human derived mesenchymal stem cell therapy for chronic heart failure patients. Pathol Res Pract 2025; 269:155924. [PMID: 40174277 DOI: 10.1016/j.prp.2025.155924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Mesenchymal stem cells (MSCs) have demonstrated significant potential in heart failure (HF) treatment, but the exact mechanisms are still not fully understood. This research utilized single-cell RNA sequencing to examine alterations in peripheral blood mononuclear cells from heart failure patients pre- and post-MSC therapy. Moreover, we utilized Mendelian randomization (MR) analysis to identify causal genes linked to HF. Specifically, through scRNA-seq, we observed a progressive increase in Natural Killer (NK) cells within peripheral blood mononuclear cells (PBMCs) following MSC treatment. Furthermore, MR analysis identified the differentially expressed gene (DEG) BAX as a potential target gene for HF. Notably, the expression of BAX was significantly downregulated after MSC treatment, suggesting its potential as a therapeutic response biomarker. Cell-cell communication analysis revealed that BAXhigh NK cells displayed reduced cell-cell communication and increased apoptotic activity. Enrichment analysis indicated an association between BAXhigh NK cells and the "coagulant" pathway. Taken together, our findings suggest that BAX may contribute to the pathogenesis of HF by promoting coagulation and apoptotic pathways. In contrast, MSCs appear to suppress BAX expression, thereby inhibiting these pathways. MSC treatment increases the proportion of NK cells and reduces BAXhigh NK cells, ultimately improving NK cell function, and ameliorating HF.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200092, China; Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yuanfeng Xin
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200092, China; Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, Shanghai 200120, China; Shanghai Engineering Research Center for Stem Cell Clinical Treatment, Shanghai 200123, China
| | - Hui Yuan
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhongmin Liu
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200092, China; Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, Shanghai 200120, China; Shanghai Engineering Research Center for Stem Cell Clinical Treatment, Shanghai 200123, China.
| |
Collapse
|
25
|
Surico PL, Barone V, Singh RB, Coassin M, Blanco T, Dohlman TH, Basu S, Chauhan SK, Dana R, Di Zazzo A. Potential applications of mesenchymal stem cells in ocular surface immune-mediated disorders. Surv Ophthalmol 2025; 70:467-479. [PMID: 39097173 DOI: 10.1016/j.survophthal.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
We explore the interaction between corneal immunity and mesenchymal stem/stromal cells (MSCs) and their potential in treating corneal and ocular surface disorders. We outline the cornea's immune privilege mechanisms and the immunomodulatory substances involved. In this realm, MSCs are characterized by their immunomodulatory properties and regenerative potential, making them promising for therapeutic application. Therefore, we focus on the role of MSCs in immune-mediated corneal diseases such as dry eye disease, corneal transplantation rejection, limbal stem cell deficiency, and ocular graft-versus-host disease. Preclinical and clinical studies demonstrate MSCs' efficacy in promoting corneal healing and reducing inflammation in these conditions. Overall, we emphasize the potential of MSCs as innovative therapies in ophthalmology, offering promising solutions for managing various ocular surface pathologies.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Vincenzo Barone
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Marco Coassin
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Tomas Blanco
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas H Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Sayan Basu
- Brien Holden Eye Research Centre (BHERC), L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Antonio Di Zazzo
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy.
| |
Collapse
|
26
|
Zhang L, Ji C, Li Z, Jiwa H, Xie Z, Luo X, Luo J. Sonic Hedgehog potentiates BMP9-induced osteogenic differentiation of mesenchymal stem cells. Genes Dis 2025; 12:101308. [PMID: 40070367 PMCID: PMC11894376 DOI: 10.1016/j.gendis.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 03/14/2025] Open
Abstract
Bone morphogenetic protein 9 (BMP9) has remarkable potential to induce the differentiation of mesenchymal stem cells (MSCs) towards the osteoblastic lineage. Additionally, research suggests that certain growth factors have the ability to potentiate BMP9-induced osteogenic differentiation of MSCs. Sonic Hedgehog (Shh) plays an indispensable role in the regulation of skeletal development. The objective of this research was to assess the potential influence of Shh on BMP9-induced osteogenic differentiation of MSCs. Our findings indicated that Shh effectively enhanced BMP9-induced early and late osteogenic differentiation of MSCs, and increased BMP9-induced expression/transcriptional activity of osteogenesis-related transcription factors. Besides, it was observed that Shh promoted BMP9-induced ectopic bone formation of MSCs in vivo. Moreover, BMP9 was able to facilitate the repair of bone defects in rats, while Shh further accelerated this reparative process. Mechanistically, Shh enhanced the activation of the Smad1/5/8 signaling pathway which was induced by BMP9. Furthermore, GANT-61, an inhibitor of Gli1 and Gli2, attenuated the enhancing effect of Shh on BMP9-induced osteogenic differentiation of MSCs. Collectively, the co-administration of BMP9 and Shh may present a promising therapeutic approach for the treatment of fracture nonunion, delayed fracture healing, and bone defects.
Collapse
Affiliation(s)
- Lulu Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, China
| | - Caixia Ji
- Department of Clinical Laboratory, People's Hospital of Deyang City, Deyang, Sichuan 618000, China
| | - Ziyun Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, China
| | - Habu Jiwa
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhou Xie
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinyong Luo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, China
| |
Collapse
|
27
|
Wang B, Lyu FJ, Deng Z, Zheng Q, Ma Y, Peng Y, Guo S, Lei G, Lai Y, Li Q. Therapeutic potential of stem cell-derived exosomes for bone tissue regeneration around prostheses. J Orthop Translat 2025; 52:85-96. [PMID: 40291635 PMCID: PMC12023751 DOI: 10.1016/j.jot.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
Artificial joint replacement is a widely recognized treatment for arthritis and other severe joint conditions. However, one of the primary causes of failure in joint replacements is the loosening of the prosthesis. After implantation, wear particles between the implant and the adjacent bone tissue are the principal contributors to this loosening. Recently, exosomes have garnered significant interest due to their low immunogenicity and effective membrane binding. They have shown potential in promoting bone regeneration via the paracrine pathway. This review examines the role and mechanisms of exosomes derived from mesenchymal stem cells (MSCs) in bone regeneration, their impact on the integration of various implants into surrounding bone tissue and current challenges and future directions for the clinical application of exosomes. The Translational Potential of this Article: Emerging evidence suggests that mesenchymal stem cell-derived exosomes may offer a promising therapeutic strategy for aseptic prosthesis loosening, potentially mediated through mechanisms such as modulation of inflammatory responses, suppression of osteoclastogenesis, enhancement of osteogenic differentiation and facilitation of bone regeneration. Preclinical studies further indicate that the therapeutic potential of these extracellular vesicles could be optimized through bioengineering strategies, including surface modification and cargo-loading techniques, warranting further investigation to advance their clinical translation.
