1
|
Hammad AM, Syaj H, Abusara OH, Khdair SI, Debas R, Hall FS. Anxiety-like behavior in rats during periods of abstinence following E-cigarette vapor and cigarette smoke exposure: Role of inflammatory cytokines and glutamate receptors. Behav Brain Res 2025; 488:115600. [PMID: 40287018 DOI: 10.1016/j.bbr.2025.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Prolonged exposure to cigarette smoke induces changes in the glutamatergic systems as well as neuroinflammation. We examined E-cigarette vapor and cigarette smoke effects on inflammatory cytokines and metabotropic glutamate receptors. Furthermore, we investigated the behavioral changes related to E-cigarette vapor and cigarette smoke exposure through utilizing open field (OF), elevated plus maze (EPM) and light/dark (LD) tests. Male Sprague-Dawley rats were randomly assigned to three experimental groups: Control, E-cigarette, and Cigarettes groups. Exposure to either E-cigarette vapor or cigarette smoke exposure was performed for 2 hr/day, 5 days/week, for 60 days. Behavioral tests were conducted every two weeks, 24 hr after exposure, during periods of abstinence. Anxiety-like behaviors were increased following repeated periods of abstinence from E-cigarette vapor or cigarette smoke. E-cigarette vapor and cigarette smoke elevated the relative mRNA expression of nuclear factor ĸB (Nf-ĸB), interleukin 6 (Il-6), and metabolic glutamate receptor 5 (mglur5) and reduced expression of interleukin 1β (Il-1β), tumor necrosis α (Tnf-α), and metabolic glutamate receptor 2 (mglur2) in prefrontal cortex (PFC) and nucleus accumbens (NAc). Moreover, no effect was observed on nuclear factor erythroid 2 (Nrf2), metabolic glutamate receptor 1 (mglur1), or metabolic glutamate receptor 3 (mglur3) expression. E-cigarette vapor and cigarette smoke exposure can lead to abstinence-induced anxiety-like behavior partially through molecular changes in the PFC and NAc.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | - Heba Syaj
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Osama H Abusara
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Sawsan I Khdair
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Rasha Debas
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
2
|
Du X, Liu W, Geng J, Qiao H, Zhou Y. Bibliometrics and Visualization Analysis of Neuromuscular Junction Model. Neurol India 2025; 73:506-512. [PMID: 40408579 DOI: 10.4103/ni.ni_385_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/18/2023] [Indexed: 05/25/2025]
Abstract
OBJECTIVE Neuromuscular junctions, which are responsible for voluntary motor function, are the chemical synapses between motor neurons and skeletal muscle fibers. In this study, we performed a scientometric analysis that can be used to construct and visualize networks of neuromuscular junction model (NMJM) using bibliometric methods. MATERIALS AND METHODS A literature survey for NMJM was conducted using "TS= (neuromuscular junction model)," including literature titles, abstracts, and keywords, under the Web of Science Core Collection (WoSCC). Document production was analyzed by document citation, source journals, authors, highly cited documents, countries, organizations, impact factors. RESULTS A total of 2046 articles published over the past two decades were retrieved and analyzed. Our results showed that the number of publications in NMJM has increased rapidly over the past 20 years. The most productive author in terms of total publications about NMJM was Thomas H. Gillingwater with 27 documents, who worked at the University of Miami. The geographic distribution of publications showed that majority of them were from the USA. In addition, the research hotspot of NMJM was expanding from the establishment of NMJM to mechanistic studies of diseases. CONCLUSIONS This study provides a unique perspective for understanding the evaluative history and future trends of NMJM.
Collapse
Affiliation(s)
- Xincheng Du
- School of Sports and Health Engineering, Hebei University of Engineering, Handan, P.R. China
| | - Wenwen Liu
- Department of Stomatology, Handan Central Hospital, Congtaibei Road, Handan, Hebei, P.R. China
| | - Jin Geng
- Department of Stomatology, Handan Central Hospital, Congtaibei Road, Handan, Hebei, P.R. China
| | - Haowen Qiao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu Zhou
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
3
|
Bu Y, Li S, Ye T, Wang Y, Song M, Chen J. Volatile oil of Acori tatarinowii rhizoma: potential candidate drugs for mitigating dementia. Front Pharmacol 2025; 16:1552801. [PMID: 40337511 PMCID: PMC12055781 DOI: 10.3389/fphar.2025.1552801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Objective This study aims to elucidate the mitigating effects of the volatile oil of Acori tatarinowii rhizoma (ATR) on dementia, in order to provide a reference for future research and applications of the volatile oil of ATR in the field of dementia. Materials and methods A search strategy was developed using terms such as "Acori tatarinowii rhizoma," "Acorus tatarinowii Schott," "Asarone," and "Dementia." The literature search was conducted in PubMed, Web of Science, and Google Scholar, and studies not meeting the inclusion criteria were excluded. This study summarizes the main metabolites, active ingredients, toxicological properties, and pharmacokinetic characteristics of the volatile oil from ATR in mitigating dementia, with a particular focus on its potential mechanisms of action. Furthermore, the study highlights the limitations of existing research and offers insights into future research directions. Results The volatile oil of ATR mitigates dementia through multiple pathways, including reducing abnormal protein aggregation, promoting neurogenesis, inhibiting neuronal apoptosis, regulating neurotransmitters, improving synaptic function, modulating autophagy, countering cellular stress, reducing neuroinflammation, and alleviating vascular risk factors. Conclusion The multi-pathway pharmacological effects of the volatile oil of ATR are well-aligned with the complex mechanisms of dementia progression, highlighting its significant therapeutic potential for anti-dementia applications. This provides new perspectives for the development of more effective anti-dementia drugs. Nonetheless, further rigorous and high-quality preclinical and clinical investigations are required to address key issues, including the chemical characterization of the volatile oil of ATR, potential synergistic effects among active ingredients, toxicity profiles, and definitive clinical efficacy.
Collapse
Affiliation(s)
- Yifan Bu
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songzhe Li
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ting Ye
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuqing Wang
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingrong Song
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Chen
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Joyce MKP, Datta D, Arellano JI, Duque A, Morozov YM, Morrison JH, Arnsten AFT. Contrasting patterns of extrasynaptic NMDAR-GluN2B expression in macaque subgenual cingulate and dorsolateral prefrontal cortices. Front Neuroanat 2025; 19:1553056. [PMID: 40255911 PMCID: PMC12006084 DOI: 10.3389/fnana.2025.1553056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
Expression of the N-methyl-D-aspartate receptor, particularly when containing the GluN2B subunit (NMDAR-GluN2B), varies across the prefrontal cortex (PFC). In humans, the subgenual cingulate cortex (SGC) contains among the highest levels of NMDAR-GluN2B expression, while the dorsolateral prefrontal cortex (dlPFC) exhibits a more moderate level of NMDAR-GluN2B expression. NMDAR-GluN2B are commonly associated with ionotropic synaptic function and plasticity and are essential to the neurotransmission underlying working memory in the macaque dlPFC in the layer III circuits, which in humans are afflicted in schizophrenia. However, NMDAR-GluN2B can also be found at extrasynaptic sites, where they may trigger distinct events, including some linked to neurodegenerative processes. The SGC is an early site of tau pathology in sporadic Alzheimer's disease (sAD), which mirrors its high NMDAR-GluN2B expression. Additionally, the SGC is hyperactive in depression, which can be treated with NMDAR antagonists. Given the clinical relevance of NMDAR in the SGC and dlPFC, the current study used immunoelectron microscopy (immunoEM) to quantitatively compare the synaptic and extrasynaptic expression patterns of NMDAR-GluN2B across excitatory and inhibitory neuron dendrites in rhesus macaque layer III SGC and dlPFC. We found a larger population of extrasynaptic NMDAR-GluN2B in dendrites of putative pyramidal neurons in SGC as compared to the dlPFC, while the dlPFC had a higher proportion of synaptic NMDAR-GluN2B. In contrast, in putative inhibitory dendrites from both areas, extrasynaptic expression of NMDAR-GluN2B was far more frequently observed over synaptic expression. These findings may provide insight into varying cortical vulnerability to alterations in excitability and neurodegenerative forces.
Collapse
Affiliation(s)
- Mary Kate P. Joyce
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - Dibyadeep Datta
- Department of Psychiatry, Yale Medical School, New Haven, CT, United States
| | - Jon I. Arellano
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - Alvaro Duque
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - Yury M. Morozov
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - John H. Morrison
- Department of Neurology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Amy F. T. Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| |
Collapse
|
5
|
Chen XF, Kroke B, Ni J, Munoz C, Appleman M, Jacobs B, Tran T, Nguyen KV, Qiu C, Stonestreet BS, Marshall J. Novel peptidomimetic compounds attenuate hypoxic-ischemic brain injury in neonatal rats. Exp Neurol 2025; 386:115151. [PMID: 39832663 PMCID: PMC11895808 DOI: 10.1016/j.expneurol.2025.115151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Hypoxic-ischemic (HI) brain injury is a common neurological problem in neonates. The postsynaptic density protein-95 (PSD-95) is an excitatory synaptic scaffolding protein that regulates synaptic function, and represents a potential therapeutic target to attenuate HI brain injury. Syn3 and d-Syn3 are novel high affinity cyclic peptides that bind the PDZ3 domain of PSD-95. We investigated the neuroprotective efficacy of Syn3 and d-Syn3 after exposure to HI in neonatal rodents. Postnatal (P) day-7 rats were treated with Syn3 and d-Syn3 at zero, 24, and 48-h after carotid artery ligation and 90-min of 8 % oxygen. Hemispheric volume atrophy and Iba-1 positive microglia were quantified by cresyl violet and immunohistochemical staining. Treatment with Syn3 and d-Syn3 reduced tissue volume loss by 47.0 % and 41.0 % in the male plus female, and by 42.1 % and 65.0 % in the male groups, respectively. Syn3 reduced tissue loss by 52.3 % in females. D-Syn3 reduced Iba-1 positive microglia/DAPI ratios in the pooled group, males, and females. Syn3 effects were observed in the pooled group and females. Changes in Iba-1 positive microglia/DAPI cellular ratios correlated directly with reduced hemispheric volume loss, suggesting that Syn3 and d-Syn3 provide neuroprotection in part by their effects on Iba-1 positive microglia. The pathogenic cis phosphorylated Thr231 in Tau (cis P-tau) is a marker of neuronal injury. Cis P-tau was induced in cortical cells of the placebo-treated pooled group, males and females after HI, and reduced by treatment with d-Syn3. Therefore, treatment with these peptidomimetic agents exert neuroprotective effects after exposure of neonatal subjects to HI related brain injury.
Collapse
Affiliation(s)
- Xiaodi F Chen
- Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA.
| | - Brynn Kroke
- Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jun Ni
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christian Munoz
- Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Mark Appleman
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Bryce Jacobs
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Tuong Tran
- Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA
| | - Kevin V Nguyen
- Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA
| | - Chenxi Qiu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA; Emerita, Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Li J, Fan F, Fu X, Liu M, Chen Y, Zhang B. Building Uniformly Structured Polymer Memristors via a 2D Conjugation Strategy for Neuromorphic Computing. Macromol Rapid Commun 2025; 46:e2400172. [PMID: 38627960 DOI: 10.1002/marc.202400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Polymer memristors represent a highly promising avenue for the advancement of next-generation computing systems. However, the intrinsic structural heterogeneity characteristic of most polymers often results in organic polymer memristors displaying erratic resistive switching phenomena, which in turn lead to diminished production yields and compromised reliability. In this study, a 2D conjugated polymer, named PBDTT-BPQTPA, is synthesized by integrating the coplanar bis(thiophene)-4,8-dihydrobenzo[1,2-b:4,5-b]dithiophene (BDTT) as an electron-donating unit with a quinoxaline derivative serving as an electron-accepting unit. The incorporation of triphenylamine groups at the quinoxaline termini significantly enhances the polymer's conjugation and planarity, thereby facilitating more efficient charge transport. The fabricated polymer memristor with the structure of Al/PBDTT-BPQTPA/ITO exhibits typical non-volatile resistive switching behavior under high voltage conditions, along with history-dependent memristive properties at lower voltages. The unique memristive behavior of the device enables the simulation of synaptic enhancement/inhibition, learning algorithms, and memory operations. Additionally, the memristor demonstrates its capability for executing logical operations and handling decimal calculations. This study offers a promising and innovative approach for the development of artificial neuromorphic computing systems.
