1
|
Kunz Coyne AJ, Bleick C, Stamper K, Kebriaei R, Bayer AS, Lehman SM, Rybak MJ. Phage-antibiotic synergy against daptomycin-nonsusceptible MRSA in an ex vivo simulated endocardial pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 2024; 68:e0138823. [PMID: 38376187 PMCID: PMC10989002 DOI: 10.1128/aac.01388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Phage-antibiotic combinations (PAC) offer a potential solution for treating refractory daptomycin-nonsusceptible (DNS) methicillin-resistant Staphylococcus aureus (MRSA) infections. We examined PAC activity against two well-characterized DNS MRSA strains (C4 and C37) in vitro and ex vivo. PACs comprising daptomycin (DAP) ± ceftaroline (CPT) and a two-phage cocktail (Intesti13 + Sb-1) were evaluated for phage-antibiotic synergy (PAS) against high MRSA inoculum (109 CFU/mL) using (i) modified checkerboards (CB), (ii) 24-h time-kill assays (TKA), and (iii) 168-h ex vivo simulated endocardial vegetation (SEV) models. PAS was defined as a fractional inhibitory concentration ≤0.5 in CB minimum inhibitory concentration (MIC) or a ≥2 log10 CFU/mL reduction compared to the next best regimen in time-kill assays and SEV models. Significant differences between regimens were assessed by analysis of variance with Tukey's post hoc modification (α = 0.05). CB assays revealed PAS with Intesti13 + Sb-1 + DAP ± CPT. In 24-h time-kill assays against C4, Intesti13 + Sb-1 + DAP ± CPT demonstrated synergistic activity (-Δ7.21 and -Δ7.39 log10 CFU/mL, respectively) (P < 0.05 each). Against C37, Intesti13 + Sb-1 + CPT ± DAP was equally effective (-Δ7.14 log10 CFU/mL each) and not significantly different from DAP + Intesti13 + Sb-1 (-Δ6.65 log10 CFU/mL). In 168-h SEV models against C4 and C37, DAP ± CPT + the phage cocktail exerted synergistic activities, significantly reducing bio-burdens to the detection limit [2 log10 CFU/g (-Δ7.07 and -Δ7.11 log10 CFU/g, respectively)] (P < 0.001). At 168 h, both models maintained stable MICs, and no treatment-emergent phage resistance occurred with DAP or DAP + CPT regimens. The two-phage cocktail demonstrated synergistic activity against two DNS MRSA isolates in combination with DAP + CPT in vitro and ex vivo. Further in vivo PAC investigations are needed.
Collapse
Affiliation(s)
- Ashlan J. Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Callan Bleick
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kyle Stamper
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Arnold S. Bayer
- The Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- The Lundquist Institution for Biomedical Innovation at Harbor-UCLA, Torrance, California, USA
| | - Susan M. Lehman
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit Medical Center, Detroit, Michigan, USA
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
2
|
Hetta HF, Rashed ZI, Ramadan YN, Al-Kadmy IMS, Kassem SM, Ata HS, Nageeb WM. Phage Therapy, a Salvage Treatment for Multidrug-Resistant Bacteria Causing Infective Endocarditis. Biomedicines 2023; 11:2860. [PMID: 37893232 PMCID: PMC10604041 DOI: 10.3390/biomedicines11102860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Infective endocarditis (IE) is defined as an infection of the endocardium, or inner surface of the heart, most frequently affecting the heart valves or implanted cardiac devices. Despite its rarity, it has a high rate of morbidity and mortality. IE generally occurs when bacteria, fungi, or other germs from another part of the body, such as the mouth, spread through the bloodstream and attach to damaged areas in the heart. The epidemiology of IE has changed as a consequence of aging and the usage of implantable cardiac devices and heart valves. The right therapeutic routes must be assessed to lower complication and fatality rates, so this requires early clinical suspicion and a fast diagnosis. It is urgently necessary to create new and efficient medicines to combat multidrug-resistant bacterial (MDR) infections because of the increasing threat of antibiotic resistance on a worldwide scale. MDR bacteria that cause IE can be treated using phages rather than antibiotics to combat MDR bacterial strains. This review will illustrate how phage therapy began and how it is considered a powerful potential candidate for the treatment of MDR bacteria that cause IE. Furthermore, it gives a brief about all reported clinical trials that demonstrated the promising effect of phage therapy in combating resistant bacterial strains that cause IE and how it will become a hope in future medicine.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Z.I.R.); (Y.N.R.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Z.I.R.); (Y.N.R.)
