1
|
Sakuma I, Gaspar RC, Nasiri AR, Dufour S, Kahn M, Zheng J, LaMoia TE, Guerra MT, Taki Y, Kawashima Y, Yimlamai D, Perelis M, Vatner DF, Petersen KF, Huttasch M, Knebel B, Kahl S, Roden M, Samuel VT, Tanaka T, Shulman GI. Liver lipid droplet cholesterol content is a key determinant of metabolic dysfunction-associated steatohepatitis. Proc Natl Acad Sci U S A 2025; 122:e2502978122. [PMID: 40310463 DOI: 10.1073/pnas.2502978122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) represents a progressive form of steatotic liver disease which increases the risk for fibrosis and advanced liver disease. The accumulation of discrete species of bioactive lipids has been postulated to activate signaling pathways that promote inflammation and fibrosis. However, the key pathogenic lipid species is a matter of debate. We explored candidates using various dietary, molecular, and genetic models. Mice fed a choline-deficient L-amino acid-defined high-fat diet (CDAHFD) developed steatohepatitis and manifested early markers of liver fibrosis associated with increased cholesterol content in liver lipid droplets within 5 d without any changes in total liver cholesterol content. Treating mice with antisense oligonucleotides against Coenzyme A synthase (Coasy) or treatment with bempedoic acid or atorvastatin decreased liver lipid droplet cholesterol content and prevented CDAHFD-induced MASH and the fibrotic response. All these salutary effects were abrogated with dietary cholesterol supplementation. Analysis of human liver samples demonstrated that cholesterol in liver lipid droplets was increased in humans with MASH and liver fibrosis and was higher in PNPLA3 I148M (variants rs738409) than in HSD17B13 variants (rs72613567). Together, these data identify cholesterol in liver lipid droplets as a critical mediator of MASH and demonstrate that Coenzyme A synthase knockdown and bempedoic acid are therapeutic approaches to reduce liver lipid droplet cholesterol content and thereby prevent the development of MASH and liver fibrosis.
Collapse
Affiliation(s)
- Ikki Sakuma
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Ali R Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Sylvie Dufour
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Jie Zheng
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Traci E LaMoia
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Mateus T Guerra
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Yuki Taki
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa deoxyribonucleic acid Research Institute, Chiba 292-0818, Japan
| | - Dean Yimlamai
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520
| | | | - Daniel F Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Maximilian Huttasch
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf 40225, Germany
- German Center for Diabetes Research (Deutsche Zentrum für Diabetesforschung e.V.), Partner Düsseldorf, München-Neuherberg 85764, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (Deutsche Zentrum für Diabetesforschung e.V.), Partner Düsseldorf, München-Neuherberg 85764, Germany
- Institute for Pathobiochemistry, German Diabetes Center (Deutsches Diabetes-Zentrum), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf 40225, Germany
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf 40225, Germany
- German Center for Diabetes Research (Deutsche Zentrum für Diabetesforschung e.V.), Partner Düsseldorf, München-Neuherberg 85764, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf 40225, Germany
- German Center for Diabetes Research (Deutsche Zentrum für Diabetesforschung e.V.), Partner Düsseldorf, München-Neuherberg 85764, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Varman T Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
- West Haven Veterans Affairs Medical Center, West Haven, CT 06516-2770
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520
- HHMI, Chevy Chase, MD 20815
| |
Collapse
|
2
|
Nemkov T, Stauffer E, Cendali F, Stephenson D, Nader E, Robert M, Skinner S, Dzieciatkowska M, Hansen KC, Robach P, Millet G, Connes P, D'Alessandro A. Long-Distance Trail Running Induces Inflammatory-Associated Protein, Lipid, and Purine Oxidation in Red Blood Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.648006. [PMID: 40291720 PMCID: PMC12027326 DOI: 10.1101/2025.04.09.648006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Ultra-endurance exercise places extreme physiological demands on oxygen transport, yet its impact on red blood cells (RBCs) remains underexplored. We conducted a multi-omics analysis of plasma and RBCs from endurance athletes before and after a 40-km trail race (MCC) and a 171-km ultramarathon (UTMB®). Ultra-running led to oxidative stress, metabolic shifts, and inflammation-driven RBC damage, including increased acylcarnitines, kynurenine accumulation, oxidative lipid and protein modifications, reduced RBC deformability, enhanced microparticle release, and decreased hematocrit - hallmarks of accelerated RBC aging and clearance. Post-race interleukin-6 strongly correlated with kynurenine elevation, mirroring inflammatory responses in severe infections. These findings challenge the assumption that RBC damage in endurance exercise is primarily mechanical, revealing systemic inflammation and metabolic remodeling as key drivers. This study underscores RBCs as both mediators and casualties of extreme exercise stress, with implications for optimizing athlete recovery, endurance training, and understanding inflammation-linked RBC dysfunction in clinical settings. Teaser Marathon running imparts molecular damage to red blood cells, the effects of which are exacerbated by increased distances of ultramarathons.