Collapse
Affiliation(s)
- Biwu Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, China
| | - Feng-Juan Lyu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, China
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yujie Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Shantou University Medical College, Xinling Road 22, Shantou, 515041, China
| | - Shujun Guo
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Guihua Lei
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yonggang Lai
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qingtian Li
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
28
|
Wang LT, Wang HH, Jiang SS, Chang CC, Hsu PJ, Liu KJ, Sytwu HK, Yen BL, Yen ML. Lack of IFN-γ response of human uterine myometrium-derived MSCs significantly improve multiple IBD parameters compared to bone marrow MSCs: Implications for anti-TNFα-refractory patients. Pharmacol Res 2025; 215:107716. [PMID: 40154933 DOI: 10.1016/j.phrs.2025.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The clinical efficacy of mesenchymal stem cell (MSC) therapy for inflammatory bowel disease (IBD) is inconsistent and often fails to match promising preclinical findings. To improve outcome, we compared MSCs isolated from human uterine myometrium (Ut), a readily-available tissue source from a unique immune niche, to bone marrow (BM) MSCs, the most common source, in a murine IBD model with mechanisms underlying differential effects. In this study, human BMMSCs and UtMSCs were intravenously administered to mice with dextran sulfate sodium-induced colitis and evaluated for disease activity, microbiome composition, and cellular immunity. Bioinformatics analyses including patient data were performed to further specify involved mechanisms with subsequent functional validation performed. We found that UtMSC but not BMMSC treatment significantly reversed disease parameters by improving microbiome and reducing mesenteric lymph node IFN-γ and IL-17A-secreting T cells. Transcriptomic analysis revealed UtMSCs had reduced MHC II pathway activation compared to BMMSCs. Functional validation confirmed UtMSCs compared to BMMSCs expressed lower IFN-γ receptors, prevent MHC II-mediated human unstimulated T cell activation, and modulated stimulated T helper (Th) cells away from effector phenotypes while increasing regulatory T cells (Tregs) and IL-10 levels. Bioinformatics from IBD patients resistant to non-T cell-specific therapies implicated persistent MHC II-mediated Th1/Th17 activation as key drivers of disease. Overall, UtMSCs outperformed BMMSCs in improving microbiota, avoiding IFN-γ responses, and modulating overall Th responses, suggesting this MSC source may offer more significant effectiveness for IBD and Th1/Th17-mediated conditions. Our findings also highlight that understanding MSC source-specific therapeutic mechanisms is crucial for optimizing clinical therapies.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Huan Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | | | - Chia-Chih Chang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Ko-Jiunn Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; National Institute of Cancer Research, NHRI, Tainan, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan, Taiwan; Graduate Institute of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan; Department of Obstetrics & Gynecology, Cathay General Hospital Shiji, New Taipei, Taiwan.
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan.
| |
Collapse
|
29
|
Xu Q, Wang R, Sui K, Xu Y, Zhou Y, He Y, Hu Z, Wang Q, Xie X, Wang X, Yang S, Zeng L, Zhong JF, Wang Z, Song Q, Zhang X. Enhance the therapeutic efficacy of human umbilical cord-derived mesenchymal stem cells in prevention of acute graft-versus-host disease through CRISPLD2 modulation. Stem Cell Res Ther 2025; 16:222. [PMID: 40312744 PMCID: PMC12044869 DOI: 10.1186/s13287-025-04321-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) remains a major life-threatening complication of allogeneic haematopoietic cell transplantation (allo-HSCT), often limiting the therapeutic efficacy of allo-HSCT. Recent studies have suggested that mesenchymal stem cells (MSCs) may be beneficial for the treatment of aGVHD. However, the therapeutic potential of MSCs is often negatively impacted by their heterogeneity. METHODS To investigate MSCs heterogeneity, we conducted single-cell transcriptomic analysis of human umbilical cord-derived MSCs (HUC-MSCs) and identified key feature genes that distinguish MSCs subpopulations. The function of the newly discovered biomarker CRISPLD2 was also explored. We engineered human umbilical cord-derived MSCs (HUC-MSCs) to overexpress the CRISPLD2 gene using lentiviral vectors. The downstream regulatory effects of CRISPLD2 overexpression were assessed through bulk RNA sequencing. Additionally, we evaluated its impact on cellular senescence using Western blotting and β-galactosidase (SA-β-gal) staining. The immunoregulatory capability of HUC-MSCs was tested through coculture experiments with T cells and liver organoids in vitro. Mitochondrial function was analysed via flow cytometry and electron microscopy. The in vivo therapeutic effects of HUC-MSCs on aGVHD were evaluated using an aGVHD murine model. The graft-versus-leukaemia (GVL) effect was measured via the inoculation of luciferase-positive A20 cells, and tumour growth was monitored via bioluminescence imaging. RESULTS Our findings indicated that the CRISPLD2 gene is heterogeneously expressed in HUC-MSCs subsets characterized by stemness and immunosuppressive properties. Transcriptomic analysis revealed that CRISPLD2 overexpression suppressed calcium ion binding and G protein-coupled receptor signalling. In vitro studies demonstrated a marked increase in IL-10 secretion, which enhanced T-cell suppression in CRISPLD2-modified HUC-MSCs. The in vivo results demonstrated that transfusion of CRISPLD2-overexpressing HUC-MSCs ameliorated aGVHD while maintaining GVL activity. Mechanistically, CRISPLD2 overexpression overcomes the mitochondrial damage mediated by extracellular ATP and LPS in HUC-MSCs by inhibiting P2Y11 receptor signalling, thereby preserving their stemness and IL-10-mediated immunosuppressive functions. CONCLUSIONS Our study revealed that CRISPLD2 is a novel marker for identifying HUC-MSCs subpopulation with enhanced immunosuppressive functions. CRISPLD2 overexpression enhances the immunosuppressive function of HUC-MSCs by inhibiting P2Y11 receptor signalling. Targeting CRISPLD2 is a promising strategy to improve the therapeutic efficacy of HUC-MSCs in aGVHD while maintaining GVL activity.
Collapse
Affiliation(s)
- Qing Xu
- School of Life Sciences, Chongqing University, Chongqing, 405200, China
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Ke Sui
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Yuxi Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Ya Zhou
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Yuxuan He
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Ziyi Hu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Qi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Xiaodong Xie
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiang F Zhong
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Zheng Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China.
| | - Qingxiao Song
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Institute of Science Innovation for Blood Ecology and Intelligent Cells, Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
30
|
De Simone U, Caloni F, Pignatti P, Gaetano C, Locatelli CA, Coccini T. Human stromal cell-based protocol to generate astrocytes: a straightforward in vitro predictive strategy in neurotoxicology. Toxicol Mech Methods 2025; 35:340-355. [PMID: 39626968 DOI: 10.1080/15376516.2024.2435351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 05/04/2025]
Abstract
The inherent adaptability of human mesenchymal stromal cells (hMSCs) to differentiate into neural lineages provides a valuable resource for investigating potential neurotoxicity in humans. By harnessing the ability of hMSCs to transform into astrocytes, we can evaluate the effects of various agents on these vital cells. Our protocol employs hMSCs sourced from umbilical cord tissue, ensuring a readily available supply of high-quality cells. The hMSC-to-neural workflow encompasses six essential steps: hMSC culture, followed by the generation of embryoid bodies (EBs) from these cells on specialized surfaces. Next, EBs and cells are expanded in a growth-promoting medium, directing them toward neural lineages. Subsequent differentiation into immature astrocytes is achieved through the use of specific factors. The process continues with the maturation of EBs/cells into astrocyte-like cells (hALCs) under optimized conditions, culminating in the final development of hALCs in a specialized medium. This methodology yields cells that display astrocyte morphology and express characteristic markers such as GFAP and S100β. The protocol is efficient, requiring roughly 6 weeks to generate hALCs from primary hMSCs without genetic manipulation. The application of hMSCs in evaluating cell damage triggered by neurotoxicants like MeHg and MGO underscores their potential as a valuable component within a more extensive battery of neurotoxicity tests.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Center-National Toxicology Information Center, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesca Caloni
- Dipartimento di Scienze e Politiche Ambientali (ESP), Università degli Studi di Milano, Milan, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Center-National Toxicology Information Center, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Center-National Toxicology Information Center, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
31
|
Higa K, Murata D, Azuma C, Nishida K, Nakayama K. Promotion of bone-tendon healing after ACL reconstruction using scaffold-free constructs comprising ADSCs produced by a bio-3D printer in rabbit models. J Orthop Translat 2025; 52:265-275. [PMID: 40342550 PMCID: PMC12059222 DOI: 10.1016/j.jot.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/28/2025] [Accepted: 03/30/2025] [Indexed: 05/11/2025] Open
Abstract
Background/Objective: This study evaluated the impact of adipose tissue-derived mesenchymal stromal cells (ADSCs) on bone-tendon healing in rabbit anterior cruciate ligament (ACL) reconstruction. Methods Nineteen mature male Japanese White rabbits underwent bilateral ACL reconstruction. ADSC constructs were implanted in the right femoral bone tunnel of each rabbit (implant group), while the left knee served as the control group without implantation. Nine rabbits were sacrificed at 3 and 6 weeks post-surgery, while the remaining were sacrificed immediately post-surgery. Biomechanical and micro computed tomography evaluations were conducted on six rabbits, while histological observation was performed on the remaining three. Results showed: (1) The implant group exhibited a significantly greater failure load than the control group at 3 weeks post-surgery. (2) Initially, the amount of new bone in the femoral tunnel was lower in the implant group at 3 weeks but surpassed that of the control group by 6 weeks. (3) Histological analysis indicated faster bone-tendon healing in the implant group than that of the control. Conclusion These findings suggest a positive effect of ADSC constructs on bone-tendon healing post-ACL reconstruction in rabbits. However, further studies using larger animal models must confirm these effects comprehensively. The translational potential of this article The method of transplanting a scaffold-free autologous ADSC construct is a technique that can safely and reliably transplant ADSCs to the tendon-bone tunnel interface without using foreign substances. It can be applied to bone-tendon healing in ACL reconstruction surgery and other areas, such as the rotator cuff and Achilles tendon attachment site.