| | - Israa M. S. Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, Baghdad P.O. Box 10244, Iraq
| | - Soheir M. Kassem
- Department of Internal Medicine and Critical Care, Faculty of Medicine, Assuit University, Assiut 71515, Egypt;
| | - Hesham S. Ata
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Qassim, Saudi Arabia;
| | - Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
3
|
Ott LC, Mellata M. Models for Gut-Mediated Horizontal Gene Transfer by Bacterial Plasmid Conjugation. Front Microbiol 2022; 13:891548. [PMID: 35847067 PMCID: PMC9280185 DOI: 10.3389/fmicb.2022.891548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of new antimicrobial resistant and virulent bacterial strains may pose a threat to human and animal health. Bacterial plasmid conjugation is a significant contributor to rapid microbial evolutions that results in the emergence and spread of antimicrobial resistance (AR). The gut of animals is believed to be a potent reservoir for the spread of AR and virulence genes through the horizontal exchange of mobile genetic elements such as plasmids. The study of the plasmid transfer process in the complex gut environment is limited due to the confounding factors that affect colonization, persistence, and plasmid conjugation. Furthermore, study of plasmid transfer in the gut of humans is limited to observational studies, leading to the need to identify alternate models that provide insight into the factors regulating conjugation in the gut. This review discusses key studies on the current models for in silico, in vitro, and in vivo modeling of bacterial conjugation, and their ability to reflect the gut of animals. We particularly emphasize the use of computational and in vitro models that may approximate aspects of the gut, as well as animal models that represent in vivo conditions to a greater extent. Directions on future research studies in the field are provided.
Collapse
Affiliation(s)
- Logan C. Ott
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Ozawa SM, Guzman DSM, Hawkins MG, Diao SM, Masri AE, Gunther-Harrington CT, Knych HK. Pharmacokinetics of pimobendan following oral administration to New Zealand White rabbits (Oryctolagus cuniculus). Am J Vet Res 2022; 83:356-363. [PMID: 35038306 DOI: 10.2460/ajvr.21.03.0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the pharmacokinetics and potential adverse effects of pimobendan after oral administration in New Zealand White rabbits (Ocytolagus cuniculi). ANIMALS 10 adult sexually intact (5 males and 5 females) rabbits. PROCEDURES 2 pilot studies were performed with a pimobendan suspension or oral tablets. Eight rabbits received 7.5 mg of pimobendan (mean 2.08 mg/kg) suspended in a critical care feeding formula. Plasma concentrations of pimobendan and O-demethylpimobendan (ODMP) were measured, and pharmacokinetic parameters were calculated for pimobendan by noncompartmental analysis. Body weight, food and water consumption, mentation, urine, and fecal output were monitored. RESULTS Mean ± SD maximum concentration following pimobendan administration was 15.7 ± 7.54 ng/mL and was detected at 2.79 ± 1.25 hours. The half-life was 3.54 ± 1.32 hours. Plasma concentrations of pimobendan were detectable for up to 24 hours. The active metabolite, ODMP, was detected in rabbits for 24 to 36 hours. An adverse event occurred following administration of pimobendan in tablet form in 1 pilot study, resulting in death secondary to aspiration. No other adverse events occurred. CLINICAL RELEVANCE Plasma concentrations of pimobendan were lower than previously reported for dogs and cats, despite administration of higher doses, and had longer time to maximum concentration and half-life. Based on this study, 2 mg/kg of pimobendan in a critical care feeding formulation should maintain above a target plasma concentration for 12 to 24 hours. However, further studies evaluating multiple-dose administration as well as pharmacodynamic studies and clinical trials in rabbits with congestive heart failure are needed to determine accurate dose and frequency recommendations.