Collapse
|
3
|
Burke S, Chowdhury O, Rouault‐Pierre K. Low-risk MDS-A spotlight on precision medicine for SF3B1-mutated patients. Hemasphere 2025; 9:e70103. [PMID: 40124717 PMCID: PMC11926769 DOI: 10.1002/hem3.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/30/2025] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
A deep understanding of the biological mechanisms driving the pathogenesis of myelodysplastic neoplasms (MDS) is essential to develop comprehensive therapeutic approaches that will benefit patient's disease management and quality of life. In this review, we focus on MDS harboring mutations in the splicing factor SF3B1. Clones harboring this mutation arise from the most primitive hematopoietic compartment and expand throughout the entire myeloid lineage, exerting distinct effects at various stages of differentiation. Supportive care, particularly managing anemia, remains essential in SF3B1-mutated MDS. While SF3B1 mutations are frequently linked with ring sideroblasts and iron overload due to impaired erythropoiesis, the current therapeutic landscape fails to adequately address the underlying disease biology, particularly in transfusion-dependent patients, where further iron overload contributes to increased morbidity and mortality. Novel agents such as Luspatercept and Imetelstat have shown promise, but their availability remains restricted and their long-term efficacy is to be investigated. Spliceosome modulators have failed to deliver and inhibitors of inflammatory pathways, including TLR and NF-κB inhibitors, are still under investigation. This scarcity of effective and disease-modifying therapies highlights the unmet need for new approaches tailored to the molecular and genetic abnormalities in SF3B1-mutated MDS. Emerging strategies targeting metabolic mis-splicing (e.g., COASY) with vitamin B5, pyruvate kinase activators, and inhibitors of oncogenic pathways like MYC and BCL-2 represent potential future avenues for treatment, but their clinical utility remains to be fully explored. The current limitations in treatment underscore the urgency of developing novel, more effective therapies for patients with SF3B1-mutated MDS.
Collapse
Affiliation(s)
- Shoshana Burke
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Onima Chowdhury
- Oxford University Hospitals NHS Foundation TrustOxfordUK
- Molecular Haematology Unit, Weatherall institute of Molecular Medicine NHR, Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Kevin Rouault‐Pierre
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| |
Collapse
|
4
|
Oh C, Kim MS, Shin U, Kang JW, Kim YH, Ko HS, Ra JS, Ahn S, Choi EY, Yu S, Nam U, Choi T, Myung K, Lee Y. SMC2 and Condensin II Subunits Are Essential for the Development of Hematopoietic Stem and Progenitor Cells in Zebrafish. J Cell Physiol 2025; 240:e70023. [PMID: 40134128 PMCID: PMC11937623 DOI: 10.1002/jcp.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) play a pivotal role in blood cell production, maintaining the health and homeostasis of individuals. Dysregulation of HSPC function can lead to blood-related diseases, including cancer. Despite its importance, our understanding of the genes and pathways underlying HSPC development and the associated pathological mechanisms remains limited. To elucidate these unknown mechanisms, we analyzed databases of patients with blood disorders and performed functional gene studies using zebrafish. We employed bioinformatics tools to explore three public databases focusing on patients with myelodysplastic syndrome (MDS) and related model studies. This analysis identified significant alterations in several genes, especially SMC2 and other condensin-related genes, in patients with MDS. To further investigate the role of Smc2 in hematopoiesis, we generated smc2 loss-of-function zebrafish mutants using CRISPR mutagenesis. Further analyses of the mutants revealed that smc2 depletion induced G2/M cell cycle arrest in HSPCs, leading to their maintenance and expansion failure. Notably, although the condensin II subunits (ncaph2, ncapg2, and ncapd3) were essential for HSPC maintenance, the condensin I subunits did not affect HSPC development. These findings emphasize the crucial role of condensin II in ensuring healthy hematopoiesis via promoting HSPC proliferation.