Collapse
Affiliation(s)
- Kotaro Higa
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, 1076 Kiyuna, Ginowan, 901-2720, Japan
| | - Daiki Murata
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, 1 Honjyo-machi, Saga, 840-8502, Japan
| | - Chinatsu Azuma
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, 1076 Kiyuna, Ginowan, 901-2720, Japan
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, 1076 Kiyuna, Ginowan, 901-2720, Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, 1 Honjyo-machi, Saga, 840-8502, Japan
| |
Collapse
|
32
|
Tang M, Li H, Chang S, Li Y, Nie H, Li F. Dysregulated circular RNAs in rheumatoid arthritis: Cellular roles and clinical prospects. Autoimmun Rev 2025; 24:103774. [PMID: 39956349 DOI: 10.1016/j.autrev.2025.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Rheumatoid arthritis (RA) is still a healthcare challenge, although current therapeutic strategies have substantially improved its clinical outcomes. The development of novel biomarkers and treatments can increase the likelihood of identification and disease remission in RA patients, especially for patients with seronegative RA and difficult-to-treat RA (D2T RA). Circular RNAs (circRNAs), a novel non-coding RNA species, have been reported to play crucial roles in various biological process of RA. The mechanistic functions of the dysregulated circRNAs in RA are primarily associated with miRNA sponging and regulating transcription. CircRNAs acting as miRNA sponges are further summarized by cell types, including fibroblast-like synoviocytes (FLSs), lymphocytes, macrophages, chondrocytes, and mesenchymal stem cells (MSCs)-/plasma-secreted exosomes. Besides, a description of dysregulated circRNAs in blood, synovial tissue and cartilage tissue suggests their diagnostic potential for RA. In addition, some directions for future research are provided to open the possibility that dysregulated cell- and tissue- specific circRNAs constituting a fresh reservoir of therapeutic targets, and biomarkers for diagnosis, predicting response to therapy, drug selection or patient stratification for RA.
Collapse
Affiliation(s)
- Mengshi Tang
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Systemic Autoimmune Disease in Hunan Province, Changsha, Hunan 410011, China
| | - Hongxing Li
- Department of Orthopaedics, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Orthopaedics, the Central Hospital of Shaoyang, Shaoyang, Hunan 422099, China
| | - Siyuan Chang
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Systemic Autoimmune Disease in Hunan Province, Changsha, Hunan 410011, China
| | - Yuanyuan Li
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Systemic Autoimmune Disease in Hunan Province, Changsha, Hunan 410011, China
| | - Huiyu Nie
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Systemic Autoimmune Disease in Hunan Province, Changsha, Hunan 410011, China
| | - Fen Li
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Systemic Autoimmune Disease in Hunan Province, Changsha, Hunan 410011, China.
| |
Collapse
|
33
|
Carrascal-Hernández DC, Martínez-Cano JP, Rodríguez Macías JD, Grande-Tovar CD. Evolution in Bone Tissue Regeneration: From Grafts to Innovative Biomaterials. Int J Mol Sci 2025; 26:4242. [PMID: 40362478 PMCID: PMC12072198 DOI: 10.3390/ijms26094242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Bone defects caused by various traumas and diseases such as osteoporosis, which affects bone density, and osteosarcoma, which affects the integrity of bone structure, are now well known. Given this situation, several innovative research projects have been reported to improve orthopedic methods and technologies that positively contribute to the regeneration of affected bone tissue, representing a significant advance in regenerative medicine. This review article comprehensively analyzes the transition from existing methods and technologies for implants and bone tissue regeneration to innovative biomaterials. These biomaterials have been of great interest in the last decade due to their physicochemical characteristics, which allow them to overcome the most common limitations of traditional grafting methods, such as the availability of biomaterials and the risk of rejection after their application in regenerative medicine. This could be achieved through an exhaustive study of the applications and properties of various materials with potential applications in regenerative medicine, such as using magnetic nanoparticles and hydrogels sensitive to external stimuli, including pH and temperature. In this regard, this review article describes the most relevant compounds used in bone tissue regeneration, promoting the integration of these biomaterials with the affected area's bone structure, thereby allowing for regeneration and preventing amputation. Additionally, the types of interactions between biomaterials and mesenchymal stem cells and their effects on bone tissue are discussed, which is critical for developing biomaterials with optimal regenerative properties. Furthermore, the mechanisms of action of the various biomaterials that enhance osteoconduction and osteoinduction, ensuring the success of orthopedic therapies, are analyzed. This enables the treatment of bone defects tailored to each patient's condition, thereby avoiding limb amputation. Consequently, a promising future for regenerative medicine is emerging, with various therapies that could revolutionize the management of bone defects, offering more efficient and safer solutions.
Collapse
Affiliation(s)
| | - Juan Pablo Martínez-Cano
- Ortopedia y Traumatología, Epidemiología Clínica, Fundación Valle del Lili, Universidad ICESI, Cali 760031, Colombia;
| | | | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Universidad del Atlántico, Puerto Colombia 081007, Colombia
| |
Collapse
|
34
|
Hirono K, Hayashi Y, Ogawa Y, Kino-Oka M, Sugiyama H. A Mathematical Model for Determining Probabilistic Design Space in Mesenchymal Stem Cell Passage Culture. Biotechnol Bioeng 2025. [PMID: 40276804 DOI: 10.1002/bit.29001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/17/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025]
Abstract
With their many therapeutic functions, mesenchymal stem cells (MSCs) are promising sources for regenerative medicine. However, in the manufacture of MSCs, without a method for exploring the effects of long-term passage on cell proliferation potentials, the design of passage culture processes is challenging. Here, for the process design of the MSC passage culture, we propose a model for predicting the growth rate as a function of the cumulative population doubling level (cPDL) for each passage. Three steps were implemented: (1) passage culture experiments to correlate apparent growth rate with cPDL were conducted, (2) a model for predicting the growth rate as a function of cPDL was developed, and (3) a model to design the passage culture of MSCs from bone marrow (BM-MSCs) and umbilical cord (UC-MSCs) with stochastic simulation was applied. Two design variables (passage number and harvesting time) were investigated to define feasible operation regions as probabilistic design spaces to meet three quality indicators (senescence level, confluency level, and total number of cells) with given probabilities. Consequently, 10 and 62 conditions out of 165 were identified as feasible for BM- and UC-MSCs, respectively, which would contribute to the industrial MSC passage culture process design.