Collapse
Affiliation(s)
- Jinyong Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fei Fan
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, 200083, China
| | - Xin Fu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mingxing Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Akter Y, Jones G, Daskivich GJ, Shifflett V, Vargas KJ, Hruska M. Combining nanobody labeling with STED microscopy reveals input-specific and layer-specific organization of neocortical synapses. PLoS Biol 2025; 23:e3002649. [PMID: 40184426 PMCID: PMC12002638 DOI: 10.1371/journal.pbio.3002649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/16/2025] [Accepted: 02/25/2025] [Indexed: 04/06/2025] Open
Abstract
The discovery of synaptic nanostructures revealed key insights into the molecular logic of synaptic function and plasticity. Yet, our understanding of how diverse synapses in the brain organize their nano-architecture remains elusive, largely due to the limitations of super-resolution imaging in complex brain tissue. Here, we characterized single-domain camelid nanobodies for the 3D quantitative multiplex imaging of synaptic nano-organization using tau-STED nanoscopy in cryosections from the mouse primary somatosensory cortex. We focused on thalamocortical (TC) and corticocortical (CC) synapses along the apical-basal axis of layer five pyramidal neurons as models of functionally diverse glutamatergic synapses in the brain. Spines receiving TC input were larger than those receiving CC input in all layers examined. However, the nano-architecture of TC synapses varied with dendritic location. TC afferents on apical dendrites frequently contacted spines with multiple aligned PSD-95/Bassoon nanomodules of constant size. In contrast, TC spines on basal dendrites predominantly contained a single aligned nanomodule, with PSD-95 nanocluster sizes scaling proportionally with spine volume. The nano-organization of CC synapses did not change across cortical layers and resembled modular architecture defined in vitro. These findings highlight the nanoscale diversity of synaptic architecture in the brain, that is, shaped by both the source of afferent input and the subcellular localization of individual synaptic contacts.
Collapse
Affiliation(s)
- Yeasmin Akter
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Grace Jones
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Grant J. Daskivich
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Victoria Shifflett
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Karina J. Vargas
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Martin Hruska
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
8
|
Xie D, Xiong K, Dong N, Wang G, Zou Q, Shao B, Chen Z, Wang L, Kong Y, Wang X, Su X, Bai W, Yang J, Liu Y, Zhou B, Chen YH. An endogenous cholinergic system controls electrical conduction in the heart. Eur Heart J 2025; 46:1232-1246. [PMID: 39437249 PMCID: PMC11959186 DOI: 10.1093/eurheartj/ehae699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND AIMS The cholinergic system is distributed in the nervous system, mediating electrical conduction through acetylcholine (ACh). This study aims to identify whether the heart possesses an intact endogenous cholinergic system and to explore its electrophysiological functions and relationship with arrhythmias in both humans and animals. METHODS The components of the heart's endogenous cholinergic system were identified by a combination of multiple molecular cell biology techniques. The relationship of this system with cardiac electrical conduction and arrhythmias was analysed through electrophysiological techniques. RESULTS An intact cholinergic system including ACh, ACh transmitter vesicles, ACh transporters, ACh metabolic enzymes, and ACh receptors was identified in both human and mouse ventricular cardiomyocytes (VCs). The key components of the system significantly regulated the conductivity of electrical excitation among VCs. The influence of this system on electrical excitation conduction was further confirmed both in the mice with α4 or α7 nicotinic ACh receptors (nAChRs) knockouts and in the monolayers of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, ACh induced an inward current through nAChRs to reduce the minimum threshold current required to generate an action potential in VCs, thereby enhancing the excitability that acts as a prerequisite for electrical conduction. Importantly, defects in this system were associated with fatal ventricular arrhythmias in both patients and mice. CONCLUSIONS This study identifies an integrated cholinergic system inherent to the heart, rather than external nerves that can effectively control cardiac electrical conduction. The discovery reveals arrhythmia mechanisms beyond classical theories and opens new directions for arrhythmia research.
Collapse
Affiliation(s)
- Duanyang Xie
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ke Xiong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guanghua Wang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qicheng Zou
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Beihua Shao
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Zhiwen Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Luxin Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yu Kong
- Electron Microscopy Facilities of Center for Excellence in Brain Science and Technology, Chinese Academy of Science, Shanghai 200031, China
| | - Xu Wang
- Electron Microscopy Facilities of Center for Excellence in Brain Science and Technology, Chinese Academy of Science, Shanghai 200031, China
| | - Xuling Su
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Wenli Bai
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Jinzhou Medical University, Liaoning 121000, China
| | - Jian Yang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Bin Zhou
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Han Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| |
Collapse
|
9
|
Fréal A, Hoogenraad CC. The dynamic axon initial segment: From neuronal polarity to network homeostasis. Neuron 2025; 113:649-669. [PMID: 39947181 DOI: 10.1016/j.neuron.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/15/2024] [Accepted: 01/07/2025] [Indexed: 03/08/2025]
Abstract
The axon initial segment (AIS) is a highly specialized compartment in neurons that resides in between axonal and somatodendritic domains. The localization of the AIS in the proximal part of the axon is essential for its two major functions: generating and modulating action potentials and maintaining neuron polarity. Recent findings revealed that the incredibly stable AIS is generated from highly dynamic components and can undergo extensive structural and functional changes in response to alterations in activity levels. These activity-dependent alterations of AIS structure and function have profound consequences for neuronal functioning, and AIS plasticity has emerged as a key regulator of network homeostasis. This review highlights the functions of the AIS, its architecture, and how its organization and remodeling are influenced by developmental plasticity and both acute and chronic adaptations. It also discusses the mechanisms underlying these processes and explores how dysregulated AIS plasticity may contribute to brain disorders.
Collapse
Affiliation(s)
- Amélie Fréal
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam, the Netherlands
| | - Casper C Hoogenraad
- Department of Neuroscience, Genentech, Inc, South San Francisco, CA 94080, USA.
| |
Collapse
|
10
|
Yang X, Huang YWA, Marshall J. Targeting TrkB-PSD-95 coupling to mitigate neurological disorders. Neural Regen Res 2025; 20:715-724. [PMID: 38886937 PMCID: PMC11433911 DOI: 10.4103/nrr.nrr-d-23-02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Tropomyosin receptor kinase B (TrkB) signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory. The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre- or postsynaptic TrkB resulting in the strengthening of synapses, reflected by long-term potentiation. Postsynaptically, the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca2+/calmodulin-dependent protein kinase II and phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation. In this review, we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders. A reduction of TrkB signaling has been observed in neurodegenerative disorders, such as Alzheimer's disease and Huntington's disease, and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression. Treatment with brain-derived neurotrophic factor is problematic, due to poor pharmacokinetics, low brain penetration, and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform. Although TrkB agonists and antibodies that activate TrkB are being intensively investigated, they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions. Targeting TrkB-postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.
Collapse
Affiliation(s)
- Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
11
|
Choquet D, Opazo P, Zhang H. AMPA receptor diffusional trapping machinery as an early therapeutic target in neurodegenerative and neuropsychiatric disorders. Transl Neurodegener 2025; 14:8. [PMID: 39934896 PMCID: PMC11817889 DOI: 10.1186/s40035-025-00470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Over the past two decades, there has been a growing recognition of the physiological importance and pathological implications surrounding the surface diffusion of AMPA receptors (AMPARs) and their diffusional trapping at synapses. AMPAR surface diffusion entails the thermally powered random Brownian lateral movement of these receptors within the plasma membrane, facilitating dynamic exchanges between synaptic and extrasynaptic compartments. This process also enables the activity-dependent diffusional trapping and accumulation of AMPARs at synapses through transient binding to synaptic anchoring slots. Recent research highlights the critical role of synaptic recruitment of AMPARs via diffusional trapping in fundamental neural processes such as the development of the early phases of long-term potentiation (LTP), contextual fear memory, memory consolidation, and sensory input-induced cortical remapping. Furthermore, studies underscore that regulation of AMPAR diffusional trapping is altered across various neurological disease models, including Huntington's disease (HD), Alzheimer's disease (AD), and stress-related disorders like depression. Notably, pharmacological interventions aimed at correcting deficits in AMPAR diffusional trapping have demonstrated efficacy in restoring synapse numbers, LTP, and memory functions in these diverse disease models, despite their distinct pathogenic mechanisms. This review provides current insights into the molecular mechanisms underlying the dysregulation of AMPAR diffusional trapping, emphasizing its role as a converging point for multiple pathological signaling pathways. We propose that targeting AMPAR diffusional trapping represents a promising early therapeutic strategy to mitigate synaptic plasticity and memory deficits in a spectrum of brain disorders, encompassing but not limited to HD, AD, and stress-related conditions. This approach underscores an integrated therapeutic target amidst the complexity of these neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000, Bordeaux, France
| | - Patricio Opazo
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Hongyu Zhang
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
- Mohn Research Center for the Brain, University of Bergen, 5009, Bergen, Norway.
- Department of Radiology, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
12
|
Joyce M, Datta D, Arellano J, Duque A, Morozov YM, Morrison JH, Arnsten A. Contrasting patterns of extrasynaptic NMDAR-GluN2B expression in macaque subgenual cingulate and dorsolateral prefrontal cortices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636752. [PMID: 39975025 PMCID: PMC11839065 DOI: 10.1101/2025.02.05.636752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Expression of the N-methyl-D-aspartate receptor, particularly when containing the GluN2B subunit (NMDAR-GluN2B) varies across the prefrontal cortex (PFC). In humans, the subgenual cingulate cortex (SGC) contains among the highest levels of NMDAR-GluN2B expression, while the dorsolateral prefrontal cortex (dlPFC) exhibits a more moderate level of NMDAR-GluN2B expression. NMDAR-GluN2B are commonly associated with ionotropic synaptic function and plasticity, and are essential to the neurotransmission underlying working memory in the macaque dlPFC in the layer III circuits afflicted in schizophrenia. However, NMDAR-GluN2B can also be found at extrasynaptic sites, where they may trigger distinct events, including some linked to neurodegenerative processes. The SGC is an early site of tau pathology in sporadic Alzheimer's Disease (sAD), which mirrors its high NMDAR-GluN2B expression. Additionally, the SGC is hyperactive in depression, which is treated with NMDAR antagonists. Given the clinical relevance of NMDAR in the SGC and dlPFC, the current study used immunoelectron microscopy (immunoEM) to quantitatively compare the synaptic and extrasynaptic expression patterns of NMDAR-GluN2B across excitatory and inhibitory neuron dendrites in the rhesus macaque SGC and dlPFC. We found a larger population of extrasynaptic NMDAR-GluN2B in dendritic shafts and spines of putative pyramidal neurons in SGC as compared to the dlPFC, while the dlPFC had a higher proportion of synaptic NMDAR-GluN2B. In contrast, in putative inhibitory dendrites from both areas, extrasynaptic expression of NMDAR-GluN2B was far more frequently observed over synaptic expression. These findings may provide insight into varying cortical vulnerability to alterations in excitability and to neurodegenerative forces. Scope Statement NMDAR are ionotropic receptors that contribute to neurotransmission and second messenger signaling events. NMDAR can induce a diverse array of neuronal events, in part due to variation in subunit composition and subcellular localization of receptor expression. Expression of the GluN2B subunit varies across the prefrontal cortex in humans. This subunit is highly expressed in the subgenual cingulate, an area associated with mood and emotion, and more moderately expressed in the dorsolateral prefrontal cortex, an area associated with cognitive processes. Extrasynaptic NMDAR, which often contain with the GluN2B subunit, have been linked to detrimental cellular events like neurodegeneration. Here, using high resolution electron microscopy in rhesus macaques, we found evidence that extrasynaptic NMDAR-GluN2B expression may be more prominent in subgenual cortex than in the dorsolateral prefrontal cortex. Conversely, synaptic NMDAR-GluN2B may be more prominent in the dorsolateral prefrontal cortex, consistent with their essential contribution to neuronal firing during working memory. These findings may help to illuminate the propensity of the subgenual cortex to tonic hyperactivity in major depression and its vulnerability to neurodegeneration in Alzheimer's disease, and may help to explain how rapid acting antidepressants exert therapeutic action across diverse neural circuits.