Collapse
Affiliation(s)
- Chang‐Kyu Oh
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
- Department of Biochemistry, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Institute for Future EarthPusan National UniversityPusanRepublic of Korea
| | - Man S. Kim
- Clinical Research Institute, Kyung Hee University Hospital at GangdongKyung Hee UniversitySeoulRepublic of Korea
| | - Unbeom Shin
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
| | - Ji Wan Kang
- Department of Anatomy, School of MedicinePusan National UniversityYangsanRepublic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Department of Biomedical Informatics, School of MedicinePusan National UniversityYangsanRepublic of Korea
| | - Hwa Soo Ko
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
| | - Soyul Ahn
- Department of Biochemistry, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Institute for Future EarthPusan National UniversityPusanRepublic of Korea
| | - Eun Young Choi
- Department of Biochemistry, School of MedicinePusan National UniversityYangsanRepublic of Korea
| | - Sanghyeon Yu
- Department of Biomedical Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
| | - Uijeong Nam
- Department of Biomedical Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
| | - Taesoo Choi
- Department of Urology, School of MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
- Department of Biomedical EngineeringUlsan National Institute for Science and TechnologyUlsanRepublic of Korea
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at GangdongKyung Hee UniversitySeoulRepublic of Korea
| |
Collapse
|
5
|
Sakuma I, Gaspar RC, Nasiri AR, Dufour S, Kahn M, Zheng J, LaMoia TE, Guerra MT, Taki Y, Kawashima Y, Yimlamai D, Perelis M, Vatner DF, Petersen KF, Huttasch M, Knebel B, Kahl S, Roden M, Samuel VT, Tanaka T, Shulman GI. Liver lipid droplet cholesterol content is a key determinant of metabolic dysfunction-associated steatohepatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640203. [PMID: 40060523 PMCID: PMC11888431 DOI: 10.1101/2025.02.25.640203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) represents a progressive form of steatotic liver disease which increases the risk for fibrosis and advanced liver disease. The accumulation of discrete species of bioactive lipids has been postulated to activate signaling pathways that promote inflammation and fibrosis. However, the key pathogenic lipid species is a matter of debate. We explored candidates using various dietary, molecular, and genetic models. Mice fed a choline-deficient L-amino acid-defined high-fat diet (CDAHFD) developed steatohepatitis and manifested early markers of liver fibrosis associated with increased cholesterol content in liver lipid droplets within 5 days without any changes in total liver cholesterol content. Treating mice with antisense oligonucleotides (ASOs) against Coenzyme A synthase (Cosay) or treatment with bempedoic acid or atorvastatin decreased liver lipid droplet cholesterol content and prevented CDAHFD-induced MASH and the fibrotic response. All these salutary effects were abrogated with dietary cholesterol supplementation. Analysis of human liver samples demonstrated that cholesterol in liver lipid droplets was increased in humans with MASH and liver fibrosis and was higher in PNPLA3 I148M (variants rs738409) than in HSD17B13 variants (rs72613567). Together, these data identify cholesterol in liver lipid droplets as a critical mediator of MASH and demonstrate that COASY knockdown and bempedoic acid are novel therapeutic approaches to reduce liver lipid droplet cholesterol content and thereby prevent the development of MASH and liver fibrosis. Significance Statement Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease linked to fibrosis. The role of specific lipid species in its pathogenesis remains debated. Using dietary, molecular, and genetic models, we found that mice on a choline-deficient, high-fat diet (CDAHFD) developed steatohepatitis and early fibrosis, marked by increased cholesterol in liver lipid droplets within five days. Targeting COASY with antisense oligonucleotides or treating with bempedoic acid or atorvastatin reduced lipid droplet cholesterol and prevented MASH. However, dietary cholesterol supplementation negated these effects. Human liver samples confirmed elevated lipid droplet cholesterol in MASH and fibrosis, especially in PNPLA3 I148M carriers. These findings highlight cholesterol reduction as a potential MASH therapy.
Collapse
|
6
|
Rouault-Pierre K. Succinyl-coenzyme A: a key metabolite and succinyl group donor in erythropoiesis. Haematologica 2025; 110:276-277. [PMID: 39540226 PMCID: PMC11788609 DOI: 10.3324/haematol.2024.286672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Kevin Rouault-Pierre
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London.
| |
Collapse
|
7
|
Joly A, Schott A, Phadke I, Gonzalez-Menendez P, Kinet S, Taylor N. Beyond ATP: Metabolite Networks as Regulators of Physiological and Pathological Erythroid Differentiation. Physiology (Bethesda) 2025; 40:0. [PMID: 39226028 DOI: 10.1152/physiol.00035.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Hematopoietic stem cells (HSCs) possess the capacity for self-renewal and the sustained production of all mature blood cell lineages. It has been well established that a metabolic rewiring controls the switch of HSCs from a self-renewal state to a more differentiated state, but it is only recently that we have appreciated the importance of metabolic pathways in regulating the commitment of progenitors to distinct hematopoietic lineages. In the context of erythroid differentiation, an extensive network of metabolites, including amino acids, sugars, nucleotides, fatty acids, vitamins, and iron, is required for red blood cell (RBC) maturation. In this review, we highlight the multifaceted roles via which metabolites regulate physiological erythropoiesis as well as the effects of metabolic perturbations on erythroid lineage commitment and differentiation. Of note, the erythroid differentiation process is associated with an exceptional breadth of solute carrier (SLC) metabolite transporter upregulation. Finally, we discuss how recent research, revealing the critical impact of metabolic reprogramming in diseases of disordered and ineffective erythropoiesis, has created opportunities for the development of novel metabolic-centered therapeutic strategies.