Collapse
Affiliation(s)
- Sarah M Ozawa
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raliegh, NC
| | | | - Michelle G Hawkins
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Stephanie M Diao
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raliegh, NC
| | - Acacia E Masri
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raliegh, NC
| | | | - Heather K Knych
- K. L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA
| |
Collapse
|
5
|
Schwartz FA, Christophersen L, Laulund AS, Lundquist R, Lerche C, Rude Nielsen P, Bundgaard H, Høiby N, Moser C. Novel human in vitro vegetation simulation model for infective endocarditis. APMIS 2021; 129:653-662. [PMID: 34580927 DOI: 10.1111/apm.13182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/09/2021] [Indexed: 01/01/2023]
Abstract
Infective endocarditis (IE) is a heart valve infection with high mortality rates. IE results from epithelial lesions, inducing sterile healing vegetations consisting of platelets, leucocytes, and fibrin that are susceptible for colonization by temporary bacteremia. Clinical testing of new treatments for IE is difficult and fast models sparse. The present study aimed at establishing an in vitro vegetation simulation IE model for fast screening of novel treatment strategies. A healing promoting platelet and leucocyte-rich fibrin patch was used to establish an IE organoid-like model by colonization with IE-associated bacterial isolates Staphylococcus aureus, Streptococcus spp (S. mitis group), and Enterococcus faecalis. The patch was subsequently exposed to tobramycin, ciprofloxacin, or penicillin. Bacterial colonization was evaluated by microscopy and quantitative bacteriology. We achieved stable bacterial colonization on the patch, comparable to clinical IE vegetations. Microscopy revealed uneven, biofilm-like colonization of the patch. The surface-associated bacteria displayed increased tolerance to antibiotics compared to planktonic bacteria. The present study succeeded in establishing an IE simulation model with the relevant pathogens S. aureus, S. mitis group, and E. faecalis. The findings indicate that the IE model mirrors the natural IE process and has the potential for fast screening of treatment candidates.
Collapse
Affiliation(s)
| | | | - Anne Sofie Laulund
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen N, Denmark
| | | | - Christian Lerche
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen N, Denmark
| | - Pia Rude Nielsen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen N, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen N, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Ozawa S, Guzman DSM, Keel K, Gunther-Harrington C. Clinical and pathological findings in rabbits with cardiovascular disease: 59 cases (2001-2018). J Am Vet Med Assoc 2021; 259:764-776. [PMID: 34516264 DOI: 10.2460/javma.259.7.764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine epidemiological features of cardiovascular disease in rabbits examined at a veterinary teaching hospital and characterize clinical and pathological findings. ANIMALS 59 rabbits. PROCEDURES Medical records from 2001 to 2018 were reviewed, and data were collected. Echocardiographic images and histologic diagnoses were reviewed. RESULTS The prevalence of cardiovascular disease was 2.6% (59/2,249). Clinical signs related to cardiac disease included heart murmur (n = 25 rabbits), arrhythmia (22), tachypnea or dyspnea (13), hyporexia or anorexia (13), and muscle wasting (9). Radiographic (n = 39) abnormalities included cardiomegaly (19) and peritoneal (12) and pleural (11) effusion. Common echocardiographic (n = 37) diagnoses included degenerative valve disease (15), dilated cardiomyopathy (7), unclassified cardiomyopathy (4), restrictive cardiomyopathy (3), and hypertrophic cardiomyopathy (2). On ECG (n = 19), supraventricular arrhythmias (16) were more common than ventricular arrhythmias (12). Thirty-five necropsy reports were available, and diagnoses included cardiomyopathy (n = 14), myocarditis (10), and arteriosclerosis (9). Medical management (n = 20) included a wide range of drugs and dosages with few adverse effects. Survival times (n = 36 rabbits) ranged from 1 to 2,353 days with a median cardiac disease-specific survival time of 306 days. CONCLUSIONS AND CLINICAL RELEVANCE The findings provided information on the prevalence of cardiovascular disease in rabbits and survival times for affected rabbits. Right-sided, left-sided, and biventricular congestive heart failure occurred equally. Median survival time was lower than that reported for other species. Further research on the diagnosis and treatment of cardiovascular disease in rabbits is needed.