Collapse
Affiliation(s)
- Keita Hirono
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | - Yusuke Hayashi
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuuki Ogawa
- Department of Biotechnology, Graduate School of Engineering, The University of Osaka, Osaka, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, The University of Osaka, Osaka, Japan
| | - Hirokazu Sugiyama
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Yang H, Yang H, Wang Q, Ji H, Qian T, Qiao Y, Shi J, Cong M. Mesenchymal stem cells and their extracellular vesicles: new therapies for cartilage repair. Front Bioeng Biotechnol 2025; 13:1591400. [PMID: 40343207 PMCID: PMC12058886 DOI: 10.3389/fbioe.2025.1591400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
Cartilage is crucial for joints, and its damage can lead to pain and functional impairment, causing financial burden to patients. Due to its weak self-repair, cartilage injury control is a research focus. Cartilage injury naturally with age, but mechanical trauma, lifestyle factors and certain genetic abnormalities can increase the likelihood of symptomatic disease progression. Current treatments for cartilage injury include pharmacological and surgical interventions, but these lack the ability to stop the progression of disease and restore the regeneration of the cartilage. Biological therapies have been evaluated but show varying degrees of efficacy in cartilage regeneration long-term. The mesenchymal stem cell (MSC) therapy attracts attention as it is easily harvested and expanded. Once thought to repair via differentiation, MSCs are now known to secrete extracellular vesicles (EVs) paracrinely. These EVs, rich in bioactive molecules, enable cell communication, boost growth factor secretion, regulate the synthesis and degradation of extracellular matrix (ECM), and modulate inflammation, vital for cartilage repair. However, further research and clinical validation are still required for the application of MSC and MSC-EVs. This review highlights the current state of research on the use of MSC and MSC-EVs in the treatment of cartilage injury. It is hoped that the review in this paper will provide valuable references and inspiration for future researchers in therapeutic studies of cartilage repair.
Collapse
Affiliation(s)
- Hongwei Yang
- Department of Orthopedics, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Haochen Yang
- School of Medicine, Nantong University, Nantong, China
| | - Qin Wang
- Department of Orthopedics, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Hanzhen Ji
- Department of Orthopedics, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Tianmei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Engineering Research Center of Integration and Application of Digital Learning Technology, Ministry of Education, Beijing, China
| | - Yusen Qiao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Junfeng Shi
- Department of Orthopedics, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
36
|
Elhaieg A, Farag A, Koung Ngeun S, Kaneda M, Yokoi A, Mandour AS, Tanaka R. Therapeutic Potential of Local and Systemic Adipose-Derived Mesenchymal Stem Cell Injections in a Rat Model of Experimental Periodontitis: Implications for Cardiac Function. Int J Mol Sci 2025; 26:3984. [PMID: 40362223 PMCID: PMC12071214 DOI: 10.3390/ijms26093984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Periodontitis is a common inflammatory disease that not only damages periodontal tissues but also induces systemic effects, including cardiac dysfunction. Mesenchymal stem cells (MSCs) offer regenerative potential due to their ability to differentiate, modulate immune responses, and secrete anti-inflammatory factors. However, the relative efficacy of local versus systemic MSC administration remains unclear. This study evaluated the therapeutic effects of adipose-derived MSCs (AD-MSCs) in a rat model of experimental periodontitis, comparing local and systemic administration. AD-MSCs were characterized based on morphology, surface marker expression, and differentiation potential. Ligature-induced periodontitis was established over 60 days, after which AD-MSCs (1 × 106 cells) were administered either supraperiosteally (local group) or intravenously (systemic group). Periodontal regeneration was assessed through clinical, radiographic, and histopathological analyses, while cardiac function was evaluated using echocardiography and histopathological examinations. Results demonstrated that local AD-MSC administration provided superior therapeutic benefits compared to systemic delivery. Locally administered cells significantly enhanced bone regeneration, reduced inflammation, and improved periodontal tissue architecture. In contrast, systemic administration offered moderate benefits but was less effective in restoring periodontal integrity. Similarly, in the heart, local treatment resulted in greater improvements in systolic function, as indicated by enhanced ejection fraction and fractional shortening, along with reduced myocardial fibrosis. Although systemic administration also provided cardioprotective effects, diastolic dysfunction persisted in both treatment groups. In conclusion, local AD-MSC administration proved more effective in regenerating periodontal tissues and mitigating cardiac dysfunction, highlighting its potential as an optimized therapeutic strategy for periodontitis and its systemic complications.
Collapse
Affiliation(s)
- Asmaa Elhaieg
- Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (A.F.)
| | - Ahmed Farag
- Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (A.F.)
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sai Koung Ngeun
- Department of Neurophysiology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Aimi Yokoi
- Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (A.F.)
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ryou Tanaka
- Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (A.F.)
| |
Collapse
|
37
|
Franco-da-Silva MM, Aubin MR, de Vasconcellos AA, Sirena DH, Marchaki GB, Ruggeri LR, Hennigen AF, Muradás T, da Silveira ABT, Braganhol E, Schuh RS, Baldo G, Araújo AB, Paz AH. Effects of chorionic mesenchymal stromal cells, their conditioned medium, and membrane particles on neutrophil functionality. Cell Tissue Res 2025:10.1007/s00441-025-03970-6. [PMID: 40261417 DOI: 10.1007/s00441-025-03970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Mesenchymal stromal cells (MSC) are multipotent cells that can modulate immune cells, affecting macrophages, monocytes, and lymphocytes. Neutrophils are circulating leucocytes responsible for the first line of defense and can assume different phenotypes depending on their environment: N0, the naïve form, N1 (inflammatory), N2 (anti-inflammatory). This study explores the potentially protective roles of chorionic membrane MSCs and their products-conditioned medium and pre-conditioned cMSC-derived membrane microparticles (MP-cMSC)-on neutrophils. Conditioned medium treatment reduced the rate of apoptosis and enhanced the immunosuppressive potential consistent with an anti-inflammatory profile. MP-cMSC are a noteworthy cell-free therapy, consisting of artificially generated circular lipid bilayer structures with no cargo and approximately 200 nm in size. When added to neutrophil culture, MPs increased neutral red uptake, suggesting an enhanced phagocytic activity. In the MSC co-culture group, a reduced rate of apoptosis, increased neutral red uptake, and elevated programed death-ligand 1 (PD-L1) expression were observed. These findings suggest that the distinct effects elicited by conditioned media, microparticles, and co-culture are likely influenced by the specific nature of the interactions involved-whether purely paracrine, mediated through direct cell-to-cell contact, or a combination of both.
Collapse
Affiliation(s)
- Monique Maria Franco-da-Silva
- Cells, Tissues and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Physiology, Basic Health Sciences Institute, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Mariana Rauback Aubin
- Cells, Tissues and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Physiology, Basic Health Sciences Institute, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Alessandra Amaral de Vasconcellos
- Cells, Tissues and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Physiology, Basic Health Sciences Institute, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Dienifer Hermann Sirena
- Cells, Tissues and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Physiology, Basic Health Sciences Institute, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Giovana Bangel Marchaki
- Cells, Tissues and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Laíza Rief Ruggeri
- Cells, Tissues and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - André Ferreira Hennigen
- Cells, Tissues and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Thaís Muradás
- Pharmaceutical Sciences - Graduate Program in Pharmaceutical Sciences, Pharmacy Faculty, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Ana Beatriz Tittoni da Silveira
- Cells, Tissues and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Elizandra Braganhol
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Roselena Silvestri Schuh
- Cells, Tissues and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Pharmaceutical Sciences - Graduate Program in Pharmaceutical Sciences, Pharmacy Faculty, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Guilherme Baldo
- Cells, Tissues and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Physiology, Basic Health Sciences Institute, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Anelise Bergmann Araújo
- Cell Processing Center, Hemotherapy Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Ana Helena Paz
- Cells, Tissues and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Graduate Program in Physiology, Basic Health Sciences Institute, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
38
|
Karimi M, Sheibani Pour M, Etemadi A, Karimi MA, Hodjat M, Chiniforush N. The photobiomodulation effects of continuous and pulsed blue diode laser on proliferation and osteogenic differentiation of periodontal ligament stem cells. Photochem Photobiol 2025. [PMID: 40251753 DOI: 10.1111/php.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/25/2025] [Accepted: 03/23/2025] [Indexed: 04/21/2025]
Abstract
This study investigated the photobiomodulation effect of pulsed and continuous blue diode laser on osteogenic differentiation and proliferation of periodontal ligament mesenchymal stem cells. Periodontal Ligament Stem cells were seeded in 96-well plates, and 450 nm blue laser irradiation procedure was performed a day after cell seeding. Each experimental group was divided into two subgroups according to their energy density and irradiation duration: Continuous wave (100 mW, 10s, 2 J/cm2 and 100 mW, 20 s, 4 J/cm2) and pulse wave (200 mW, 10 s, 2 J/cm2 and 200 mW, 20 s, 4 J/cm2 and duty cycle 50% for both). Then, all groups were evaluated with a cell viability test (MTT), cell apoptosis (Annexin V) on the second and fourth days after irradiation, Alizarin Red staining on the 14th day after irradiation based on genes. Real-time PCR was conducted 7 and 14 days after irradiation. GAPD gene primers were used as internal control, and OPN, OCN, ALP, and RUNX2 gene primers were used as tests. The one-way ANOVA statistical analysis revealed that cell proliferation in the continuous-irradiated groups was significantly higher than in pulsed groups. However, there is no significant difference in comparison with the control group. Also, pulsed-irradiated groups demonstrated a higher rate of necrosis. The osteogenic differentiation in the continuous groups was more substantial than in the pulsed and the control groups. In comparison to all other study groups, the group that received continuous mode irradiation at an energy density of 2 J/cm2, power of 100 mW, and a radiation time of 10 s exhibited significantly higher numbers of calcified nodules and increased expression of OPN, OCN, and ALP genes (p < 0.05). Overall, treating periodontal ligament stem cells with a continuous blue diode laser and appropriate parameters can enhance their osteogenic differentiation and proliferation, accelerating the regeneration of periodontal tissues.