Collapse
|
13
|
Zhao L, Witter MP, Palomero-Gallagher N. Cyto-, gene, and multireceptor architecture of the early postnatal mouse hippocampal complex. Prog Neurobiol 2025; 245:102704. [PMID: 39709019 DOI: 10.1016/j.pneurobio.2024.102704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Neurotransmitter receptors are key molecules in signal transmission in the adult brain, and their precise spatial and temporal balance expressions also play a critical role in normal brain development. However, the specific balance expression of multiple receptors during hippocampal development is not well characterized. In this study, we used quantitative in vivo receptor autoradiography to measure the distributions and densities of 18 neurotransmitter receptor types in the mouse hippocampal complex at postnatal day 7, and compared them with the expressions of their corresponding encoding genes. We provide a novel and comprehensive characterization of the cyto-, gene, and multireceptor architecture of the developing mouse hippocampal and subicular regions during the developmental period, which typically differs from that in the adult brain. High-density receptor expressions with distinct regional and laminar distributions were observed for AMPA, Kainate, mGluR2/3, GABAA, GABAA/BZ, α2, and A1 receptors during this specific period, whereas NMDA, GABAB, α1, M1, M2, M3, nicotinic α4β2, 5-HT1A, 5-HT2, D1 and D2/D3 receptors exhibited relatively low and homogeneous expressions. This specific balance of multiple receptors aligns with regional cytoarchitecture, neurotransmitter distributions, and gene expressions. Moreover, contrasting with previous findings, we detected a high α2 receptor density, with distinct regional and laminar distribution patterns. A non-covariation differentiation phenomenon between α2 receptor distributions and corresponding gene expressions is also demonstrated in this early developmental period. The multimodal data provides new insights into understanding the hippocampal development from the perspective of cell, gene, and multireceptor levels, and contributes important resources for further interdisciplinary analyses.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Psychology, School of Public Policy and Management, Nanchang University, Nanchang 330000, China; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany.
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, Dusseldorf 40225, Germany
| |
Collapse
|
14
|
Gonzalez KC, Negrean A, Liao Z, Terada S, Zhang G, Lee S, Ócsai K, Rózsa BJ, Lin MZ, Polleux F, Losonczy A. Synaptic basis of feature selectivity in hippocampal neurons. Nature 2025; 637:1152-1160. [PMID: 39695232 PMCID: PMC11988941 DOI: 10.1038/s41586-024-08325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
A central question in neuroscience is how synaptic plasticity shapes the feature selectivity of neurons in behaving animals1. Hippocampal CA1 pyramidal neurons display one of the most striking forms of feature selectivity by forming spatially and contextually selective receptive fields called place fields, which serve as a model for studying the synaptic basis of learning and memory. Various forms of synaptic plasticity have been proposed as cellular substrates for the emergence of place fields. However, despite decades of work, our understanding of how synaptic plasticity underlies place-field formation and memory encoding remains limited, largely due to a shortage of tools and technical challenges associated with the visualization of synaptic plasticity at the single-neuron resolution in awake behaving animals. To address this, we developed an all-optical approach to monitor the spatiotemporal tuning and synaptic weight changes of dendritic spines before and after the induction of a place field in single CA1 pyramidal neurons during spatial navigation. We identified a temporally asymmetric synaptic plasticity kernel resulting from bidirectional modifications of synaptic weights around the induction of a place field. Our work identified compartment-specific differences in the magnitude and temporal expression of synaptic plasticity between basal dendrites and oblique dendrites. Our results provide experimental evidence linking synaptic plasticity to the rapid emergence of spatial selectivity in hippocampal neurons, a critical prerequisite for episodic memory.
Collapse
Affiliation(s)
- Kevin C Gonzalez
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Allen Brain Institute, Seattle, WA, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Satoshi Terada
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Sungmoo Lee
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Katalin Ócsai
- BrainVisionCenter, Budapest, Hungary
- Department of Algebra and Geometry, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Balázs J Rózsa
- BrainVisionCenter, Budapest, Hungary
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter University, Budapest, Hungary
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Takato M, Sakamoto S, Nonaka H, Tanimura Valor FY, Tamura T, Hamachi I. Photoproximity labeling of endogenous receptors in the live mouse brain in minutes. Nat Chem Biol 2025; 21:109-119. [PMID: 39090312 DOI: 10.1038/s41589-024-01692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Understanding how protein-protein interaction networks in the brain give rise to cognitive functions necessitates their characterization in live animals. However, tools available for this purpose require potentially disruptive genetic modifications and lack the temporal resolution necessary to track rapid changes in vivo. Here we leverage affinity-based targeting and photocatalyzed singlet oxygen generation to identify neurotransmitter receptor-proximal proteins in the live mouse brain using only small-molecule reagents and minutes of photoirradiation. Our photooxidation-driven proximity labeling for proteome identification (named PhoxID) method not only recapitulated the known interactomes of three endogenous neurotransmitter receptors (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), inhibitory γ-aminobutyric acid type A receptor and ionotropic glutamate receptor delta-2) but also uncovered age-dependent shifts, identifying NECTIN3 and IGSF3 as developmentally regulated AMPAR-proximal proteins in the cerebellum. Overall, this work establishes a flexible and generalizable platform to study receptor microenvironments in genetically intact specimens with an unprecedented temporal resolution.
Collapse
Affiliation(s)
- Mikiko Takato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan
| | - Fátima Yuri Tanimura Valor
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan.
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto, Japan.
| |
Collapse
|
16
|
Bolz S, Haucke V. Biogenesis and reformation of synaptic vesicles. J Physiol 2024. [PMID: 39367867 DOI: 10.1113/jp286554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
Communication within the nervous system relies on the calcium-triggered release of neurotransmitter molecules by exocytosis of synaptic vesicles (SVs) at defined active zone release sites. While decades of research have provided detailed insight into the molecular machinery for SV fusion, much less is known about the mechanisms that form functional SVs during the development of synapses and that control local SV reformation following exocytosis in the mature nervous system. Here we review the current state of knowledge in the field, focusing on the pathways implicated in the formation and axonal transport of SV precursor organelles and the mechanisms involved in the local reformation of SVs within nerve terminals in mature neurons. We discuss open questions and outline perspectives for future research.
Collapse
Affiliation(s)
- Svenja Bolz
- Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Savage JT, Ramirez JJ, Risher WC, Wang Y, Irala D, Eroglu C. SynBot is an open-source image analysis software for automated quantification of synapses. CELL REPORTS METHODS 2024; 4:100861. [PMID: 39255792 PMCID: PMC11440803 DOI: 10.1016/j.crmeth.2024.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/25/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024]
Abstract
The formation of precise numbers of neuronal connections, known as synapses, is crucial for brain function. Therefore, synaptogenesis mechanisms have been one of the main focuses of neuroscience. Immunohistochemistry is a common tool for visualizing synapses. Thus, quantifying the numbers of synapses from light microscopy images enables screening the impacts of experimental manipulations on synapse development. Despite its utility, this approach is paired with low-throughput analysis methods that are challenging to learn, and the results are variable between experimenters, especially when analyzing noisy images of brain tissue. We developed an open-source ImageJ-based software, SynBot, to address these technical bottlenecks by automating the analysis. SynBot incorporates the advanced algorithms ilastik and SynQuant for accurate thresholding for synaptic puncta identification, and the code can easily be modified by users. The use of this software will allow for rapid and reproducible screening of synaptic phenotypes in healthy and diseased nervous systems.
Collapse
Affiliation(s)
- Justin T Savage
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Juan J Ramirez
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - W Christopher Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Dolores Irala
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Cagla Eroglu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
18
|
Bessières B, Dupuis J, Groc L, Bontempi B, Nicole O. Synaptic rearrangement of NMDA receptors controls memory engram formation and malleability in the cortex. SCIENCE ADVANCES 2024; 10:eado1148. [PMID: 39213354 PMCID: PMC11364093 DOI: 10.1126/sciadv.ado1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Initially hippocampal dependent, memory representations rely on a broadly distributed cortical network as they mature over time. How these cortical engrams acquire stability during systems-level memory consolidation without compromising their dynamic nature remains unclear. We identified a highly responsive "consolidation switch" in the synaptic composition of N-methyl-d-aspartate receptors (NMDARs), which dictates the progressive embedding and persistence of enduring memories in the rat cortex. Cortical GluN2B subunit-containing NMDARs were preferentially recruited upon encoding of associative olfactory memory to support neuronal allocation of memory engrams. As consolidation proceeds, a learning-induced redistribution of GluN2B subunit-containing NMDARs outward synapses increased synaptic GluN2A subunit contribution and enabled stabilization of remote memories. In contrast, synaptic reincorporation of GluN2B subunits occurred during subsequent forgetting. By manipulating the surface distribution of GluN2A and GluN2B subunit-containing NMDARs at cortical synapses, we uncovered that the rearrangement of GluN2B-containing NMDARs constitutes an essential tuning mechanism that determines the fate of cortical memory engrams and controls their malleability.
Collapse
Affiliation(s)
- Benjamin Bessières
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Bordeaux 33000, France
| | - Julien Dupuis
- Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université de Bordeaux, Bordeaux 33000, France
| | - Laurent Groc
- Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université de Bordeaux, Bordeaux 33000, France
| | - Bruno Bontempi
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Bordeaux 33000, France
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33000, France
| | - Olivier Nicole
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Bordeaux 33000, France
- Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université de Bordeaux, Bordeaux 33000, France
| |
Collapse
|
19
|
Wong VC, Houlihan PR, Liu H, Walpita D, DeSantis MC, Liu Z, O'Shea EK. Plasticity-induced actin polymerization in the dendritic shaft regulates intracellular AMPA receptor trafficking. eLife 2024; 13:e80622. [PMID: 39146380 PMCID: PMC11326776 DOI: 10.7554/elife.80622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.
Collapse
Affiliation(s)
- Victor C Wong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Patrick R Houlihan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hui Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Deepika Walpita
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Michael C DeSantis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Erin K O'Shea
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
20
|
Gong R, Qin L, Chen L, Wang N, Bao Y, Lu W. Myosin Va-dependent Transport of NMDA Receptors in Hippocampal Neurons. Neurosci Bull 2024; 40:1053-1075. [PMID: 38291290 PMCID: PMC11306496 DOI: 10.1007/s12264-023-01174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/03/2023] [Indexed: 02/01/2024] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) trafficking is a key process in the regulation of synaptic efficacy and brain function. However, the molecular mechanism underlying the surface transport of NMDARs is largely unknown. Here we identified myosin Va (MyoVa) as the specific motor protein that traffics NMDARs in hippocampal neurons. We found that MyoVa associates with NMDARs through its cargo binding domain. This association was increased during NMDAR surface transport. Knockdown of MyoVa suppressed NMDAR transport. We further demonstrated that Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates NMDAR transport through its direct interaction with MyoVa. Furthermore, MyoVa employed Rab11 family-interacting protein 3 (Rab11/FIP3) as the adaptor proteins to couple themselves with NMDARs during their transport. Accordingly, the knockdown of FIP3 impairs hippocampal memory. Together, we conclude that in hippocampal neurons, MyoVa conducts active transport of NMDARs in a CaMKII-dependent manner.
Collapse
Affiliation(s)
- Ru Gong
- Ministry of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Linwei Qin
- Ministry of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Linlin Chen
- Department of Neurobiology, Nanjing Medical University, Nanjing, 210096, China
| | - Ning Wang
- Department of Neurobiology, Nanjing Medical University, Nanjing, 210096, China
| | - Yifei Bao
- Ministry of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Wei Lu
- Ministry of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China.