Collapse
Affiliation(s)
- Axel Joly
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Arthur Schott
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Ira Phadke
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Pediatric Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Pedro Gonzalez-Menendez
- Departamento de Morfologia y Biologia Celular, Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Sandrina Kinet
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Naomi Taylor
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Pediatric Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
8
|
Patel SB, Moskop DR, Jordan CT, Pietras EM. Understanding MDS stem cells: Advances and limitations. Semin Hematol 2024; 61:409-419. [PMID: 39472255 DOI: 10.1053/j.seminhematol.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 11/10/2024]
Abstract
In work spanning several decades, extensive studies have focused on the properties of malignant stem cells that drive the pathogenesis of acute myeloid leukemia (AML). However, relatively little attention has been devoted to several serious myeloid malignancies that occur prior to the onset of frank leukemia, including myelodysplastic syndrome (MDS). Like leukemia, MDS is hypothesized to arise from a pool of immature malignant stem and progenitor cells (MDS-SCs) that serve as a reservoir for disease evolution and progression1. While multiple studies have sought to identify and characterize the biology and vulnerabilities of MDS-SCs, yet translation of scientific concepts to therapeutically impactful regimens has been limited. Here, we evaluate the currently known properties of MDS-SCs as well as the post-transcriptional mechanisms that drive MDS pathogenesis at a stem and progenitor level. We highlight limits and gaps in our characterization and understanding of MDS-SCs and address the extent to which the properties of MDS-SC are (and can be) inferred from the characterization of LSCs.
Collapse
Affiliation(s)
- Sweta B Patel
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora CO
| | - Daniel R Moskop
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora CO
| | - Craig T Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora CO.
| | - Eric M Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora CO.
| |
Collapse
|
9
|
Martins Freire C, King NR, Dzieciatkowska M, Stephenson D, Moura PL, Dobbe JGG, Streekstra GJ, D'Alessandro A, Toye AM, Satchwell TJ. Complete absence of GLUT1 does not impair human terminal erythroid differentiation. Blood Adv 2024; 8:5166-5178. [PMID: 38916993 PMCID: PMC11470287 DOI: 10.1182/bloodadvances.2024012743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
ABSTRACT The glucose transporter 1 (GLUT1) is 1 of the most abundant proteins within the erythrocyte membrane and is required for glucose and dehydroascorbic acid (vitamin C precursor) transport. It is widely recognized as a key protein for red cell structure, function, and metabolism. Previous reports highlighted the importance of GLUT1 activity within these uniquely glycolysis-dependent cells, in particular for increasing antioxidant capacity needed to avoid irreversible damage from oxidative stress in humans. However, studies of glucose transporter roles in erythroid cells are complicated by species-specific differences between humans and mice. Here, using CRISPR-mediated gene editing of immortalized erythroblasts and adult CD34+ hematopoietic progenitor cells, we generate committed human erythroid cells completely deficient in expression of GLUT1. We show that absence of GLUT1 does not impede human erythroblast proliferation, differentiation, or enucleation. This work demonstrates, to our knowledge, for the first time, generation of enucleated human reticulocytes lacking GLUT1. The GLUT1-deficient reticulocytes possess no tangible alterations to membrane composition or deformability in reticulocytes. Metabolomic analyses of GLUT1-deficient reticulocytes reveal hallmarks of reduced glucose import, downregulated metabolic processes and upregulated AMP-activated protein kinase signaling, alongside alterations in antioxidant metabolism, resulting in increased osmotic fragility and metabolic shifts indicative of higher oxidant stress. Despite detectable metabolic changes in GLUT1-deficient reticulocytes, the absence of developmental phenotype, detectable proteomic compensation, or impaired deformability comprehensively alters our understanding of the role of GLUT1 in red blood cell structure, function, and metabolism. It also provides cell biological evidence supporting clinical consensus that reduced GLUT1 expression does not cause anemia in GLUT1-deficiency syndrome.