Collapse
Affiliation(s)
- Mohammadreza Karimi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Sheibani Pour
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ardavan Etemadi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Karimi
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
39
|
Chu T, Xiao Z, Xun C, Yang C, Lu M, Wang Y, Chen H, Chen P. Peptidomic profiling of mesenchymal stem cell-derived extracellular vesicles and anti-inflammatory activity of degraded peptides. Int Immunopharmacol 2025; 152:114452. [PMID: 40096816 DOI: 10.1016/j.intimp.2025.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Mesenchymal stem cell derived extracellular vesicles (MSC-EVs) are key paracrine mediators involved in various autoimmune diseases. While current research on EVs predominantly focuses on their protein and nucleic acid components, small peptides received less attention. In this study, we found IFN-γ-treated MSC-EVs, as engineered EVs, exhibit better anti-inflammatory effects both in vitro and in vivo. Through LC-MS/MS and bioinformatics analysis, we identified four peptides-C3-1, C3-2, B2M-1, and IFIT3-1-that are highly expressed in IFN-γ-treated MSCs-EVs. These peptides significantly mitigate the proliferation inhibition of HUVEC cells induced by H₂O₂ and enhance their migratory capacity. Furthermore, they downregulate the expression of inflammatory cytokines TNF-α and IL-6 in H₂O₂-induced oxidative stress models of HUVEC and LPS-induced inflammatory models of RAW264.7 macrophages. The peptides also upregulate p-AKT and HIF-1α, with C3-1 demonstrating superior anti-inflammatory efficacy in both cell models. Consistent with the in vitro findings, in vivo experiments revealed that C3-1 reduces LPS-induced inflammatory cell infiltration in liver tissue and restores hepatocyte structural integrity, as evidenced by HE-stained liver sections. Western blot analysis further confirmed that C3-1 upregulates p-AKT expression and suppresses inflammatory cytokines. Collectively, these findings suggest that C3-1 exerts its anti-inflammatory effects via activation of the AKT signaling pathway and regulation of TNF-α and IL-6. This study not only highlights the anti-inflammatory potential of IFN-γ-treated MSC-derived EVs but also identifies C3-1 as a promising candidate for anti-inflammatory drug development. Notably, this is the first study to identify degraded peptides within EVs, providing a foundation for future research in this area.
Collapse
Affiliation(s)
- Tianqi Chu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Zixuan Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Chengfeng Xun
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Hunan Academy of Forestry, Changsha 410081, China
| | - Chunyan Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mengqi Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuqiu Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; East China Institute of Digital Medical Engineering, Shangrao 334000, China.
| | - Ping Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
40
|
Ji E, Song YH, Lee JK, Kim Y, Lee E, Joo KI, Seo JH. Bioadhesive levan-based coaxial nanofibrous membranes with enhanced cell adhesion and mesenchymal stem cell differentiation. Carbohydr Polym 2025; 354:123337. [PMID: 39978912 DOI: 10.1016/j.carbpol.2025.123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/22/2025]
Abstract
Conventional electrospun nanofibrous membranes have been widely used for tissue engineering scaffolds because they can mimic extracellular matrix (ECM), which plays a significant role in cell proliferation, adhesion, and differentiation. However, the inadequate mechanical strength and biological functions of electrospun nanofibrous scaffolds limit the range of their practical applications. In this study, we prepared a uniform levan-based core-shell composite (csCAL) nanofibrous membrane using the coaxial electrospinning technique. The coaxial csCAL membrane with levan and cellulose acetate (CA) as shell and core, respectively, exhibited highly enhanced mechanical properties and adhesive strength. Moreover, the unique bioadhesive nature of these membranes significantly enhanced cell attachment and proliferation, while their high biocompatibility and biodegradability hold substantial promise for application as functional cell carriers. Upon incorporating mesenchymal stem cells (MSCs) into the csCAL nanofibrous membrane, we observed enhanced osteogenesis and chondrogenesis, as evidenced by alizarin red and alcian blue staining, respectively. These results indicate that the levan-based nanofiber architecture has the potential to deliver scaffolds for supporting the differentiation of MSCs.
Collapse
Affiliation(s)
- Eunhyun Ji
- Department of Chemical Engineering & Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Young Hoon Song
- School of Chemical Engineering, Yeungnam University, 280 Daehakro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jae Kyeong Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehakro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Yesol Kim
- Department of Chemical Engineering & Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering & Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kye Il Joo
- Department of Chemical Engineering & Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, 280 Daehakro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
41
|
Mohammad SI, Vasudevan A, Hussein Alzewmel A, Rab SO, Ballal S, Kalia R, Bethanney Janney J, Ray S, Joshi KK, Yasin HA. The mutual effects of stearoyl-CoA desaturase and cancer-associated fibroblasts: A focus on cancer biology. Exp Cell Res 2025; 447:114508. [PMID: 40122505 DOI: 10.1016/j.yexcr.2025.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
The tumor microenvironment (TME) 's primary constituents that promote cancer development are cancer-associated fibroblasts (CAFs). Metabolic remodeling has been shown to control CAF activity, particularly aberrant lipid metabolism. SCD1 can be thought of as the primary enzyme controlling the fluidity of lipid bilayers by gradually converting saturated fatty acids into monounsaturated fatty acids. Furthermore, its crucial function in the onset and spread of cancer is well acknowledged. Even with the increasing amount of research on changes in lipid metabolism, this problem remains a relatively understudied aspect of cancer research. Blocking several fatty acid synthesis-related enzymes highly expressed in cancerous cells inhibits cell division and encourages apoptosis. This is the situation with SCD1, whose overexpression has been linked to several changed tumors and cells. Both genetic and pharmacological silencing of SCD1 in cancer cells prevents glucose-mediated lipogenesis and tumor cell growth. However, its role in CAFs, hence, cancer biology, has been less studied. This study aimed to review the role of SCD1 in CAF biology, shedding light on their function in cancer cell biology.
Collapse
Affiliation(s)
- Suleiman Ibrahim Mohammad
- Research Follower, INTI International University, 71800 Negeri Sembilan, Malaysia; Electronic Marketing and Social Media, Economic and Administrative Sciences, Zarqa University, Jordan.