- Department of Neurobiology, Nanjing Medical University, Nanjing, 210096, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
21
|
Nowacka A, Getz AM, Bessa-Neto D, Choquet D. Activity-dependent diffusion trapping of AMPA receptors as a key step for expression of early LTP. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230220. [PMID: 38853553 PMCID: PMC11343219 DOI: 10.1098/rstb.2023.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 06/11/2024] Open
Abstract
This review focuses on the activity-dependent diffusion trapping of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as a crucial mechanism for the expression of early long-term potentiation (LTP), a process central to learning and memory. Despite decades of research, the precise mechanisms by which LTP induction leads to an increase in AMPAR responses at synapses have been elusive. We review the different hypotheses that have been put forward to explain the increased AMPAR responsiveness during LTP. We discuss the dynamic nature of AMPAR complexes, including their constant turnover and activity-dependent modifications that affect their synaptic accumulation. We highlight a hypothesis suggesting that AMPARs are diffusively trapped at synapses through activity-dependent interactions with protein-based binding slots in the post-synaptic density (PSD), offering a potential explanation for the increased synaptic strength during LTP. Furthermore, we outline the challenges still to be addressed before we fully understand the functional roles and molecular mechanisms of AMPAR dynamic nanoscale organization in LTP. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Agata Nowacka
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
| | - Angela M. Getz
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, BordeauxF-33000, France
| | - Diogo Bessa-Neto
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, BordeauxF-33000, France
| |
Collapse
|
22
|
Savage JT, Ramirez J, Risher WC, Wang Y, Irala D, Eroglu C. SynBot: An open-source image analysis software for automated quantification of synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.26.546578. [PMID: 37425715 PMCID: PMC10327002 DOI: 10.1101/2023.06.26.546578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The formation of precise numbers of neuronal connections, known as synapses, is crucial for brain function. Therefore, synaptogenesis mechanisms have been one of the main focuses of neuroscience. Immunohistochemistry is a common tool for visualizing synapses. Thus, quantifying the numbers of synapses from light microscopy images enables screening the impacts of experimental manipulations on synapse development. Despite its utility, this approach is paired with low throughput analysis methods that are challenging to learn and results are variable between experimenters, especially when analyzing noisy images of brain tissue. We developed an open-source ImageJ-based software, SynBot, to address these technical bottlenecks by automating the analysis. SynBot incorporates the advanced algorithms ilastik and SynQuant for accurate thresholding for synaptic puncta identification, and the code can easily be modified by users. The use of this software will allow for rapid and reproducible screening of synaptic phenotypes in healthy and diseased nervous systems.
Collapse
Affiliation(s)
- Justin T. Savage
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Juan Ramirez
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - W. Christopher Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University,Huntington, WV 25755, USA
| | - Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Dolores Irala
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cagla Eroglu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Lead contact
| |
Collapse
|
23
|
Mai Y, Cheng Z, Wang Z, Hu T, Zhang Y, Yuan X, Xu X, Fan Y, Ge F, Shi P, Wang J, Yang X, Guan X. Pathological polarizations from microglia to astrocyte contributes to spatial memory deficit in methamphetamine abstinence mice. Cereb Cortex 2024; 34:bhae281. [PMID: 38981852 DOI: 10.1093/cercor/bhae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/11/2024] Open
Abstract
Previously, we found that dCA1 A1-like polarization of astrocytes contributes a lot to the spatial memory deficit in methamphetamine abstinence mice. However, the underlying mechanism remains unclear, resulting in a lack of promising therapeutic targets. Here, we found that methamphetamine abstinence mice exhibited an increased M1-like microglia and A1-like astrocytes, together with elevated levels of interleukin 1α and tumor necrosis factor α in dCA1. In vitro, the M1-like BV2 microglia cell medium, containing high levels of Interleukin 1α and tumor necrosis factor α, elevated A1-like polarization of astrocytes, which weakened their capacity for glutamate clearance. Locally suppressing dCA1 M1-like microglia activation with minocycline administration attenuated A1-like polarization of astrocytes, ameliorated dCA1 neurotoxicity, and, most importantly, rescued spatial memory in methamphetamine abstinence mice. The effective time window of minocycline treatment on spatial memory is the methamphetamine exposure period, rather than the long-term methamphetamine abstinence.
Collapse
Affiliation(s)
- Yuning Mai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zhen Cheng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Ze Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Tao Hu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xiya Yuan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xing Xu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Pengbo Shi
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Jun Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Xin Yang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| |
Collapse
|
24
|
Maudes E, Jamet Z, Marmolejo L, Dalmau JO, Groc L. Positive Allosteric Modulation of NMDARs Prevents the Altered Surface Dynamics Caused by Patients' Antibodies. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200261. [PMID: 38771989 PMCID: PMC11111324 DOI: 10.1212/nxi.0000000000200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVES A positive allosteric modulator of the NMDAR, SGE-301, has been shown to reverse the alterations caused by the antibodies of patients with anti-NMDAR encephalitis (NMDARe). However, the mechanisms involved beyond receptor modulation are unclear. In this study, we aimed to investigate how this modulator affects NMDAR membrane dynamics. METHODS Cultured hippocampal neurons were treated with SGE-301 or vehicle, alongside with immunoglobulins G (IgG) from patients with NMDARe or healthy controls. NMDAR surface dynamics were assessed with single-molecule imaging by photoactivated localization microscopy. RESULTS NMDAR trajectories from neurons treated with SGE-301 were less confinement, with increased diffusion coefficients. This effect mainly occurred at synapses because extrasynaptic diffusion and confinement were minimally affected by SGE-301. Treatment with patients' IgG reduced NMDAR surface dynamics and increased their confinement. Remarkably, SGE-301 incubation antagonized patients' IgG effects in both synaptic and extrasynaptic membrane compartments, restoring diffusion and confinement values similar to those from neurons exposed to control IgG. DISCUSSION We demonstrate that SGE-301 upregulates NMDAR surface diffusion and antagonizes the pathogenic effects of patients' IgG on NMDAR membrane organization. These findings suggest a potential therapeutic strategy for NMDARe.
Collapse
Affiliation(s)
- Estibaliz Maudes
- From the Neuroimmunology Program (E.M., L.M., J.O.D.), Fundació Clinic per la Recerca Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Spain; and University of Bordeaux (Z.J., L.G.), CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Zoë Jamet
- From the Neuroimmunology Program (E.M., L.M., J.O.D.), Fundació Clinic per la Recerca Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Spain; and University of Bordeaux (Z.J., L.G.), CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Laura Marmolejo
- From the Neuroimmunology Program (E.M., L.M., J.O.D.), Fundació Clinic per la Recerca Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Spain; and University of Bordeaux (Z.J., L.G.), CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Josep O Dalmau
- From the Neuroimmunology Program (E.M., L.M., J.O.D.), Fundació Clinic per la Recerca Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Spain; and University of Bordeaux (Z.J., L.G.), CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Laurent Groc
- From the Neuroimmunology Program (E.M., L.M., J.O.D.), Fundació Clinic per la Recerca Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Spain; and University of Bordeaux (Z.J., L.G.), CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| |
Collapse
|
25
|
Wang SY, Xia ZX, Yang SW, Chen WK, Zhao YL, Li MD, Tian D, Pan Y, Lin XS, Zhu XQ, Huang Z, Liu JM, Lai ZM, Tao WC, Shen ZC. Regulation of depressive-like behaviours by palmitoylation: Role of AKAP150 in the basolateral amygdala. Br J Pharmacol 2024; 181:1897-1915. [PMID: 38413375 DOI: 10.1111/bph.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Protein palmitoylation is involved in learning and memory, and in emotional disorders. Yet, the underlying mechanisms in these processes remain unclear. Herein, we describe that A-kinase anchoring protein 150 (AKAP150) is essential and sufficient for depressive-like behaviours in mice via a palmitoylation-dependent mechanism. EXPERIMENTAL APPROACH Depressive-like behaviours in mice were induced by chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS). Palmitoylated proteins in the basolateral amygdala (BLA) were assessed by an acyl-biotin exchange assay. Genetic and pharmacological approaches were used to investigate the role of the DHHC2-mediated AKAP150 palmitoylation signalling pathway in depressive-like behaviours. Electrophysiological recording, western blotting and co-immunoprecipitation were performed to define the mechanistic pathway. KEY RESULTS Chronic stress successfully induced depressive-like behaviours in mice and enhanced AKAP150 palmitoylation in the BLA, and a palmitoylation inhibitor was enough to reverse these changes. Blocking the AKAP150-PKA interaction with the peptide Ht-31 abolished the CRS-induced AKAP150 palmitoylation signalling pathway. DHHC2 expression and palmitoylation levels were both increased after chronic stress. DHHC2 knockdown prevented CRS-induced depressive-like behaviours, as well as attenuating AKAP150 signalling and synaptic transmission in the BLA in CRS-treated mice. CONCLUSION AND IMPLICATIONS These results delineate that DHHC2 modulates chronic stress-induced depressive-like behaviours and synaptic transmission in the BLA via the AKAP150 palmitoylation signalling pathway, and this pathway may be considered as a promising novel therapeutic target for major depressive disorder.
Collapse
Affiliation(s)
- Si-Ying Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Shao-Wei Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wei-Kai Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yue-Ling Zhao
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Meng-Die Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yue Pan
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiao-Shan Lin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiao-Qian Zhu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhen Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian-Min Liu
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan, China
| | - Zhong-Meng Lai
- Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Wu-Cheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| |
Collapse
|
26
|
Stockwell I, Watson JF, Greger IH. Tuning synaptic strength by regulation of AMPA glutamate receptor localization. Bioessays 2024; 46:e2400006. [PMID: 38693811 PMCID: PMC7616278 DOI: 10.1002/bies.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Long-term potentiation (LTP) of excitatory synapses is a leading model to explain the concept of information storage in the brain. Multiple mechanisms contribute to LTP, but central amongst them is an increased sensitivity of the postsynaptic membrane to neurotransmitter release. This sensitivity is predominantly determined by the abundance and localization of AMPA-type glutamate receptors (AMPARs). A combination of AMPAR structural data, super-resolution imaging of excitatory synapses, and an abundance of electrophysiological studies are providing an ever-clearer picture of how AMPARs are recruited and organized at synaptic junctions. Here, we review the latest insights into this process, and discuss how both cytoplasmic and extracellular receptor elements cooperate to tune the AMPAR response at the hippocampal CA1 synapse.
Collapse
Affiliation(s)
- Imogen Stockwell
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jake F. Watson
- Institute of Science and Technology, Technology (IST) Austria, Klosterneuburg, Austria
| | - Ingo H. Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
27
|
Parasrampuria MA, White AA, Chilamkurthy R, Pater AA, El-Azzouzi F, Ovington KN, Jensik PJ, Gagnon KT. Sequencing-guided design of genetically encoded small RNAs targeting CAG repeats for selective inhibition of mutant huntingtin. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102206. [PMID: 38803421 PMCID: PMC11129097 DOI: 10.1016/j.omtn.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Huntington's disease (HD) is an incurable neurodegenerative disorder caused by genetic expansion of a CAG repeat sequence in one allele of the huntingtin (HTT) gene. Reducing expression of the mutant HTT (mutHTT) protein has remained a clear therapeutic goal, but reduction of wild-type HTT (wtHTT) is undesirable, as it compromises gene function and potential therapeutic efficacy. One promising allele-selective approach involves targeting the CAG repeat expansion with steric binding small RNAs bearing central mismatches. However, successful genetic encoding requires consistent placement of mismatches to the target within the small RNA guide sequence, which involves 5' processing precision by cellular enzymes. Here, we used small RNA sequencing (RNA-seq) to monitor the processing precision of a limited set of CAG repeat-targeted small RNAs expressed from multiple scaffold contexts. Small RNA-seq identified expression constructs with high-guide strand 5' processing precision and promising allele-selective inhibition of mutHTT. Transcriptome-wide mRNA-seq also identified an allele-selective small RNA with a favorable off-target profile. These results support continued investigation and optimization of genetically encoded repeat-targeted small RNAs for allele-selective HD gene therapy and underscore the value of sequencing methods to balance specificity with allele selectivity during the design and selection process.