Collapse
Affiliation(s)
| | - Nadine R. King
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Pedro L. Moura
- Department of Medicine, Center for Haematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Johannes G. G. Dobbe
- Biomedical Engineering and Physics, University of Amsterdam, Amsterdam UMC location, Amsterdam, The Netherlands
| | - Geert J. Streekstra
- Biomedical Engineering and Physics, University of Amsterdam, Amsterdam UMC location, Amsterdam, The Netherlands
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
10
|
Xie J, Yu Z, Zhu Y, Zheng M, Zhu Y. Functions of Coenzyme A and Acyl-CoA in Post-Translational Modification and Human Disease. FRONT BIOSCI-LANDMRK 2024; 29:331. [PMID: 39344325 DOI: 10.31083/j.fbl2909331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024]
Abstract
Coenzyme A (CoA) is synthesized from pantothenate, L-cysteine and adenosine triphosphate (ATP), and plays a vital role in diverse physiological processes. Protein acylation is a common post-translational modification (PTM) that modifies protein structure, function and interactions. It occurs via the transfer of acyl groups from acyl-CoAs to various amino acids by acyltransferase. The characteristics and effects of acylation vary according to the origin, structure, and location of the acyl group. Acetyl-CoA, formyl-CoA, lactoyl-CoA, and malonyl-CoA are typical acyl group donors. The major acyl donor, acyl-CoA, enables modifications that impart distinct biological functions to both histone and non-histone proteins. These modifications are crucial for regulating gene expression, organizing chromatin, managing metabolism, and modulating the immune response. Moreover, CoA and acyl-CoA play significant roles in the development and progression of neurodegenerative diseases, cancer, cardiovascular diseases, and other health conditions. The goal of this review was to systematically describe the types of commonly utilized acyl-CoAs, their functions in protein PTM, and their roles in the progression of human diseases.
Collapse
Affiliation(s)
- Jumin Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Zhang Yu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Ying Zhu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Mei Zheng
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Yanfang Zhu
- Department of Critical Care Medicine, Huangshi Hospital of TCM (Infectious Disease Hospital), 435003 Huangshi, Hubei, China
| |
Collapse
|
11
|
Sarchi M, Clough CA, Crosse EI, Kim J, Baquero Galvis LD, Aydinyan N, Wellington R, Yang F, Gallì A, Creamer JP, Stewart S, Bradley RK, Malcovati L, Doulatov S. Mis-splicing of Mitotic Regulators Sensitizes SF3B1-Mutated Human HSCs to CHK1 Inhibition. Blood Cancer Discov 2024; 5:353-370. [PMID: 38856693 PMCID: PMC11369594 DOI: 10.1158/2643-3230.bcd-23-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/18/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Splicing factor SF3B1 mutations are frequent somatic lesions in myeloid neoplasms that transform hematopoietic stem cells (HSCs) by inducing mis-splicing of target genes. However, the molecular and functional consequences of SF3B1 mutations in human HSCs and progenitors (HSPCs) remain unclear. Here, we identify the mis-splicing program in human HSPCs as a targetable vulnerability by precise gene editing of SF3B1 K700E mutations in primary CD34+ cells. Mutant SF3B1 induced pervasive mis-splicing and reduced expression of genes regulating mitosis and genome maintenance leading to altered differentiation, delayed G2/M progression, and profound sensitivity to CHK1 inhibition (CHK1i). Mis-splicing or reduced expression of mitotic regulators BUBR1 and CDC27 delayed G2/M transit and promoted CHK1i sensitivity. Clinical CHK1i prexasertib selectively targeted SF3B1-mutant immunophenotypic HSCs and abrogated engraftment in vivo. These findings identify mis-splicing of mitotic regulators in SF3B1-mutant HSPCs as a targetable vulnerability engaged by pharmacological CHK1 inhibition. Significance: In this study, we engineer precise SF3B1 mutations in human HSPCs and identify CHK1 inhibition as a selective vulnerability promoted by mis-splicing of mitotic regulators. These findings uncover the mis-splicing program induced by mutant SF3B1 in human HSPCs and show that it can be therapeutically targeted by clinical CHK1 inhibitors.
Collapse
Affiliation(s)
- Martina Sarchi
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington.
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | - Courtnee A. Clough
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington.
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington.
| | - Edie I. Crosse
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington.
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington.
| | - Jason Kim
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington.
| | - Laura D. Baquero Galvis
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington.
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington.
| | - Nelli Aydinyan
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington.
| | - Rachel Wellington
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington.
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington.
| | - Feini Yang
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | - Anna Gallì
- Department of Hematology, IRCCS S. Matteo Hospital Foundation, Pavia, Italy.
| | - J. Philip Creamer
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington.
| | - Sintra Stewart
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington.
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington.
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington.
- Department of Genome Sciences, University of Washington, Seattle, Washington.
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Department of Hematology, IRCCS S. Matteo Hospital Foundation, Pavia, Italy.
| | - Sergei Doulatov
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, Washington.