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia.
| | - Ahmad Hussein Alzewmel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - J Bethanney Janney
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
42
|
Shih JH, Chern E. Decellularized Porcine Aorta as a Scaffold for Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells in Tissue Engineering. Stem Cell Rev Rep 2025:10.1007/s12015-025-10875-y. [PMID: 40227487 DOI: 10.1007/s12015-025-10875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Tissue engineering has been an integral part of regenerative medicine. Functional biomimetic structures were assembled by combining appropriate scaffolds with specific cells. The decellularization of animal tissue preserved the natural biochemical components and structural properties of the extracellular matrix (ECM) of specific organs, thereby providing a suitable niche for tissue-specific cell differentiation and growth. In this study, the extracellular matrix (ECM) of the porcine aorta was obtained through trypsin-based decellularization. The resulting porcine aortic ECM retained a favorable collagen composition, exhibited no cytotoxicity, and demonstrated chemophilic properties for mesenchymal stem cells. Human adipose-derived mesenchymal stem cells (hADSCs) and human induced pluripotent stem cell-derived mesenchymal stem cells (hiMSCs) were transplanted onto the decellularized porcine aortic ECM, where successful differentiation into a mature cartilage layer was observed. These findings suggested that the porcine aortic ECM could serve as a potential scaffold with tubular and linear structures for tissue engineering applications. Functional human iMSCs (induced-mesenchymal stem cells) were generated from human iPSCs (induced-pluripotent stem cells) and analyzed for differences compared to primary MSCs via RNA-seq. The hiMSCs were applied to decellularized porcine aortic ECM (extracellular matrix), demonstrating chondrogenic differentiation and confirming the usability of xenogeneic ECM.
Collapse
Affiliation(s)
- Jheng-Hong Shih
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
43
|
Xiang YY, Won JH, Kim JS, Baek KW. Transplantation of Exercise-Enhanced Mesenchymal Stem Cells Improves Obesity and Glucose Tolerance via Immune Modulation in Adipose Tissue. Stem Cell Rev Rep 2025:10.1007/s12015-025-10881-0. [PMID: 40227488 DOI: 10.1007/s12015-025-10881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Exercise-conditioned mesenchymal stem cells (MSCs) may modulate immune responses and improve white adipose tissue (WAT) function. While MSCs are known to reduce inflammation, it remains unclear if exercise-stimulated MSCs can improve obesity-related dysfunctions. This study is the first to explore how exercise-conditioned MSCs may influence adipose tissue inflammation and remodeling in the context of obesity. MSCs were isolated from exercised- and sedentary donor mice, then cultured in vitro. After culture, MSCs were assessed for differentiation capacity and cytokine gene expression, including Il10, as indicators of immune modulation. Exercise-conditioned MSCs were then transplanted into obese recipient mice. Following transplantation, immune cell profiles, inflammatory markers, and adipocyte morphology in recipient WAT were analyzed. Flow cytometry was used to quantify macrophage subtypes (pro-inflammatory and anti-inflammatory), and histological analysis was performed to measure changes in adipocyte size. Exercise-activated MSCs showed a ± 35% increase in Il10 expression and a ± 20% enhancement in differentiation capacity compared to controls, indicating improved immunomodulatory potential. In recipient mice, transplantation led to a ± 25% reduction in pro-inflammatory macrophages (CD86+ CD206-) and a 15% decrease in adipocyte size within WAT. Additionally, WAT in treated mice showed balanced inflammatory profiles and reduced adipose hypertrophy, suggesting restored immune balance and metabolic health. These findings suggest that exercise-modified MSCs exhibit enhanced immunomodulatory and metabolic regulatory properties. This study provides evidence that exercise enhances MSC characteristics, potentially improving their capacity to modulate adipose tissue immune balance and metabolic function in obesity. Exercise-conditioned MSCs may serve as a foundation for future strategies that integrate exercise-induced stem cell modifications to modulate obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Ying-Ying Xiang
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Jong-Hwa Won
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Ji-Seok Kim
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Kyung-Wan Baek
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea.
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
44
|
Ahmed OTF, Ahmed ZT, Dairi AW, Zain Al-Abeden MS, Alkahlot MH, Alkahlot RH, Al Jowf GI, Eijssen LMT, Haider KH. The inconclusive superiority debate of allogeneic versus autologous MSCs in treating patients with HFrEF: a systematic review and meta-analysis of RCTs. Stem Cell Res Ther 2025; 16:175. [PMID: 40221807 PMCID: PMC11993956 DOI: 10.1186/s13287-025-04209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/30/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Recent randomized controlled trials have consistently demonstrated the safety and potential efficacy of MSC therapy for heart failure patients. This study delves into mesenchymal stem cells' promising potential, offering a beacon of hope for the future of heart failure treatment with reduced ejection fraction (HFrEF). METHODS We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for this systematic review and meta-analysis. We searched four databases and registers for RCTs, including PubMed, EBSCO, clinicaltrials.gov, ICTRP, and other relevant websites. We then selected thirteen RCTs with 1184 participants based on our pre-defined inclusion/exclusion criteria. Two independent assessors extracted the data and performed a quality assessment. The data were then plotted for various outcomes, including death, hospitalization, major adverse cardiac events, pump function parameters, and 6-min walk distance. RESULTS The safety of MSC-based treatment has been consistently demonstrated with MSCs from autologous (AutoMSCs) and allogeneic (AlloMSCs) sources. This reassuring finding underscores the reliability of MSC-based therapy irrespective of their source. However, AutoMSCs showed a trend toward greater protective benefits. Subgroup analysis revealed no significant differences between AutoMSCs and AlloMSCs in improving LVEF; 0.86% (95% CI - 1.21-2.94%) for AlloMSCs versus 2.17% (- 0.48%; 95% CI - 1.33-5.67%) for AutoMSCs. AlloMSCs significantly reduced end-diastolic volume (LVEDV) by - 2.08 mL (95% CI - 3.52-0.64 mL). Only AlloMSCs significantly improved 6-min walking distance (6-MWD); 31.88 m (95% CI 5.03-58.74 m) for AlloMSCs versus 31.71 m (95% CI - 8.91-71.25 m) for AutoMSCs. The exclusion of studies using adipose-derived cells resulted in even better safety and a significant improvement in LVEF for AlloMSCs treatment. CONCLUSION Our findings suggest that AlloMSCs are at par with AutoMSCs in improving functional outcomes in heart failure patients. This underscores the need for future investigations in a larger patient cohort, emphasizing the urgency and importance of further research to fully understand the potential of MSCs in treating heart failure.
Collapse
Affiliation(s)
- Omar T F Ahmed
- College of Medicine, Sulaiman Alrajhi University, 52726, Al-Bukairiyah, Saudi Arabia
| | - Ziyad Tarek Ahmed
- College of Medicine, Sulaiman Alrajhi University, 52726, Al-Bukairiyah, Saudi Arabia
| | - Abdulrahman W Dairi
- College of Medicine, Sulaiman Alrajhi University, 52726, Al-Bukairiyah, Saudi Arabia
| | | | - Mohammed H Alkahlot
- College of Medicine, Sulaiman Alrajhi University, 52726, Al-Bukairiyah, Saudi Arabia
| | - Rana H Alkahlot
- College of Medicine, Sulaiman Alrajhi University, 52726, Al-Bukairiyah, Saudi Arabia
| | - Ghazi I Al Jowf
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD, Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Lars M T Eijssen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD, Maastricht, The Netherlands
- Department of Bioinformatics - BiGCaT, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD, Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Khawaja Husnain Haider
- College of Medicine, Sulaiman Alrajhi University, 52726, Al-Bukairiyah, Saudi Arabia.
- Cellular and Molecular Pharmacology, Sulaiman Alrajhi Medical School, PO Box 777, 51941, Al Bukairiyah, Saudi Arabia.