Collapse
Affiliation(s)
- Mansi A. Parasrampuria
- Division of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Adam A. White
- Division of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Ramadevi Chilamkurthy
- Division of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Adrian A. Pater
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
| | - Fatima El-Azzouzi
- Division of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Katy N. Ovington
- Division of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Philip J. Jensik
- Division of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Keith T. Gagnon
- Division of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
28
|
Lopes AR, Costa Silva DG, Rodrigues NR, Kemmerich Martins I, Paganotto Leandro L, Nunes MEM, Posser T, Franco J. Investigating the impact of Psidium guajava leaf hydroalcoholic extract in improving glutamatergic toxicity-induced oxidative stress in Danio rerio larvae. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:457-470. [PMID: 38576186 DOI: 10.1080/15287394.2024.2337366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Glutamate is one of the predominant excitatory neurotransmitters released from the central nervous system; however, at high concentrations, this substance may induce excitotoxicity. This phenomenon is involved in numerous neuropathologies. At present, clinically available pharmacotherapeutic agents to counteract glutamatergic excitotoxicity are not completely effective; therefore, research to develop novel compounds is necessary. In this study, the main objective was to determine the pharmacotherapeutic potential of the hydroalcoholic extract of Psidium guajava (PG) in a model of oxidative stress-induced by exposure to glutamate utilizing Danio rerio larvae (zebrafish) as a model. Data showed that treatment with glutamate produced a significant increase in oxidative stress, chromatin damage, apoptosis, and locomotor dysfunction. All these effects were attenuated by pre-treatment with the classical antioxidant N-acetylcysteine (NAC). Treatment with PG inhibited oxidative stress responsible for cellular damage induced by glutamate. However, exposure to PG failed to prevent glutamate-initiated locomotor damage. Our findings suggest that under conditions of oxidative stress, PG can be considered as a promising candidate for treatment of glutamatergic excitotoxicity and consequent neurodegenerative diseases.
Collapse
Affiliation(s)
- Andressa Rubim Lopes
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas - Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Dennis Guilherme Costa Silva
- Programa de Pós-Graduação em Ciências Fisiológicas - Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Nathane Rosa Rodrigues
- Grupo de Pesquisa em Bioquímica e Toxicologia Compostos Bioativos - GBToxBio, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Rio Grande do Sul, Brazil
| | - Illana Kemmerich Martins
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| | - Luana Paganotto Leandro
- Departamento de Química, Programa de Pós-Graduação em Bioquímica Toxicológica - PPGBTox, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Mauro Eugênio Medina Nunes
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| | - Thais Posser
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| | - Jeferson Franco
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Jones G, Akter Y, Shifflett V, Hruska M. Nanoscale analysis of functionally diverse glutamatergic synapses in the neocortex reveals input and layer-specific organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592008. [PMID: 38746319 PMCID: PMC11092571 DOI: 10.1101/2024.05.01.592008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Discovery of synaptic nanostructures suggests a molecular logic for the flexibility of synaptic function. We still have little understanding of how functionally diverse synapses in the brain organize their nanoarchitecture due to challenges associated with super-resolution imaging in complex brain tissue. Here, we characterized single-domain camelid nanobodies for the 3D quantitative multiplex imaging of synaptic nano-organization in 6 µm brain cryosections using STED nanoscopy. We focused on thalamocortical (TC) and corticocortical (CC) synapses along the apical-basal axis of layer 5 pyramidal neurons as models of functionally diverse glutamatergic synapses in the brain. Spines receiving TC input were larger than CC spines in all layers examined. However, TC synapses on apical and basal dendrites conformed to different organizational principles. TC afferents on apical dendrites frequently contacted spines with multiple aligned PSD-95/Bassoon nanomodules, which are larger. TC spines on basal dendrites contained mostly one aligned PSD-95/Bassoon nanocluster. However, PSD-95 nanoclusters were larger and scaled with spine volume. The nano-organization of CC synapses did not change across cortical layers. These results highlight striking nanoscale diversity of functionally distinct glutamatergic synapses, relying on afferent input and sub-cellular localization of individual synaptic connections.
Collapse
|
30
|
Stepan J, Heinz DE, Dethloff F, Wiechmann S, Martinelli S, Hafner K, Ebert T, Junglas E, Häusl AS, Pöhlmann ML, Jakovcevski M, Pape JC, Zannas AS, Bajaj T, Hermann A, Ma X, Pavenstädt H, Schmidt MV, Philipsen A, Turck CW, Deussing JM, Rammes G, Robinson AC, Payton A, Wehr MC, Stein V, Murgatroyd C, Kremerskothen J, Kuster B, Wotjak CT, Gassen NC. Inhibiting Hippo pathway kinases releases WWC1 to promote AMPAR-dependent synaptic plasticity and long-term memory in mice. Sci Signal 2024; 17:eadj6603. [PMID: 38687825 DOI: 10.1126/scisignal.adj6603] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
The localization, number, and function of postsynaptic AMPA-type glutamate receptors (AMPARs) are crucial for synaptic plasticity, a cellular correlate for learning and memory. The Hippo pathway member WWC1 is an important component of AMPAR-containing protein complexes. However, the availability of WWC1 is constrained by its interaction with the Hippo pathway kinases LATS1 and LATS2 (LATS1/2). Here, we explored the biochemical regulation of this interaction and found that it is pharmacologically targetable in vivo. In primary hippocampal neurons, phosphorylation of LATS1/2 by the upstream kinases MST1 and MST2 (MST1/2) enhanced the interaction between WWC1 and LATS1/2, which sequestered WWC1. Pharmacologically inhibiting MST1/2 in male mice and in human brain-derived organoids promoted the dissociation of WWC1 from LATS1/2, leading to an increase in WWC1 in AMPAR-containing complexes. MST1/2 inhibition enhanced synaptic transmission in mouse hippocampal brain slices and improved cognition in healthy male mice and in male mouse models of Alzheimer's disease and aging. Thus, compounds that disrupt the interaction between WWC1 and LATS1/2 might be explored for development as cognitive enhancers.
Collapse
Affiliation(s)
- Jens Stepan
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
- Department of Obstetrics and Gynecology, Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | - Daniel E Heinz
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Max Planck School of Cognition, 04103 Leipzig, Germany
| | - Frederik Dethloff
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Svenja Wiechmann
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
- German Cancer Consortium (DKTK), 80336 Munich, Germany
- German Cancer Center (DKFZ), 69120 Heidelberg, Germany
| | - Silvia Martinelli
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Tim Ebert
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Ellen Junglas
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander S Häusl
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Max L Pöhlmann
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Mira Jakovcevski
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Julius C Pape
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Anthony S Zannas
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| | - Anke Hermann
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, 48149 Münster, Germany
| | - Xiao Ma
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, 48149 Münster, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Gerhard Rammes
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Andrew C Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Salford Royal Hospital, Salford M6 8HD, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre (MAHSC), Salford M6 8HD, UK
| | - Antony Payton
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Michael C Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Valentin Stein
- Institute of Physiology II, Medical Faculty University of Bonn, 53115 Bonn, Germany
| | | | - Joachim Kremerskothen
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, 48149 Münster, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
- German Cancer Consortium (DKTK), 80336 Munich, Germany
- German Cancer Center (DKFZ), 69120 Heidelberg, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, 85354 Freising, Germany
| | - Carsten T Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
31
|
Wang J, Wang Y, Zhu Y, Cui C, Feng T, Huang Q, Liu S, Wu Q. Peripheral inflammation triggering central anxiety through the hippocampal glutamate metabolized receptor 1. CNS Neurosci Ther 2024; 30:e14723. [PMID: 38676295 PMCID: PMC11053250 DOI: 10.1111/cns.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
AIMS This study aimed to investigate the relationship between ulcerative colitis (UC) and anxiety and explore its central mechanisms using colitis mice. METHODS Anxiety-like behavior was assessed in mice induced by 3% dextran sodium sulfate (DSS) using the elevated plus maze and open-field test. The spatial transcriptome of the hippocampus was analyzed to assess the distribution of excitatory and inhibitory synapses, and Toll-like receptor 4 (TLR4) inhibitor TAK-242 (10 mg/kg) and AAV virus interference were used to examine the role of peripheral inflammation and central molecules such as Glutamate Receptor Metabotropic 1 (GRM1) in mediating anxiety behavior in colitis mice. RESULTS DSS-induced colitis increased anxiety-like behaviors, which was reduced by TAK-242. Spatial transcriptome analysis of the hippocampus showed an excitatory-inhibitory imbalance mediated by glutamatergic synapses, and GRM1 in hippocampus was identified as a critical mediator of anxiety behavior in colitis mice via differential gene screening and AAV virus interference. CONCLUSION Our work suggests that the hippocampus plays an important role in brain anxiety caused by peripheral inflammation, and over-excitation of hippocampal glutamate synapses by GRM1 activation induces anxiety-like behavior in colitis mice. These findings provide new insights into the central mechanisms underlying anxiety in UC and may contribute to the development of novel therapeutic strategies for UC-associated anxiety.
Collapse
Affiliation(s)
- Jun‐Meng Wang
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Yue‐Mei Wang
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Yuan‐Bing Zhu
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Chan Cui
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Tong Feng
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Qin Huang
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Shu‐Qing Liu
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Qiao‐Feng Wu
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Acupuncture and Homeostasis RegulationChengdu University of Traditional Chinese MedicineChengduChina
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of EducationChengduChina
| |
Collapse
|
32
|
Wu Y, Hu H, Liu W, Zhao Y, Xie F, Sun Z, Zhang L, Dong H, Wang X, Qian L. Hippocampal Lactate-Infusion Enhances Spatial Memory Correlated with Monocarboxylate Transporter 2 and Lactylation. Brain Sci 2024; 14:327. [PMID: 38671979 PMCID: PMC11048250 DOI: 10.3390/brainsci14040327] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Lactate has emerged as a key player in regulating neural functions and cognitive processes. Beyond its function as an energy substrate and signal molecule, recent research has revealed lactate to serve as an epigenetic regulator in the brain. However, the molecular mechanisms by which lactate regulates spatial memory and its role in the prevention of cognitive disorders remain unclear. Herein, we injected L-lactate (10 μmol/kg/d for 6 d) into the mouse's hippocampus, followed by the Morris water maze (MWM) test and molecular analyses. Improved spatial memory performances were observed in mice injected with lactate. Besides, lactate upregulated the expression of synaptic proteins post-synaptic density 95 (PSD95), synaptophysin (SYP), and growth associated protein 43 (GAP43) in hippocampal tissues and HT22 cells, suggesting a potential role in synaptic transmission and memory formation. The facilitative role of monocarboxylate transporter 2 (MCT2), a neuron-specific lactate transporter, in this process was confirmed, as MCT2 antagonists attenuated the lactate-induced upregulation of synaptic proteins. Moreover, lactate induced protein lactylation, a post-translational modification, which could be suppressed by MCT2 inhibition. RNA sequencing of lactated-injected hippocampal tissues revealed a comprehensive gene expression profile influenced by lactate, with significant changes in genes associated with transcriptional progress. These data demonstrate that hippocampal lactate injection enhances spatial memory in mice, potentially through the upregulation of synaptic proteins and induction of protein lactylation, with MCT2 playing a crucial role in these processes. Our findings shed light on the multi-faceted role of lactate in neural function and memory regulation, opening new avenues for therapeutic interventions targeting cognitive disorders.