- Department of Genome Sciences, University of Washington, Seattle, Washington.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
12
|
Fernandez MM, Yu L, Jia Q, Wang X, Hart KL, Jia Z, Lin RJ, Wang L. Engineering Oncogenic Hotspot Mutations on SF3B1 via CRISPR-Directed PRECIS Mutagenesis. CANCER RESEARCH COMMUNICATIONS 2024; 4:2498-2513. [PMID: 39194178 PMCID: PMC11421219 DOI: 10.1158/2767-9764.crc-24-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
SF3B1 is the most recurrently mutated RNA splicing gene in cancer. However, research of its pathogenic role has been hindered by a lack of disease-relevant cell line models. Here, our study compared four genome engineering platforms to establish SF3B1 mutant cell lines: CRISPR-Cas9 editing, AAV homology-directed repair editing, base editing (ABEmax, ABE8e), and prime editing (PE2, PE3, PE5max). We showed that prime editing via PE5max achieved the most efficient SF3B1 K700E editing across a wide range of cell lines. Our approach was further refined by coupling prime editing with a fluorescent reporter that leverages a SF3B1 mutation-responsive synthetic intron to mark successfully edited cells. By applying this approach, called prime editing coupled intron-assisted selection (PRECIS), we introduced the K700E hotspot mutation into two chronic lymphocytic leukemia cell lines, HG-3 and MEC-1. We demonstrated that our PRECIS-engineered cells faithfully recapitulate known mutant SF3B1 phenotypes, including altered splicing, copy number variations, and cell-growth defect. Moreover, we discovered that the SF3B1 mutation can cause the loss of Y chromosome in chronic lymphocytic leukemia. Our results showcase that PRECIS is an efficient and generalizable method for engineering genetically faithful SF3B1 mutant models. Our approach provides new insights on the role of SF3B1 mutation in cancer and enables the generation of SF3B1 mutant cell lines in relevant cellular context. SIGNIFICANCE This study developed an approach that can reliably and efficiently engineer SF3B1 mutation into different cellular contexts, thereby revealing novel roles of SF3B1 mutation in driving aberrant splicing, clonal evolution, and genome instability.
Collapse
Affiliation(s)
- Mike M. Fernandez
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California.
| | - Lei Yu
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California.
| | - Qiong Jia
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California.
| | - Xuesong Wang
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California.
| | - Kevyn L. Hart
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California.
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California.
| | - Ren-Jang Lin
- Center for RNA Biology and Therapeutics, Beckman Research Institute, City of Hope, Duarte, California.
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California.
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California.
| |
Collapse
|
13
|
Choi IY, Ling JP, Zhang J, Helmenstine E, Walter W, Tsakiroglou P, Bergman RE, Philippe C, Manley JL, Rouault-Pierre K, Li B, Wiseman DH, Batta K, Ouseph M, Bernard E, Dubner B, Li X, Haferlach T, Koget A, Fazal S, Jain T, Gocke CD, DeZern AE, Dalton WB. The E592K variant of SF3B1 creates unique RNA missplicing and associates with high-risk MDS without ring sideroblasts. Blood Adv 2024; 8:3961-3971. [PMID: 38759096 PMCID: PMC11331715 DOI: 10.1182/bloodadvances.2023011260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/19/2024] Open
Abstract
ABSTRACT Among the most common genetic alterations in myelodysplastic syndromes (MDS) are mutations in the spliceosome gene SF3B1. Such mutations induce specific RNA missplicing events, directly promote ring sideroblast (RS) formation, and generally associate with a more favorable prognosis. However, not all SF3B1 mutations are the same, and little is known about how distinct hotspots influence disease. Here, we report that the E592K variant of SF3B1 associates with high-risk disease features in MDS, including a lack of RS, increased myeloblasts, a distinct comutation pattern, and a lack of favorable survival seen with other SF3B1 mutations. Moreover, compared with other hot spot SF3B1 mutations, E592K induces a unique RNA missplicing pattern, retains an interaction with the splicing factor SUGP1, and preserves normal RNA splicing of the sideroblastic anemia genes TMEM14C and ABCB7. These data have implications for our understanding of the functional diversity of spliceosome mutations, as well as the pathobiology, classification, prognosis, and management of SF3B1-mutant MDS.
Collapse
Affiliation(s)
- In Young Choi
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan P. Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Jian Zhang
- Department of Biological Sciences, Columbia University, New York, NY
| | - Eric Helmenstine
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Panagiotis Tsakiroglou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Riley E. Bergman
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and The Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Céline Philippe
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, NY
| | | | - Bing Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Daniel H. Wiseman
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
- Department of Haematology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Kiran Batta
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
- Department of Haematology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Madhu Ouseph
- Division of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Elsa Bernard
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benjamin Dubner
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | - Anna Koget
- Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA
| | - Salman Fazal
- Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA
| | - Tania Jain
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christopher D. Gocke
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amy E. DeZern
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - William Brian Dalton
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
14
|
Barritt SA, DuBois-Coyne SE, Dibble CC. Coenzyme A biosynthesis: mechanisms of regulation, function and disease. Nat Metab 2024; 6:1008-1023. [PMID: 38871981 DOI: 10.1038/s42255-024-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
The tricarboxylic acid cycle, nutrient oxidation, histone acetylation and synthesis of lipids, glycans and haem all require the cofactor coenzyme A (CoA). Although the sources and regulation of the acyl groups carried by CoA for these processes are heavily studied, a key underlying question is less often considered: how is production of CoA itself controlled? Here, we discuss the many cellular roles of CoA and the regulatory mechanisms that govern its biosynthesis from cysteine, ATP and the essential nutrient pantothenate (vitamin B5), or from salvaged precursors in mammals. Metabolite feedback and signalling mechanisms involving acetyl-CoA, other acyl-CoAs, acyl-carnitines, MYC, p53, PPARα, PINK1 and insulin- and growth factor-stimulated PI3K-AKT signalling regulate the vitamin B5 transporter SLC5A6/SMVT and CoA biosynthesis enzymes PANK1, PANK2, PANK3, PANK4 and COASY. We also discuss methods for measuring CoA-related metabolites, compounds that target CoA biosynthesis and diseases caused by mutations in pathway enzymes including types of cataracts, cardiomyopathy and neurodegeneration (PKAN and COPAN).