Collapse
|
7
|
A Combined Phenotypic-Genotypic Predictive Algorithm for In Vitro Detection of Bicarbonate: β-Lactam Sensitization among Methicillin-Resistant Staphylococcus aureus (MRSA). Antibiotics (Basel) 2021; 10:antibiotics10091089. [PMID: 34572671 PMCID: PMC8469475 DOI: 10.3390/antibiotics10091089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial susceptibility testing (AST) is routinely used to establish predictive antibiotic resistance metrics to guide the treatment of bacterial pathogens. Recently, a novel phenotype termed "bicarbonate (NaHCO3)-responsiveness" was identified in a relatively high frequency of clinical MRSA strains, wherein isolates demonstrate in vitro "susceptibility" to standard β-lactams (oxacillin [OXA]; cefazolin [CFZ]) in the presence of NaHCO3, and in vivo susceptibility to these β-lactams in experimental endocarditis models. We investigated whether a targeted phenotypic-genotypic screening of MRSA could rule in or rule out NaHCO3 susceptibility upfront. We studied 30 well-characterized clinical MRSA bloodstream isolates, including 15 MIC-susceptible to CFZ and OXA in NaHCO3-supplemented Mueller-Hinton Broth (MHB); and 15 MIC-resistant to both β-lactams in this media. Using a two-tiered strategy, isolates were first screened by standard disk diffusion for susceptibility to a combination of amoxicillin-clavulanate [AMC]. Isolates then underwent genomic sequence typing: MLST (clonal complex [CC]); agr; SCCmec; and mecA promoter and coding region. The combination of AMC disk susceptibility testing plus mecA and spa genotyping was able to predict MRSA strains that were more or less likely to be NaHCO3-responsive in vitro, with a high degree of sensitivity and specificity. Validation of this screening algorithm was performed in six strains from the overall cohort using an ex vivo model of endocarditis. This ex vivo model recapitulated the in vitro predictions of NaHCO3-responsiveness vs. nonresponsiveness above in five of the six strains.
Collapse
|
8
|
Lerche CJ, Schwartz F, Theut M, Fosbøl EL, Iversen K, Bundgaard H, Høiby N, Moser C. Anti-biofilm Approach in Infective Endocarditis Exposes New Treatment Strategies for Improved Outcome. Front Cell Dev Biol 2021; 9:643335. [PMID: 34222225 PMCID: PMC8249808 DOI: 10.3389/fcell.2021.643335] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Infective endocarditis (IE) is a life-threatening infective disease with increasing incidence worldwide. From early on, in the antibiotic era, it was recognized that high-dose and long-term antibiotic therapy was correlated to improved outcome. In addition, for several of the common microbial IE etiologies, the use of combination antibiotic therapy further improves outcome. IE vegetations on affected heart valves from patients and experimental animal models resemble biofilm infections. Besides the recalcitrant nature of IE, the microorganisms often present in an aggregated form, and gradients of bacterial activity in the vegetations can be observed. Even after appropriate antibiotic therapy, such microbial formations can often be identified in surgically removed, infected heart valves. Therefore, persistent or recurrent cases of IE, after apparent initial infection control, can be related to biofilm formation in the heart valve vegetations. On this background, the present review will describe potentially novel non-antibiotic, antimicrobial approaches in IE, with special focus on anti-thrombotic strategies and hyperbaric oxygen therapy targeting the biofilm formation of the infected heart valves caused by Staphylococcus aureus. The format is translational from preclinical models to actual clinical treatment strategies.