| |
Collapse
|
45
|
Kim C, Li B, Nakamura S, Neely EJ, Rockel JS, Oussenko T, Zhang P, Kapoor M, Nagy A. Engineered mesenchymal stromal cells with interleukin-1beta sticky-trap attenuate osteoarthritis in knee joints. Front Cell Dev Biol 2025; 13:1559155. [PMID: 40264709 PMCID: PMC12011853 DOI: 10.3389/fcell.2025.1559155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Osteoarthritis (OA) is a common chronic inflammatory joint disease, in which innate immunity plays a pivotal role in pathogenesis. Anti-interleukin-1(IL-1) therapies have shown inconsistent results in clinical trials, potentially due to a mismatch in the spatial and temporal dynamics of interleukin-1beta (IL-1β) production and therapeutic interventions. To address this issue, we developed a novel IL-1β "sticky-trap" utilizing cell and gene-based technologies from our lab and evaluated its efficacy in reducing osteoarthritis progression using a murine destabilization of the medial meniscus (DMM) OA model and a compact bone-derived mesenchymal stromal cell (MSC)-based gene expression system. The extracellular domain of interleukin-1 receptor 2 (IL1R2) was employed to design the sticky IL1R2 trap (stkIL1R2). A murine compact bone-derived MSC line was engineered for gene delivery. Although stkIL1R2 was undetectable in the engineered MSC supernatants by enzyme-linked immunosorbent assay (ELISA) and Western blot, it was localized on the cell surface and extracellular matrix (ECM) and demonstrated specific binding to IL-1β using a fluorescent protein-fused binding assay. Doxycycline (Dox)-induced expression of stkIL1R2 significantly inhibited lipocalin-2 (LCN2) expression which is a biomarker of IL-1β activity. For in vivo experiments, 5 × 104 Dox-inducible stkIL1R2f expressing MSCs were injected into the knee joints of DMM mice. Bioluminescence imaging revealed MSC survival in the knee joints for up to 7 weeks post-injection. Histological analyses at 10 weeks post-injection, including Safranin-O and Masson trichrome staining, showed that stkIL1R2 treated joints exhibited significantly less cartilage degradation and synovitis compared to controls, as assessed by Osteoarthritis Research Society International (OARSI) scoring of the femur, tibia, and synovium. Moreover, stkIL1R2 treatment reduced matrix metalloproteinases-13 (MMP-13) positive cells and collagen type II degradation in the affected joints. In conclusion, we developed a MSC line expressing an inducible IL1 sticky-trap, which localized to the cell surface and ECM and specifically bound IL-1β. These engineered MSCs survived in normal and DMM knee joints for up to 7 weeks and significantly delayed OA progression and inflammation in the murine model. This study introduces a promising therapeutic approach to combat OA progression.
Collapse
Affiliation(s)
- Christopher Kim
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Biao Li
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sayaka Nakamura
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Eric J. Neely
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jason S. Rockel
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Tatiana Oussenko
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Puzheng Zhang
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Andras Nagy
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
46
|
Wei W, Zhang Z, Li B, Fu Z, Liu J. Deciphering the role of lncRNA-mediated ceRNA network in disuse osteoporosis: insights from bone marrow mesenchymal stem cells under simulated microgravity. Front Med (Lausanne) 2025; 12:1444165. [PMID: 40248073 PMCID: PMC12003301 DOI: 10.3389/fmed.2025.1444165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Background Disuse osteoporosis (DOP) poses a significant health risk during extended space missions. Although the importance of long non-coding RNA (lncRNA) in bone marrow mesenchymal stem cells (BMSCs) and orthopedic diseases is recognized, the precise mechanism by which lncRNAs contribute to DOP remains elusive. This research aims to elucidate the potential regulatory role of lncRNAs in DOP. Methods Sequencing data were obtained from Gene Expression Omnibus (GEO) datasets, including coding and non-coding RNAs. Positive co-expression pairs of lncRNA-mRNA were identified using weighted gene co-expression network analysis, while miRNA-mRNA expression pairs were derived from the prediction database. A mRNA-miRNA-lncRNA network was established according to the shared mRNA. Functional enrichment analysis was conducted for the shared mRNAs using genome ontology and KEGG pathways. Hub genes were identified through protein-protein interaction analysis, and connectivity map analysis was employed to identify potential therapeutic agents for DOP. Results Integration of 74 lncRNAs, 19 miRNAs, and 200 mRNAs yielded a comprehensive mRNA-miRNA-lncRNA network. Enrichment analysis highlighted endoplasmic reticulum stress and extracellular matrix (ECM) pathways as significant in the ceRNA network. PPI analysis revealed three hub genes (COL4A1, LAMC1, and LAMA4) and identified five lncRNA-miRNA-hub gene regulatory axes. Furthermore, three potential therapeutic compounds (SB-216763, oxymetholone, and flubendazole) for DOP were identified. Conclusion This study sheds light on the involvement of lncRNAs in the pathogenesis and treatment of DOP through the construction of a ceRNA network, linking protein-coding mRNA functions with non-coding RNAs.
Collapse
Affiliation(s)
- Wuzeng Wei
- Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Zhongli Zhang
- Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Bing Li
- Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Zhe Fu
- Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Jun Liu
- Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
47
|
Qin D, Huang P, Chen J, Wu C, Liang Y. The therapeutic potential of different mesenchymal stem cells and their derived exosomes in metabolic dysfunction-associated steatotic liver disease. Front Endocrinol (Lausanne) 2025; 16:1558194. [PMID: 40248144 PMCID: PMC12003127 DOI: 10.3389/fendo.2025.1558194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/14/2025] [Indexed: 04/19/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease is a metabolic disease with an increasing incidence. Its pathogenesis involves the interaction of multiple factors. There is currently no specific treatment, so early prevention and treatment are crucial. Mesenchymal stem cells are a type of cell with the ability to self-renew and differentiate in multiple directions. They have a wide range of sources, including umbilical cords, bone marrow, and fat, and have various biological functions such as anti-inflammation, immune regulation, anti-oxidation, and inhibition of fibrosis. They have shown significant potential in the treatment of non-alcoholic fatty liver disease. In recent years, mesenchymal stem cells derived exosomes have been shown to be rich in bioactive substances, and to be involved in intercellular communication, regulating metabolism, reducing inflammatory responses, improving lipid metabolism, inhibiting fibrosis, and other processes that contribute to the treatment of metabolic dysfunction-associated steatotic liver disease. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes play an important role in the pathogenesis and treatment of metabolic dysfunction-associated steatotic liver disease and provide new potential and direction for the treatment of Metabolic dysfunction-associated steatotic liver disease. This article reviews the role and effects of mesenchymal stem cells and mesenchymal stem cell-derived exosomes from different sources in Metabolic dysfunction-associated steatotic liver disease and discusses their prospects as potential therapeutic strategies.