Collapse
Affiliation(s)
- Samuel A Barritt
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah E DuBois-Coyne
- Department of Medicine, Department of Biological Chemistry and Molecular Pharmacology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Freire CM, King NR, Dzieciatkowska M, Stephenson D, Moura PL, Dobbe JGG, Streekstra GJ, D'Alessandro A, Toye AM, Satchwell TJ. Complete absence of GLUT1 does not impair human terminal erythroid differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574621. [PMID: 38293086 PMCID: PMC10827085 DOI: 10.1101/2024.01.10.574621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The Glucose transporter 1 (GLUT1) is one of the most abundant proteins within the erythrocyte membrane and is required for glucose and dehydroascorbic acid (Vitamin C precursor) transport. It is widely recognized as a key protein for red cell structure, function, and metabolism. Previous reports highlighted the importance of GLUT1 activity within these uniquely glycolysis-dependent cells, in particular for increasing antioxidant capacity needed to avoid irreversible damage from oxidative stress in humans. However, studies of glucose transporter roles in erythroid cells are complicated by species-specific differences between humans and mice. Here, using CRISPR-mediated gene editing of immortalized erythroblasts and adult CD34+ hematopoietic progenitor cells, we generate committed human erythroid cells completely deficient in expression of GLUT1. We show that absence of GLUT1 does not impede human erythroblast proliferation, differentiation, or enucleation. This work demonstrates for the first-time generation of enucleated human reticulocytes lacking GLUT1. The GLUT1-deficient reticulocytes possess no tangible alterations to membrane composition or deformability in reticulocytes. Metabolomic analyses of GLUT1-deficient reticulocytes reveal hallmarks of reduced glucose import, downregulated metabolic processes and upregulated AMPK-signalling, alongside alterations in antioxidant metabolism, resulting in increased osmotic fragility and metabolic shifts indicative of higher oxidant stress. Despite detectable metabolic changes in GLUT1 deficient reticulocytes, the absence of developmental phenotype, detectable proteomic compensation or impaired deformability comprehensively alters our understanding of the role of GLUT1 in red blood cell structure, function and metabolism. It also provides cell biological evidence supporting clinical consensus that reduced GLUT1 expression does not cause anaemia in GLUT1 deficiency syndrome.
Collapse
Affiliation(s)
- C M Freire
- School of Biochemistry, University of Bristol, Bristol, UK
| | - N R King
- School of Biochemistry, University of Bristol, Bristol, UK
| | - M Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - D Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - P L Moura
- Center for Haematology and Regenerative Medicine, Department of Medicine (MedH), Karolinska Institutet, Huddinge, Sweden
| | - J G G Dobbe
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - G J Streekstra
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - A D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - A M Toye
- School of Biochemistry, University of Bristol, Bristol, UK
| | - T J Satchwell
- School of Biochemistry, University of Bristol, Bristol, UK
| |
Collapse
|
16
|
Miallot R, Millet V, Galland F, Naquet P. The vitamin B5/coenzyme A axis: A target for immunomodulation? Eur J Immunol 2023; 53:e2350435. [PMID: 37482959 DOI: 10.1002/eji.202350435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Coenzyme A (CoA) serves as a vital cofactor in numerous enzymatic reactions involved in energy production, lipid metabolism, and synthesis of essential molecules. Dysregulation of CoA-dependent metabolic pathways can contribute to chronic diseases, such as inflammatory diseases, obesity, diabetes, cancer, and cardiovascular disorders. Additionally, CoA influences immune cell activation by modulating the metabolism of these cells, thereby affecting their proliferation, differentiation, and effector functions. Targeting CoA metabolism presents a promising avenue for therapeutic intervention, as it can potentially restore metabolic balance, mitigate chronic inflammation, and enhance immune cell function. This might ultimately improve the management and outcomes for these diseases. This review will more specifically focus on the contribution of pathways regulating the availability of the CoA precursor Vitamin B5/pantothenate in vivo and modulating the development of Th17-mediated inflammation, CD8-dependent anti-tumor immunity but also tissue repair processes in chronic inflammatory or degenerative diseases.