Collapse
Affiliation(s)
- Yuhan Wu
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| | - Hui Hu
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| | - Weiwei Liu
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
- College of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Yun Zhao
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| | - Fang Xie
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| | - Zhaowei Sun
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| | - Ling Zhang
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| | - Huafeng Dong
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| | - Xue Wang
- Institute of Military Cognition and Brain Sciences, Beijing 100850, China
| | - Lingjia Qian
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, China; (Y.W.); (H.H.); (W.L.); (Y.Z.); (F.X.); (Z.S.); (L.Z.); (H.D.)
| |
Collapse
|
33
|
Stetak AL, Grenal T, Lenninger Z, Knight KM, Doser RL, Hoerndli FJ. A Necessary Role for PKC-2 and TPA-1 in Olfactory Memory and Synaptic AMPAR Trafficking in Caenorhabditis elegans. J Neurosci 2024; 44:e1120232024. [PMID: 38238075 PMCID: PMC10919255 DOI: 10.1523/jneurosci.1120-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Protein kinase C (PKC) functions are essential for synaptic plasticity, learning, and memory. However, the roles of specific members of the PKC family in synaptic function, learning, and memory are poorly understood. Here, we investigated the role of individual PKC homologs for synaptic plasticity in Caenorhabditis elegans and found a differential role for pkc-2 and tpa-1, but not pkc-1 and pkc-3 in associative olfactory learning and memory. More specifically we show that PKC-2 is essential for associative learning and TPA-1 for short-term associative memory (STAM). Using endogenous labeling and cell-specific rescues, we show that TPA-1 and PKC-2 are required in AVA for their functions. Previous studies demonstrated that olfactory learning and memory in C. elegans are tied to proper synaptic content and trafficking of AMPA-type ionotropic glutamate receptor homolog GLR-1 in the AVA command interneurons. Therefore, we quantified synaptic content, transport, and delivery of GLR-1 in AVA and showed that loss of pkc-2 and tpa-1 leads to decreased transport and delivery but only a subtle decrease in GLR-1 levels at synapses. AVA-specific expression of both PKC-2 and TPA-1 rescued these defects. Finally, genetic epistasis showed that PKC-2 and TPA-1 likely act in the same pathway to control GLR-1 transport and delivery, while regulating different aspects of olfactory learning and STAM. Thus, our data tie together cell-specific functions of 2 PKCs to neuronal and behavioral outcomes in C. elegans, enabling comparative approaches to understand the evolutionarily conserved role of PKC in synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Attila L Stetak
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
- University Psychiatric Clinics, University of Basel, 4002 Basel, Switzerland
| | - Thomas Grenal
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
| | - Zephyr Lenninger
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Kaz M Knight
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Rachel L Doser
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
- Health and Exercise Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Frederic J Hoerndli
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
34
|
Jurcau A, Simion A, Jurcau MC. Emerging antibody-based therapies for Huntington's disease: current status and perspectives for future development. Expert Rev Neurother 2024; 24:299-312. [PMID: 38324338 DOI: 10.1080/14737175.2024.2314183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Being an inherited neurodegenerative disease with an identifiable genetic defect, Huntington's disease (HD) is a suitable candidate for early intervention, possibly even in the pre-symptomatic stage. Our recent advances in elucidating the pathogenesis of HD have revealed a series of novel potential therapeutic targets, among which immunotherapies are actively pursued in preclinical experiments. AREAS COVERED This review focuses on the potential of antibody-based treatments targeting various epitopes (of mutant huntingtin as well as phosphorylated tau) that are currently evaluated in vitro and in animal experiments. The references used in this review were retrieved from the PubMed database, searching for immunotherapies in HD, and clinical trial registries were reviewed for molecules already evaluated in clinical trials. EXPERT OPINION Antibody-based therapies have raised considerable interest in a series of neurodegenerative diseases characterized by deposition of aggregated of aberrantly folded proteins, HD included. Intrabodies and nanobodies can interact with mutant huntingtin inside the nervous cells. However, the conflicting results obtained with some of these intrabodies highlight the need for proper choice of epitopes and for developing animal models more closely mimicking human disease. Approval of these strategies will require a considerable financial and logistic effort on behalf of healthcare systems.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, Oradea, Romania
| | | |
Collapse
|
35
|
Choquet D. Shifting rules in a brain disorder. Science 2024; 383:950-951. [PMID: 38422158 DOI: 10.1126/science.adn8707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The mode of action of a synaptic protein is challenged.
Collapse
Affiliation(s)
- Daniel Choquet
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS, UMR 5297, F-33000 Bordeaux, France
- Bordeaux Imaging Center, University of Bordeaux, CNRS, INSERM, US4, UAR 3420, F-33000 Bordeaux, France
| |
Collapse
|
36
|
Loe-Mie Y, Plançon C, Dubertret C, Yoshikawa T, Yalcin B, Collins SC, Boland A, Deleuze JF, Gorwood P, Benmessaoud D, Simonneau M, Lepagnol-Bestel AM. De Novo Variants Found in Three Distinct Schizophrenia Populations Hit a Common Core Gene Network Related to Microtubule and Actin Cytoskeleton Gene Ontology Classes. Life (Basel) 2024; 14:244. [PMID: 38398753 PMCID: PMC10890674 DOI: 10.3390/life14020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Schizophrenia (SZ) is a heterogeneous and debilitating psychiatric disorder with a strong genetic component. To elucidate functional networks perturbed in schizophrenia, we analysed a large dataset of whole-genome studies that identified SNVs, CNVs, and a multi-stage schizophrenia genome-wide association study. Our analysis identified three subclusters that are interrelated and with small overlaps: GO:0007017~Microtubule-Based Process, GO:00015629~Actin Cytoskeleton, and GO:0007268~SynapticTransmission. We next analysed three distinct trio cohorts of 75 SZ Algerian, 45 SZ French, and 61 SZ Japanese patients. We performed Illumina HiSeq whole-exome sequencing and identified de novo mutations using a Bayesian approach. We validated 88 de novo mutations by Sanger sequencing: 35 in French, 21 in Algerian, and 32 in Japanese SZ patients. These 88 de novo mutations exhibited an enrichment in genes encoding proteins related to GO:0051015~actin filament binding (p = 0.0011) using David, and enrichments in GO: 0003774~transport (p = 0.019) and GO:0003729~mRNA binding (p = 0.010) using Amigo. One of these de novo variant was found in CORO1C coding sequence. We studied Coro1c haploinsufficiency in a Coro1c+/- mouse and found defects in the corpus callosum. These results could motivate future studies of the mechanisms surrounding genes encoding proteins involved in transport and the cytoskeleton, with the goal of developing therapeutic intervention strategies for a subset of SZ cases.
Collapse
Affiliation(s)
- Yann Loe-Mie
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France; (Y.L.-M.); (C.D.); (P.G.); (A.-M.L.-B.)
| | - Christine Plançon
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France; (C.P.); (A.B.); (J.-F.D.)
| | - Caroline Dubertret
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France; (Y.L.-M.); (C.D.); (P.G.); (A.-M.L.-B.)
- AP-HP, Department of Psychiatry, Louis Mourier Hospital, 92700 Colombes, France
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama 351-0106, Japan;
| | - Binnaz Yalcin
- Université de Bourgogne, INSERM Research Center U1231, 21000 Dijon, France; (B.Y.); (S.C.C.)
| | - Stephan C. Collins
- Université de Bourgogne, INSERM Research Center U1231, 21000 Dijon, France; (B.Y.); (S.C.C.)
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France; (C.P.); (A.B.); (J.-F.D.)
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France; (C.P.); (A.B.); (J.-F.D.)
| | - Philip Gorwood
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France; (Y.L.-M.); (C.D.); (P.G.); (A.-M.L.-B.)
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, 75014 Paris, France
| | - Dalila Benmessaoud
- Etablissement Hospitalo-Universitaire Spécialisé Psychiatrie Frantz FANON, Université Saad DAHLAB, Blida 09000, Algeria;
| | - Michel Simonneau
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France; (Y.L.-M.); (C.D.); (P.G.); (A.-M.L.-B.)
- Laboratoire LuMin, FRE 2036, Universite Paris-Saclay, CNRS, ENS Paris Saclay 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France
- Department of Biology, Ecole Normale Supérieure de Paris-Saclay, Université Paris-Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Aude-Marie Lepagnol-Bestel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France; (Y.L.-M.); (C.D.); (P.G.); (A.-M.L.-B.)
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France; (C.P.); (A.B.); (J.-F.D.)
| |
Collapse
|
37
|
Nonaka H, Sakamoto S, Shiraiwa K, Ishikawa M, Tamura T, Okuno K, Kondo T, Kiyonaka S, Susaki EA, Shimizu C, Ueda HR, Kakegawa W, Arai I, Yuzaki M, Hamachi I. Bioorthogonal chemical labeling of endogenous neurotransmitter receptors in living mouse brains. Proc Natl Acad Sci U S A 2024; 121:e2313887121. [PMID: 38294939 PMCID: PMC10861872 DOI: 10.1073/pnas.2313887121] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/16/2023] [Indexed: 02/02/2024] Open
Abstract
Neurotransmitter receptors are essential components of synapses for communication between neurons in the brain. Because the spatiotemporal expression profiles and dynamics of neurotransmitter receptors involved in many functions are delicately governed in the brain, in vivo research tools with high spatiotemporal resolution for receptors in intact brains are highly desirable. Covalent labeling by chemical reaction (chemical labeling) of proteins without genetic manipulation is now a powerful method for analyzing receptors in vitro. However, selective target receptor labeling in the brain has not yet been achieved. This study shows that ligand-directed alkoxyacylimidazole (LDAI) chemistry can be used to selectively tether synthetic probes to target endogenous receptors in living mouse brains. The reactive LDAI reagents with negative charges were found to diffuse well over the whole brain and could selectively label target endogenous receptors, including AMPAR, NMDAR, mGlu1, and GABAAR. This simple and robust labeling protocol was then used for various applications: three-dimensional spatial mapping of endogenous receptors in the brains of healthy and disease-model mice; multi-color receptor imaging; and pulse-chase analysis of the receptor dynamics in postnatal mouse brains. Here, results demonstrated that bioorthogonal receptor modification in living animal brains may provide innovative molecular tools that contribute to the in-depth understanding of complicated brain functions.
Collapse
Affiliation(s)
- Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Hamachi Innovative Molecular Technology for Neuroscience, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Kyoto615-8530, Japan
| | - Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Hamachi Innovative Molecular Technology for Neuroscience, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Kyoto615-8530, Japan
| | - Kazuki Shiraiwa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Mamoru Ishikawa
- Hamachi Innovative Molecular Technology for Neuroscience, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Kyoto615-8530, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Hamachi Innovative Molecular Technology for Neuroscience, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Kyoto615-8530, Japan
| | - Kyohei Okuno
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Takumi Kondo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya464-8603, Japan
| | - Shigeki Kiyonaka
- Hamachi Innovative Molecular Technology for Neuroscience, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Kyoto615-8530, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya464-8603, Japan
| | - Etsuo A. Susaki
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo113-8421, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka 565-5241, Japan
| | - Chika Shimizu
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka 565-5241, Japan
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka 565-5241, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Wataru Kakegawa
- Hamachi Innovative Molecular Technology for Neuroscience, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Kyoto615-8530, Japan
- Department of Neurophysiology, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Itaru Arai
- Department of Neurophysiology, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Michisuke Yuzaki
- Department of Neurophysiology, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Hamachi Innovative Molecular Technology for Neuroscience, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Kyoto615-8530, Japan
| |
Collapse
|
38
|
Ma H, Fang H, Xie X, Liu Y, Tian H, Chai Y. Optoelectronic Synapses Based on MXene/Violet Phosphorus van der Waals Heterojunctions for Visual-Olfactory Crossmodal Perception. NANO-MICRO LETTERS 2024; 16:104. [PMID: 38300424 PMCID: PMC10834395 DOI: 10.1007/s40820-024-01330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/11/2023] [Indexed: 02/02/2024]
Abstract
The crossmodal interaction of different senses, which is an important basis for learning and memory in the human brain, is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception, but related researches are scarce. Here, we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus (VP) van der Waals heterojunctions. Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene, the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude, reaching up to 7.7 A W-1. Excited by ultraviolet light, multiple synaptic functions, including excitatory postsynaptic currents, paired-pulse facilitation, short/long-term plasticity and "learning-experience" behavior, were demonstrated with a low power consumption. Furthermore, the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments, enabling it to simulate the interaction of visual and olfactory information for crossmodal perception. This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics.
Collapse
Affiliation(s)
- Hailong Ma
- Center for Advancing Materials Performance From the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Huajing Fang
- Center for Advancing Materials Performance From the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Xinxing Xie
- Center for Advancing Materials Performance From the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yanming Liu
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - He Tian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.
| |
Collapse
|
39
|
Clavet-Fournier V, Lee C, Wegner W, Brose N, Rhee J, Willig KI. Pre- and postsynaptic nanostructures increase in size and complexity after induction of long-term potentiation. iScience 2024; 27:108679. [PMID: 38213627 PMCID: PMC10783556 DOI: 10.1016/j.isci.2023.108679] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
Synapses, specialized contact sites between neurons, are the fundamental elements of neuronal information transfer. Synaptic plasticity involves changes in synaptic morphology and the number of neurotransmitter receptors, and is thought to underlie learning and memory. However, it is not clear how these structural and functional changes are connected. We utilized time-lapse super-resolution STED microscopy of organotypic hippocampal brain slices and cultured neurons to visualize structural changes of the synaptic nano-organization of the postsynaptic scaffolding protein PSD95, the presynaptic scaffolding protein Bassoon, and the GluA2 subunit of AMPA receptors by chemically induced long-term potentiation (cLTP) at the level of single synapses. We found that the nano-organization of all three proteins increased in complexity and size after cLTP induction. The increase was largely synchronous, peaking at ∼60 min after stimulation. Therefore, both the size and complexity of individual pre- and post-synaptic nanostructures serve as substrates for tuning and determining synaptic strength.