Collapse
Affiliation(s)
- Dan Qin
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pingping Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jialing Chen
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Changjun Wu
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuzhen Liang
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
48
|
Whittle SL, Johnston RV, McDonald S, Worthley D, Campbell TM, Cyril S, Bapna T, Zhang J, Buchbinder R. Stem cell injections for osteoarthritis of the knee. Cochrane Database Syst Rev 2025; 4:CD013342. [PMID: 40169165 PMCID: PMC11961299 DOI: 10.1002/14651858.cd013342.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
BACKGROUND Stem cells are specialised precursor cells that can replace aged or damaged cells and thereby maintain healthy tissue function. Stem cell therapy is increasingly used as a treatment for knee osteoarthritis, despite the lack of clarity around the mechanism by which stem cell therapy may slow down disease progression in osteoarthritis, and uncertainty regarding its benefits and harms. OBJECTIVES To assess the benefits and harms of stem cell injections for people with osteoarthritis of the knee. A secondary objective is to maintain the currency of the evidence, using a living systematic review approach. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and Embase on 15 September 2023, unrestricted by date or language of publication. We also searched ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP) for relevant trial protocols and ongoing trials. SELECTION CRITERIA We included randomised controlled trials (RCTs), or trials using quasi-randomised methods of participant allocation, comparing stem cell injection with placebo injection, no treatment or usual care, glucocorticoid injection, other injections, exercise, drug therapy, surgical interventions, and supplements and complementary therapies in people with knee osteoarthritis. DATA COLLECTION AND ANALYSIS Two review authors selected studies for inclusion, extracted trial characteristics and outcome data, assessed risk of bias and assessed the certainty of evidence using the GRADE approach. The primary comparison was stem cell injection compared with placebo injection. The primary time point for pain, function and quality of life was three to six months, and the end of the trial period for participant-reported success, joint structure changes and adverse event outcomes. Major outcomes were pain, function, quality of life, global assessment of success, radiographic joint progression, withdrawals due to adverse events and serious adverse events. MAIN RESULTS We found 25 randomised trials (1341 participants) comparing stem cell injections with placebo injection (eight trials), no treatment or usual care (analgesia, weight loss and exercise) (two trials), glucocorticoid injection (one trial), hyaluronic acid injection (seven trials), platelet-rich plasma injections (two trials), oral acetaminophen (paracetamol) (one trial), non-steroidal anti-inflammatory drugs plus physical therapy plus hyaluronic acid injection (one trial) and stem cell injection plus intra-articular co-intervention versus co-intervention alone (three trials) in people with osteoarthritis of the knee. Trials were predominantly small, with sample sizes ranging from 6 to 252 participants, with only two trials having more than 100 participants. The average age of participants across trials ranged from 51 to 66 years, and symptom duration varied from one to 10 years. Placebo-controlled trials were largely free from bias, while most trials without a placebo control were susceptible to performance and detection biases. Here, we limit reporting to the main comparison, stem cell injection versus placebo injection. Compared with placebo injection, stem cell injection may slightly improve pain and function up to six months after treatment. Mean pain (0 to 10 scale, 0 no pain) was 4.5 out of 10 points with placebo injection and 1.2 points better (2.5 points better to 0 points better) with stem cell injection (I2 = 80%; 7 studies, 445 participants). Mean function (0 to 100 scale, 0 best function) was 46.3 points with placebo injection and 14.2 points better (25.3 points better to 3.1 points better) with stem cell injection (I2 = 82%; 7 studies, 432 participants). We are uncertain whether stem cell injections improve quality of life or increase the number of people who report treatment success compared to placebo injection, because the certainty of the evidence was very low. Mean quality of life was 45.3 points with placebo injection and 22.8 points better (18.0 points worse to 63.7 points better) with stem cell injection (I2 = 96%; 2 studies, 288 participants) at up to six months follow-up. At the end of follow-up, 89/168 participants (530 per 1000) in the placebo injection group reported treatment success compared with 126/180 participants (683 per 1000) in the stem cell injection group (risk ratio (RR) 1.29, 95% CI 1.10 to 1.53; I2 = 0%; 4 trials, 348 participants). We downgraded the evidence to low certainty for pain and function due to indirectness (as the source, method of preparation and dose of stem cells varied across studies), and suspected publication bias (up to three larger RCTs have been conducted but withdrawn prior to reporting of results). For quality of life and treatment success, we further downgraded the evidence to very low certainty due to imprecision in addition to indirectness and suspected publication bias. We are uncertain of the potential harms associated with stem cell injection, as there were very low event rates for serious adverse events. At the end of follow-up, 5/219 participants (23 per 1000) in the placebo injection group experienced serious adverse events compared with 4/242 participants (16 per 1000) in the stem cell injection group (RR 0.72, 95% CI 0.20 to 2.64; I2 = 0%; 7 trials, 461 participants) and there were no reported withdrawals due to adverse events. We downgraded the evidence to very low certainty due to indirectness, suspected publication bias and imprecision. Radiographic progression was not assessed in any of the included studies. AUTHORS' CONCLUSIONS Compared with placebo injections and based upon low-certainty evidence, stem cell injections for people with knee osteoarthritis may slightly improve pain and function. We are uncertain of the effects of stem cell injections on quality of life or the number who report treatment success. Although the putative benefits of stem cell therapies for osteoarthritis include potential regenerative effects on damaged tissues, particularly articular cartilage, we remain uncertain of the effect of stem cell injections on structural progression in the knee (measured by radiographic appearance). There is also uncertainty regarding the safety of stem cell injections. Serious adverse events were infrequently reported, although all invasive joint procedures (including injections) carry a small risk of septic arthritis. The risk of other important harms, including potential concerns related to the use of a therapy with the theoretical capacity to promote cell growth, or to the use of allogeneic cells, remains unknown.
Collapse
Affiliation(s)
- Samuel L Whittle
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Rheumatology Unit, Queen Elizabeth Hospital, Woodville South, Australia
| | - Renea V Johnston
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Steve McDonald
- Cochrane Australia, School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | - Daniel Worthley
- Gastrointestinal Cancer Biology Group, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - T Mark Campbell
- Physical Medicine and Rehabilitation, Elisabeth Bruyère Hospital, Ottawa, Canada
| | - Sheila Cyril
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Tanay Bapna
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jason Zhang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Rachelle Buchbinder
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
49
|
Lee WS, Choi SJ, Shin YH, Kim JK. Mesenchymal Stem Cells Expressing Baculovirus-Engineered Brain-Derived Neurotrophic Factor Improve Peripheral Nerve Regeneration in a Rat Model. Tissue Eng Regen Med 2025; 22:351-362. [PMID: 39962026 PMCID: PMC11926320 DOI: 10.1007/s13770-025-00703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUND Peripheral nerve injuries are a major clinical challenge because of their complex nature and limited regenerative capacity. This study aimed to improve peripheral nerve regeneration using Wharton's jelly mesenchymal stem cells (WJ-MSCs) engineered to express brain-derived neurotrophic factor (BDNF) via a baculovirus (BV) vector. The cells were evaluated for efficacy when seeded into acellular nerve grafts (ANGs) in a rat sciatic nerve defect model. METHODS WJ-MSCs were transfected with recombinant BV to upregulate BDNF expression. Conditioned medium (CM) from these cells was utilized to treat Schwann cells (SCs), and the impact on myelination-related markers, including KROX20, myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and S100 calcium-binding protein β (S100β), and the activation of the mammalian target of rapamycin (mTOR)/ protein kinase B (AKT)/p38 signaling pathways were evaluated. In vivo, BDNF-expressing WJ-MSCs were seeded into ANGs and implanted into a rat sciatic nerve defect model. Functional recovery was evaluated via video gait analysis, isometric tetanic force measurement, muscle weight evaluation, ankle contracture angle measurement, and histological analysis using toluidine blue staining. RESULTS BDNF expression was significantly upregulated in WJ-MSCs post-transfection. BDNF-MSC CM substantially promoted the expression of myelination markers in SCs and activated the mTOR/AKT/p38 signaling pathway. In the rat model, seeding of ANGs with BDNF-expressing WJ-MSCs resulted in improved functional outcomes, including enhanced toe-off angles, increased isometric tetanic force, greater muscle weight recovery, and a higher total number of myelinated axons compared with controls. CONCLUSION WJ-MSCs engineered to express BDNF significantly enhanced peripheral nerve regeneration when utilized in conjunction with ANGs. These findings indicate BDNF-expressing WJ-MSCs are a promising therapeutic approach for treating peripheral nerve injuries.
Collapse
Affiliation(s)
- Won Sun Lee
- Department of Orthopedic Surgery Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Soon Jin Choi
- Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Young Ho Shin
- Department of Orthopedic Surgery Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Jae Kwang Kim
- Department of Orthopedic Surgery Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
50
|
Seo MS, Baek J, Jeon MS. Role of the Aryl Hydrocarbon Receptor in the Self-Renewal, Differentiation, and Immunomodulation of Adult Stem Cells. Immune Netw 2025; 25:e1. [PMID: 40342843 PMCID: PMC12056294 DOI: 10.4110/in.2025.25.e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 05/11/2025] Open
Abstract
Adult stem cells are a rare population of undifferentiated cells present in almost all body tissues. Depending on their location, stem cells can differentiate into various tissue types, primarily contributing to maintenance, repair, and immune system regulation. Stem cell therapies have significant potential in regenerative medicine and treatment of inflammatory diseases. However, many factors must be considered for successful clinical commercialization, including enhancing therapeutic potential, ensuring product differentiation, and optimizing the manufacturing process for large-scale production. The development of sophisticated regulatory mechanisms may enhance therapeutic applications. The aryl hydrocarbon receptor (AhR) is expressed in all adult stem cells, and its activation and function are tightly regulated. Understanding the role and regulation of AhR is crucial for developing effective stem cell therapies. This review examines the role of the AhR in regulating the fundamental characteristics of adult stem cells, which may contribute to advancing adult stem cell therapies.
Collapse
Affiliation(s)
- Myeong-Seong Seo
- Translational Research Center, Inha University Hospital, Incheon 22332, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| | - Jiyeon Baek
- Translational Research Center, Inha University Hospital, Incheon 22332, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| | - Myung-Shin Jeon
- Translational Research Center, Inha University Hospital, Incheon 22332, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- SCM Lifescience, Incheon 21999, Korea
| |
Collapse
|