Collapse
|
17
|
Patel SA. Precision and strategic targeting of novel mutation-specific vulnerabilities in acute myeloid leukemia: the semi-centennial of 7 + 3. Leuk Lymphoma 2023; 64:1503-1513. [PMID: 37328939 PMCID: PMC10913147 DOI: 10.1080/10428194.2023.2224473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
The year 2023 marks the semi-centennial of the introduction of classic '7 + 3' chemotherapy for acute myeloid leukemia (AML) in 1973. It also marks the decennial of the first comprehensive sequencing efforts from The Cancer Genome Atlas (TCGA), which revealed that dozens of unique genes are recurrently mutated in AML genomes. Although more than 30 distinct genes have been implicated in AML pathogenesis, the current therapeutic armamentarium that is commercially available only targets FLT3 and IDH1/2 mutations, with olutasidenib as the most recent addition. This focused review spotlights management approaches that exploit the exquisite molecular dependencies of specific subsets of AML, with an emphasis on emerging therapies in the pipeline, including agents targeting TP53-mutant cells. We summarize precision and strategic targeting of AML based on leveraging functional dependencies and explore how mechanisms involving critical gene products can inform rational therapeutic design in 2024.
Collapse
Affiliation(s)
- Shyam A Patel
- Department of Medicine, Division of Hematology/Oncology, UMass Memorial Medical Center, Center for Clinical & Translational Science, UMass Chan Medical School, Worcester, MA, USA
| |
Collapse
|
18
|
D’Alessandro A, Anastasiadi AT, Tzounakas VL, Nemkov T, Reisz JA, Kriebardis AG, Zimring JC, Spitalnik SL, Busch MP. Red Blood Cell Metabolism In Vivo and In Vitro. Metabolites 2023; 13:793. [PMID: 37512500 PMCID: PMC10386156 DOI: 10.3390/metabo13070793] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Red blood cells (RBC) are the most abundant cell in the human body, with a central role in oxygen transport and its delivery to tissues. However, omics technologies recently revealed the unanticipated complexity of the RBC proteome and metabolome, paving the way for a reinterpretation of the mechanisms by which RBC metabolism regulates systems biology beyond oxygen transport. The new data and analytical tools also informed the dissection of the changes that RBCs undergo during refrigerated storage under blood bank conditions, a logistic necessity that makes >100 million units available for life-saving transfusions every year worldwide. In this narrative review, we summarize the last decade of advances in the field of RBC metabolism in vivo and in the blood bank in vitro, a narrative largely influenced by the authors' own journeys in this field. We hope that this review will stimulate further research in this interesting and medically important area or, at least, serve as a testament to our fascination with this simple, yet complex, cell.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Alkmini T. Anastasiadi
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Anastsios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA;
| | | | | |
Collapse
|
19
|
Choi IY, Ling J, Zhang J, Helmenstine E, Walter W, Bergman R, Philippe C, Manley J, Rouault-Pierre K, Li B, Wiseman D, Ouseph M, Bernard E, Li X, Haferlach T, Fazal S, Jain T, Gocke C, DeZern A, Dalton WB. The E592K variant of SF3B1 creates unique RNA missplicing and associates with high-risk MDS without ring sideroblasts. RESEARCH SQUARE 2023:rs.3.rs-2802265. [PMID: 37090662 PMCID: PMC10120771 DOI: 10.21203/rs.3.rs-2802265/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Among the most common genetic alterations in the myelodysplastic syndromes (MDS) are mutations in the spliceosome gene SF3B1. Such mutations induce specific RNA missplicing events, directly promote ring sideroblast (RS) formation, generally associate with more favorable prognosis, and serve as a predictive biomarker of response to luspatercept. However, not all SF3B1 mutations are the same, and here we report that the E592K variant of SF3B1 associates with high-risk disease features in MDS, including a lack of RS, increased myeloblasts, a distinct co-mutation pattern, and decreased survival. Moreover, in contrast to canonical SF3B1 mutations, E592K induces a unique RNA missplicing pattern, retains an interaction with the splicing factor SUGP1, and preserves normal RNA splicing of the sideroblastic anemia genes TMEM14C and ABCB7. These data expand our knowledge of the functional diversity of spliceosome mutations, and they suggest that patients with E592K should be approached differently from low-risk, luspatercept-responsive MDS patients with ring sideroblasts and canonical SF3B1 mutations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bing Li
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | | | | | | | - Xiao Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | | | | | - Tania Jain
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University
| | | | - Amy DeZern
- Johns Hopkins University School of Medicine
| | | |
Collapse
|