Collapse
Affiliation(s)
- Valérie Clavet-Fournier
- Group of Optical Nanoscopy in Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics, und Molecular Biosciences (GGNB), Göttingen, Germany
| | - ChungKu Lee
- Department of Molecular Neurobiology, Synaptic Physiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Waja Wegner
- Group of Optical Nanoscopy in Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Synaptic Physiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katrin I. Willig
- Group of Optical Nanoscopy in Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
40
|
Varadi G. Mechanism of Analgesia by Gabapentinoid Drugs: Involvement of Modulation of Synaptogenesis and Trafficking of Glutamate-Gated Ion Channels. J Pharmacol Exp Ther 2024; 388:121-133. [PMID: 37918854 DOI: 10.1124/jpet.123.001669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Gabapentinoids have clinically been used for treating epilepsy, neuropathic pain, and several other neurologic disorders for >30 years; however, the definitive molecular mechanism responsible for their therapeutic actions remained uncertain. The conventional pharmacological observation regarding their efficacy in chronic pain modulation is the weakening of glutamate release at presynaptic terminals in the spinal cord. While the α2/δ-1 subunit of voltage-gated calcium channels (VGCCs) has been identified as the primary drug receptor for gabapentinoids, the lack of consistent effect of this drug class on VGCC function is indicative of a minor role in regulating this ion channel's activity. The current review targets the efficacy and mechanism of gabapentinoids in treating chronic pain. The discovery of interaction of α2/δ-1 with thrombospondins established this protein as a major synaptogenic neuronal receptor for thrombospondins. Other findings identified α2/δ-1 as a powerful regulator of N-methyl-D-aspartate receptor (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) by potentiating the synaptic expression, a putative pathophysiological mechanism of neuropathic pain. Further, the interdependent interactions between thrombospondin and α2/δ-1 contribute to chronic pain states, while gabapentinoid ligands efficaciously reverse such pain conditions. Gabapentin normalizes and even blocks NMDAR and AMPAR synaptic targeting and activity elicited by nerve injury. SIGNIFICANCE STATEMENT: Gabapentinoid drugs are used to treat various neurological conditions including chronic pain. In chronic pain states, gene expression of cacnα2/δ-1 and thrombospondins are upregulated and promote aberrant excitatory synaptogenesis. The complex trait of protein associations that involve interdependent interactions between α2/δ-1 and thrombospondins, further, association of N-methyl-D-aspartate receptor and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor with the C-tail of α2/δ-1, constitutes a macromolecular signaling complex that forms the crucial elements for the pharmacological mode of action of gabapentinoids.
Collapse
|
41
|
Bénac N, Ezequiel Saraceno G, Butler C, Kuga N, Nishimura Y, Yokoi T, Su P, Sasaki T, Petit-Pedrol M, Galland R, Studer V, Liu F, Ikegaya Y, Sibarita JB, Groc L. Non-canonical interplay between glutamatergic NMDA and dopamine receptors shapes synaptogenesis. Nat Commun 2024; 15:27. [PMID: 38167277 PMCID: PMC10762086 DOI: 10.1038/s41467-023-44301-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Direct interactions between receptors at the neuronal surface have long been proposed to tune signaling cascades and neuronal communication in health and disease. Yet, the lack of direct investigation methods to measure, in live neurons, the interaction between different membrane receptors at the single molecule level has raised unanswered questions on the biophysical properties and biological roles of such receptor interactome. Using a multidimensional spectral single molecule-localization microscopy (MS-SMLM) approach, we monitored the interaction between two membrane receptors, i.e. glutamatergic NMDA (NMDAR) and G protein-coupled dopamine D1 (D1R) receptors. The transient interaction was randomly observed along the dendritic tree of hippocampal neurons. It was higher early in development, promoting the formation of NMDAR-D1R complexes in an mGluR5- and CK1-dependent manner, favoring NMDAR clusters and synaptogenesis in a dopamine receptor signaling-independent manner. Preventing the interaction in the neonate, and not adult, brain alters in vivo spontaneous neuronal network activity pattern in male mice. Thus, a weak and transient interaction between NMDAR and D1R plays a structural and functional role in the developing brain.
Collapse
Affiliation(s)
- Nathan Bénac
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | | | - Corey Butler
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Nahoko Kuga
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Sendai, Miyagi, 980-8578, Japan
| | - Yuya Nishimura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taiki Yokoi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Sendai, Miyagi, 980-8578, Japan
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Sendai, Miyagi, 980-8578, Japan
| | | | - Rémi Galland
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Vincent Studer
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, Suita City, Osaka, 565-0871, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
| | | | - Laurent Groc
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
42
|
De Koninck Y, Alonso J, Bancelin S, Béïque JC, Bélanger E, Bouchard C, Canossa M, Chaniot J, Choquet D, Crochetière MÈ, Cui N, Danglot L, De Koninck P, Devor A, Ducros M, Getz AM, Haouat M, Hernández IC, Jowett N, Keramidis I, Larivière-Loiselle C, Lavoie-Cardinal F, MacGillavry HD, Malkoç A, Mancinelli M, Marquet P, Minderler S, Moreaud M, Nägerl UV, Papanikolopoulou K, Paquet ME, Pavesi L, Perrais D, Sansonetti R, Thunemann M, Vignoli B, Yau J, Zaccaria C. Understanding the nervous system: lessons from Frontiers in Neurophotonics. NEUROPHOTONICS 2024; 11:014415. [PMID: 38545127 PMCID: PMC10972537 DOI: 10.1117/1.nph.11.1.014415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The Frontiers in Neurophotonics Symposium is a biennial event that brings together neurobiologists and physicists/engineers who share interest in the development of leading-edge photonics-based approaches to understand and manipulate the nervous system, from its individual molecular components to complex networks in the intact brain. In this Community paper, we highlight several topics that have been featured at the symposium that took place in October 2022 in Québec City, Canada.
Collapse
Affiliation(s)
- Yves De Koninck
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Department of Psychiatry and Neurosciences, Faculty of Medicine, Québec City, Québec, Canada
| | - Johanna Alonso
- CERVO Brain Research Centre, Québec City, Québec, Canada
| | - Stéphane Bancelin
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, National Centre for Scientific Research (CNRS), Bordeaux, France
| | - Jean-Claude Béïque
- University of Ottawa, Brain and Mind Research Institute, Centre of Neural Dynamics, Ottawa, Ontario, Canada
| | - Erik Bélanger
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Department of Psychiatry and Neurosciences, Faculty of Medicine, Québec City, Québec, Canada
- Laval University, Département de physique, de génie physique et d’optique, Québec City, Québec, Canada
| | - Catherine Bouchard
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Institute Intelligence and Data, Québec City, Québec, Canada
| | - Marco Canossa
- University of Trento, Department of Cellular Computational and Integrative Biology, Trento, Italy
| | - Johan Chaniot
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Department of Psychiatry and Neurosciences, Faculty of Medicine, Québec City, Québec, Canada
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, National Centre for Scientific Research (CNRS), Bordeaux, France
- University of Bordeaux, CNRS, Institut national de la santé et de la recherche médicale (INSERM), Bordeaux Imaging Center (BIC), Bordeaux, France
| | | | - Nanke Cui
- Harvard Medical School, Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Boston, Massachusetts, United States
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Paul De Koninck
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Department of Biochemistry, Microbiology, and Bioinformatics, Faculty of Science and Engineering, Québec City, Québec, Canada
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Mathieu Ducros
- University of Bordeaux, CNRS, Institut national de la santé et de la recherche médicale (INSERM), Bordeaux Imaging Center (BIC), Bordeaux, France
| | - Angela M. Getz
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, National Centre for Scientific Research (CNRS), Bordeaux, France
- University of Bordeaux, CNRS, Institut national de la santé et de la recherche médicale (INSERM), Bordeaux Imaging Center (BIC), Bordeaux, France
| | - Mohamed Haouat
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Department of Psychiatry and Neurosciences, Faculty of Medicine, Québec City, Québec, Canada
| | - Iván Coto Hernández
- Harvard Medical School, Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Boston, Massachusetts, United States
| | - Nate Jowett
- Harvard Medical School, Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Boston, Massachusetts, United States
| | | | - Céline Larivière-Loiselle
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Département de physique, de génie physique et d’optique, Québec City, Québec, Canada
| | - Flavie Lavoie-Cardinal
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Department of Psychiatry and Neurosciences, Faculty of Medicine, Québec City, Québec, Canada
- Laval University, Institute Intelligence and Data, Québec City, Québec, Canada
| | - Harold D. MacGillavry
- Utrecht University, Faculty of Science, Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht, The Netherlands
| | - Asiye Malkoç
- University of Trento, Department of Cellular Computational and Integrative Biology, Trento, Italy
- University of Trento, Department of Physics, Trento, Italy
| | | | - Pierre Marquet
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Department of Psychiatry and Neurosciences, Faculty of Medicine, Québec City, Québec, Canada
- Laval University, Centre d’optique, photonique et laser (COPL), Québec City, Québec, Canada
| | - Steven Minderler
- Harvard Medical School, Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Boston, Massachusetts, United States
| | - Maxime Moreaud
- CERVO Brain Research Centre, Québec City, Québec, Canada
- IFP Energies nouvelles, Solaize, France
| | - U. Valentin Nägerl
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, National Centre for Scientific Research (CNRS), Bordeaux, France
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | | | - Lorenzo Pavesi
- University of Trento, Department of Physics, Trento, Italy
| | - David Perrais
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, National Centre for Scientific Research (CNRS), Bordeaux, France
| | | | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Beatrice Vignoli
- University of Trento, Department of Cellular Computational and Integrative Biology, Trento, Italy
- University of Trento, Department of Physics, Trento, Italy
| | - Jenny Yau
- Harvard Medical School, Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Boston, Massachusetts, United States
| | - Clara Zaccaria
- University of Trento, Department of Physics, Trento, Italy
| |
Collapse
|
43
|
El Oussini H, Zhang CL, François U, Castelli C, Lampin-Saint-Amaux A, Lepleux M, Molle P, Velez L, Dejean C, Lanore F, Herry C, Choquet D, Humeau Y. CA3 hippocampal synaptic plasticity supports ripple physiology during memory consolidation. Nat Commun 2023; 14:8312. [PMID: 38097535 PMCID: PMC10721822 DOI: 10.1038/s41467-023-42969-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
The consolidation of recent memories depends on memory replays, also called ripples, generated within the hippocampus during slow-wave sleep, and whose inactivation leads to memory impairment. For now, the mobilisation, localisation and importance of synaptic plasticity events associated to ripples are largely unknown. To tackle this question, we used cell surface AMPAR immobilisation to block post-synaptic LTP within the hippocampal region of male mice during a spatial memory task, and show that: 1- hippocampal synaptic plasticity is engaged during consolidation, but is dispensable during encoding or retrieval. 2- Plasticity blockade during sleep results in apparent forgetting of the encoded rule. 3- In vivo ripple recordings show a strong effect of AMPAR immobilisation when a rule has been recently encoded. 4- In situ investigation suggests that plasticity at CA3-CA3 recurrent synapses supports ripple generation. We thus propose that post-synaptic AMPAR mobility at CA3 recurrent synapses is necessary for ripple-dependent rule consolidation.
