1
|
Pons-Faudoa FP, Ballerini A, Sakamoto J, Grattoni A. Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases. Biomed Microdevices 2019; 21:47. [PMID: 31104136 PMCID: PMC7161312 DOI: 10.1007/s10544-019-0389-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic diseases account for the majority of all deaths worldwide, and their prevalence is expected to escalate in the next 10 years. Because chronic disorders require long-term therapy, the healthcare system must address the needs of an increasing number of patients. The use of new drug administration routes, specifically implantable drug delivery devices, has the potential to reduce treatment-monitoring clinical visits and follow-ups with healthcare providers. Also, implantable drug delivery devices can be designed to maintain drug concentrations in the therapeutic window to achieve controlled, continuous release of therapeutics over extended periods, eliminating the risk of patient non-compliance to oral treatment. A higher local drug concentration can be achieved if the device is implanted in the affected tissue, reducing systemic adverse side effects and decreasing the challenges and discomfort of parenteral treatment. Although implantable drug delivery devices have existed for some time, interest in their therapeutic potential is growing, with a global market expected to reach over $12 billion USD by 2018. This review discusses implantable drug delivery technologies in an advanced stage of development or in clinical use and focuses on the state-of-the-art of reservoir-based implants including pumps, electromechanical systems, and polymers, sites of implantation and side effects, and deployment in developing countries.
Collapse
Affiliation(s)
- Fernanda P Pons-Faudoa
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
| | - Andrea Ballerini
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- Department of Oncology and Onco-Hematology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Jason Sakamoto
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
- Department of Surgery, Houston Methodist Hospital, 6550 Fannin Street, Houston, TX, 77030, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, 6550 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Rani D, Pachauri V, Mueller A, Vu XT, Nguyen TC, Ingebrandt S. On the Use of Scalable NanoISFET Arrays of Silicon with Highly Reproducible Sensor Performance for Biosensor Applications. ACS OMEGA 2016; 1:84-92. [PMID: 30023473 PMCID: PMC6044623 DOI: 10.1021/acsomega.6b00014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/31/2016] [Indexed: 05/22/2023]
Abstract
As a prerequisite to the development of real label-free bioassay applications, a high-throughput top-down nanofabrication process is carried out with a combination of nanoimprint lithography, anisotropic wet-etching, and photolithography methods realizing nanoISFET arrays that are then analyzed for identical sensor characteristics. Here, a newly designed array-based sensor chip exhibits 32 high aspect ratio silicon nanowires (SiNWs) laid out in parallel with 8 unit groups that are connected to a very highly doped, Π-shaped common source and individual drain contacts. Intricately designed contact lines exert equal feed-line resistances and capacitances to homogenize the sensor response as well as to minimize parasitic transport effects and to render easy integration of a fluidic layer on top. The scalable nanofabrication process as outlined in this article casts out a total of 2496 nanowires (NWs) on a 4 inch p-type silicon-on-insulator (SOI) wafer, yielding 78 sensor chips based on nanoISFET arrays. The sensor platform exhibiting high-performance transistor characteristics in buffer solutions is thoroughly characterized using state-of-the-art surface and electrical measurement techniques. Deploying a pH sensor in liquid buffers after high-quality gas-phase silanization, nanoISEFT arrays demonstrate typical pH sensor behavior with sensitivity as high as 43 ± 3 mV·pH-1 and a device-to-device variation of 7% at the wafer scale. Demonstration of a high-density sensor platform with uniform characteristics such as nanoISFET arrays of silicon (Si) in a routine and refined nanofabrication process may serve as an ideal solution deployable for real assay-based applications.
Collapse
Affiliation(s)
- Dipti Rani
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
| | - Vivek Pachauri
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- E-mail:
| | - Achim Mueller
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- Ram
Group DE GmbH, Amerikastrasse
15, 66482 Zweibruecken, Germany
| | - Xuan Thang Vu
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- Ram
Group DE GmbH, Amerikastrasse
15, 66482 Zweibruecken, Germany
| | | | - Sven Ingebrandt
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- Ram
Group DE GmbH, Amerikastrasse
15, 66482 Zweibruecken, Germany
| |
Collapse
|
3
|
Abstract
There is no doubt that controlled and pulsatile drug delivery system is an important challenge in medicine over the conventional drug delivery system in case of therapeutic efficacy. However, the conventional drug delivery systems often offer a limited by their inability to drug delivery which consists of systemic toxicity, narrow therapeutic window, complex dosing schedule for long term treatment etc. Therefore, there has been a search for the drug delivery system that exhibit broad enhancing activity for more drugs with less complication. More recently, some elegant study has noted that, a new type of micro-electrochemical system or MEMS-based drug delivery systems called microchip has been improved to overcome the problems related to conventional drug delivery. Moreover, micro-fabrication technology has enabled to develop the implantable controlled released microchip devices with improved drug administration and patient compliance. In this article, we have presented an overview of the investigations on the feasibility and application of microchip as an advanced drug delivery system. Commercial manufacturing materials and methods, related other research works and current advancement of the microchips for controlled drug delivery have also been summarized.
Collapse
Affiliation(s)
| | - Chandra Datta Sumi
- b Department of Systems Biotechnology , Chung-Ang University , Anseong , Republic of Korea
| |
Collapse
|