Collapse
Affiliation(s)
- Hajer El Oussini
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Chun-Lei Zhang
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine (IBPS), Neurosciences Paris Seine (NPS), Team Synaptic Plasticity and Neural Networks, F-75005, Paris, France
| | - Urielle François
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Cecilia Castelli
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | | | - Marilyn Lepleux
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Pablo Molle
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Legeolas Velez
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Cyril Dejean
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Frederic Lanore
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Cyril Herry
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Daniel Choquet
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Yann Humeau
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
44
|
Mussap M, Beretta P, Esposito E, Fanos V. Once upon a Time Oral Microbiota: A Cinderella or a Protagonist in Autism Spectrum Disorder? Metabolites 2023; 13:1183. [PMID: 38132865 PMCID: PMC10745349 DOI: 10.3390/metabo13121183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder evolving over the lifetime of individuals. The oral and gut microbial ecosystems are closely connected to each other and the brain and are potentially involved in neurodevelopmental diseases. This narrative review aims to identify all the available evidence emerging from observational studies focused on the role of the oral microbiome in ASD. A literature search was conducted using PubMed and the Cochrane Library for relevant studies published over the last ten years. Overall, in autistic children, the oral microbiota is marked by the abundance of several microbial species belonging to the Proteobacteria phylum and by the depletion of species belonging to the Bacteroidetes phylum. In mouse models, the oral microbiota is marked by the abundance of the Bacteroidetes phylum. Oral dysbiosis in ASD induces changes in the human metabolome, with the overexpression of metabolites closely related to the pathogenesis of ASD, such as acetate, propionate, and indoles, together with the underexpression of butyrate, confirming the central role of tryptophan metabolism. The analysis of the literature evidences the close relationship between oral dysbiosis and autistic core symptoms; the rebuilding of the oral and gut ecosystems by probiotics may significantly contribute to mitigating the severity of ASD symptoms.
Collapse
Affiliation(s)
- Michele Mussap
- Laboratory Unit, Department of Surgical Sciences, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy;
| | - Paola Beretta
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (E.E.); (V.F.)
| | - Elena Esposito
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (E.E.); (V.F.)
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (E.E.); (V.F.)
| |
Collapse
|
45
|
Teng L, Qin Q, Zhou Z, Zhou F, Cao C, Yang J, Ding J. Glutamate secretion by embryonic stem cells as an autocrine signal to promote proliferation. Sci Rep 2023; 13:19069. [PMID: 37925518 PMCID: PMC10625544 DOI: 10.1038/s41598-023-46477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
Glutamate, the major excitatory neurotransmitter in the central nervous system, has also been found to play a role in embryonic stem (ES) cells. However, the exact mechanism and function of glutamatergic signaling in ES cells remain poorly understood. In this study, we identified a glutamatergic transmission circuit in ES cells that operates through an autocrine mechanism and regulates cell proliferation. We performed biological analyses to identify the key components involved in glutamate biosynthesis, packaging for secretion, reaction, and reuptake in ES cells, including glutaminase, vesicular glutamate transporter, glutamate N-methyl-D-aspartate (NMDA) receptor, and cell membrane excitatory amino-acid transporter (EAAT). We directly quantified the released glutamate signal using microdialysis-high performance liquid chromatography-tandem mass spectrometry (MD-HPLC-MS-MS). Pharmacological inhibition of endogenous glutamate release and the resulting tonic activation of NMDA receptors significantly affected ES cell proliferation, suggesting that ES cells establish a glutamatergic autocrine niche via releasing and responding to the transmitter for their own regulation.
Collapse
Affiliation(s)
- Lin Teng
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
- College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and Immunotherapy, China Three Gorges University, Yichang, 443000, Hubei, China
| | - Qin Qin
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Ziyi Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Fei Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Chunyu Cao
- College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and Immunotherapy, China Three Gorges University, Yichang, 443000, Hubei, China
| | - Jian Yang
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Jiawang Ding
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China.
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China.
| |
Collapse
|
46
|
Venkatesan S, Binko MA, Mielnik CA, Ramsey AJ, Lambe EK. Deficits in integrative NMDA receptors caused by Grin1 disruption can be rescued in adulthood. Neuropsychopharmacology 2023; 48:1742-1751. [PMID: 37349472 PMCID: PMC10579298 DOI: 10.1038/s41386-023-01619-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Glutamatergic NMDA receptors (NMDAR) are critical for cognitive function, and their reduced expression leads to intellectual disability. Since subpopulations of NMDARs exist in distinct subcellular environments, their functioning may be unevenly vulnerable to genetic disruption. Here, we investigate synaptic and extrasynaptic NMDARs on the major output neurons of the prefrontal cortex in mice deficient for the obligate NMDAR subunit encoded by Grin1 and wild-type littermates. With whole-cell recording in brain slices, we find that single, low-intensity stimuli elicit surprisingly-similar glutamatergic synaptic currents in both genotypes. By contrast, clear genotype differences emerge with manipulations that recruit extrasynaptic NMDARs, including stronger, repetitive, or pharmacological stimulation. These results reveal a disproportionate functional deficit of extrasynaptic NMDARs compared to their synaptic counterparts. To probe the repercussions of this deficit, we examine an NMDAR-dependent phenomenon considered a building block of cognitive integration, basal dendrite plateau potentials. Since we find this phenomenon is readily evoked in wild-type but not in Grin1-deficient mice, we ask whether plateau potentials can be restored by an adult intervention to increase Grin1 expression. This genetic manipulation, previously shown to restore cognitive performance in adulthood, successfully rescues electrically-evoked basal dendrite plateau potentials after a lifetime of NMDAR compromise. Taken together, our work demonstrates NMDAR subpopulations are not uniformly vulnerable to the genetic disruption of their obligate subunit. Furthermore, the window for functional rescue of the more-sensitive integrative NMDARs remains open into adulthood.
Collapse
Affiliation(s)
| | - Mary A Binko
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Catharine A Mielnik
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Amy J Ramsey
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of OBGYN, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
47
|
Olivero G, Roggeri A, Pittaluga A. Anti-NMDA and Anti-AMPA Receptor Antibodies in Central Disorders: Preclinical Approaches to Assess Their Pathological Role and Translatability to Clinic. Int J Mol Sci 2023; 24:14905. [PMID: 37834353 PMCID: PMC10573896 DOI: 10.3390/ijms241914905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Autoantibodies against NMDA and AMPA receptors have been identified in the central nervous system of patients suffering from brain disorders characterized by neurological and psychiatric symptoms. It has been demonstrated that these autoantibodies can affect the functions and/or the expression of the targeted receptors, altering synaptic communication. The importance to clarify, in preclinical models, the molecular mechanisms involved in the autoantibody-mediated effects has emerged in order to understand their pathogenic role in central disorders, but also to propose new therapeutic approaches for preventing the deleterious central consequences. In this review, we describe some of the available preclinical literature concerning the impact of antibodies recognizing NMDA and AMPA receptors in neurons. This review discusses the cellular events that would support the detrimental roles of the autoantibodies, also illustrating some contrasting findings that in our opinion deserve attention and further investigations before translating the preclinical observations to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (G.O.); (A.R.)
| | - Alessandra Roggeri
- Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (G.O.); (A.R.)
| | - Anna Pittaluga
- Center of Excellence for Biomedical Research, 3Rs Center, Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16145 Genoa, Italy
| |
Collapse
|
48
|
Certain N, Gan Q, Bennett J, Hsieh H, Wollmuth LP. Differential regulation of tetramerization of the AMPA receptor glutamate-gated ion channel by auxiliary subunits. J Biol Chem 2023; 299:105227. [PMID: 37673338 PMCID: PMC10558804 DOI: 10.1016/j.jbc.2023.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) auxiliary subunits are specialized, nontransient binding partners of AMPARs that modulate AMPAR channel gating properties and pharmacology, as well as their biogenesis and trafficking. The most well-characterized families of auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs), cornichon homologs (CNIHs), and the more recently discovered GSG1-L. These auxiliary subunits can promote or reduce surface expression of AMPARs (composed of GluA1-4 subunits) in neurons, thereby impacting their functional role in membrane signaling. Here, we show that CNIH-2 enhances the tetramerization of WT and mutant AMPARs, presumably by increasing the overall stability of the tetrameric complex, an effect that is mainly mediated by interactions with the transmembrane domain of the receptor. We also find CNIH-2 and CNIH-3 show receptor subunit-specific actions in this regard with CNIH-2 enhancing both GluA1 and GluA2 tetramerization, whereas CNIH-3 only weakly enhances GluA1 tetramerization. These results are consistent with the proposed role of CNIHs as endoplasmic reticulum cargo transporters for AMPARs. In contrast, TARP γ-2, TARP γ-8, and GSG1-L have no or negligible effect on AMPAR tetramerization. On the other hand, TARP γ-2 can enhance receptor tetramerization but only when directly fused with the receptor at a maximal stoichiometry. Notably, surface expression of functional AMPARs was enhanced by CNIH-2 to a greater extent than TARP γ-2, suggesting that this distinction aids in maturation and membrane expression. These experiments define a functional distinction between CNIHs and other auxiliary subunits in the regulation of AMPAR biogenesis.
Collapse
Affiliation(s)
- Noele Certain
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
| | - Quan Gan
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York, USA
| | - Joseph Bennett
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA
| | - Helen Hsieh
- Department of Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, USA; Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
49
|
Nicoll RA, Schulman H. Synaptic memory and CaMKII. Physiol Rev 2023; 103:2877-2925. [PMID: 37290118 PMCID: PMC10642921 DOI: 10.1152/physrev.00034.2022] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
- Panorama Research Institute, Sunnyvale, California, United States
| |
Collapse
|
50
|
Højgaard K, Szöllősi B, Henningsen K, Minami N, Nakanishi N, Kaadt E, Tamura M, Morris RGM, Takeuchi T, Elfving B. Novelty-induced memory consolidation is accompanied by increased Agap3 transcription: a cross-species study. Mol Brain 2023; 16:69. [PMID: 37749596 PMCID: PMC10521532 DOI: 10.1186/s13041-023-01056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Novelty-induced memory consolidation is a well-established phenomenon that depends on the activation of a locus coeruleus-hippocampal circuit. It is associated with the expression of activity-dependent genes that may mediate initial or cellular memory consolidation. Several genes have been identified to date, however, to fully understand the mechanisms of memory consolidation, additional candidates must be identified. In this cross-species study, we used a contextual novelty-exploration paradigm to identify changes in gene expression in the dorsal hippocampus of both mice and rats. We found that changes in gene expression following contextual novelty varied between the two species, with 9 genes being upregulated in mice and 3 genes in rats. Comparison across species revealed that ArfGAP with a GTPase domain, an ankyrin repeat and PH domain 3 (Agap3) was the only gene being upregulated in both, suggesting a potentially conserved role for Agap3. AGAP3 is known to regulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor trafficking in the synapse, which suggests that increased transcription of Agap3 may be involved in maintaining functional plasticity. While we identified several genes affected by contextual novelty exploration, we were unable to fully reverse these changes using SCH 23390, a dopamine D1/D5 receptor antagonist. Further research on the role of AGAP3 in novelty-induced memory consolidation could lead to better understanding of this process and guide future research.
Collapse
Affiliation(s)
- Kristoffer Højgaard
- Translational Neuropsychiatry Unit, Department of Clinical medicine, Aarhus University, Aarhus N, DK8200, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, DK8000, Denmark
| | - Bianka Szöllősi
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, DK8000, Denmark
| | - Kim Henningsen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, DK8000, Denmark
| | - Natsumi Minami
- Neuroscience Research Unit, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan
| | - Nobuhiro Nakanishi
- Data Science Department, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan
| | - Erik Kaadt
- Translational Neuropsychiatry Unit, Department of Clinical medicine, Aarhus University, Aarhus N, DK8200, Denmark
| | - Makoto Tamura
- Neuroscience Research Unit, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan
- NeuroDiscovery Lab, Mitsubishi Tanabe Pharma Holdings America Inc, Cambridge, MA, 02139, USA
| | - Richard G M Morris
- Laboratory for Cognitive Neuroscience, Edinburgh Neuroscience, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Tomonori Takeuchi
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, DK8000, Denmark.
- Center for Proteins in Memory - PROMEMO, Department of Biomedicine, Danish National Research Foundation, Aarhus University, Aarhus C, DK8000, Denmark.
- Gftd DeSci, Gftd DAO, Tokyo, 162-0044, Japan.
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical medicine, Aarhus University, Aarhus N, DK8200, Denmark.
| |
Collapse
|