Collapse
Affiliation(s)
- Christian Johann Lerche
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Franziska Schwartz
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie Theut
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emil Loldrup Fosbøl
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
9
|
Bacteriophage AB-SA01 Cocktail in Combination with Antibiotics against MRSA-VISA Strain in an In Vitro Pharmacokinetic/Pharmacodynamic Model. Antimicrob Agents Chemother 2020; 65:AAC.01863-20. [PMID: 33077648 DOI: 10.1128/aac.01863-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/09/2020] [Indexed: 01/04/2023] Open
Abstract
This study aimed to test the efficacy of bacteriophage-antibiotic combinations (BACs) in vitro in 24-h time-kill settings and in ex vivo simulated endocardial vegetation (SEV) pharmacokinetic/pharmacodynamic models for 96 h. BACs prevented the development of bacteriophage resistance, while some bacteriophage resistance emerged in bacteriophage-alone treatments. In addition, BACs resulted in an enhancement of bacterial eradication in SEV models. Our findings support the potential activity of BAC therapy for combating serious methicillin-resistant Staphylococcus aureus (MRSA) infections.
Collapse
|
10
|
Kebriaei R, Stamper KC, Singh KV, Khan A, Rice SA, Dinh AQ, Tran TT, Murray BE, Arias CA, Rybak MJ. Mechanistic Insights Into the Differential Efficacy of Daptomycin Plus β-Lactam Combinations Against Daptomycin-Resistant Enterococcus faecium. J Infect Dis 2020; 222:1531-1539. [PMID: 32514561 PMCID: PMC7529040 DOI: 10.1093/infdis/jiaa319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The combination of daptomycin (DAP) plus ampicillin (AMP), ertapenem (ERT), or ceftaroline has been demonstrated to be efficacious against a DAP-tolerant Enterococcus faecium strain (HOU503). However, the mechanism for the efficacy of these combinations against DAP-resistant (DAP-R) E. faecium strains is unknown. METHODS We investigated the efficacy of DAP in combination with AMP, ERT, ceftaroline, ceftriaxone, or amoxicillin against DAP-R E. faecium R497 using established in vitro and in vivo models. We evaluated pbp expression, levels of penicillin-binding protein (PBP) 5 (PBP5) and β-lactam binding affinity in HOU503 versus R497. RESULTS DAP plus AMP was the only efficacious regimen against DAP-R R497 and prevented emergence of resistance. DAP at 8, 6, and 4 mg/kg in combination with AMP was efficacious but showed delayed killing compared with 10 mg/kg. PBP5 of HOU503 exhibited amino acid substitutions in the penicillin-binding domain relative to R497. No difference in pbp mRNA or PBP5 levels was detected between HOU503 and R497. labeling of PBPs with Bocillin FL, a fluorescent penicillin derivative, showed increased β-lactam binding affinity of PBP5 of HOU503 compared with that of R497. CONCLUSIONS Only DAP (10 mg/kg) plus AMP or amoxicillin was efficacious against a DAP-R E. faecium strain, and pbp5 alleles may be important contributors to efficacy of DAP plus β-lactam therapy.
Collapse
Affiliation(s)
- Razieh Kebriaei
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy & Health Sciences, Detroit, Michigan, USA
| | - Kyle C Stamper
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy & Health Sciences, Detroit, Michigan, USA
| | - Kavindra V Singh
- Division of Infectious Diseases, UTHealth McGovern Medical School, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, UTHealth McGovern Medical School, Houston, Texas, USA
| | - Ayesha Khan
- Division of Infectious Diseases, UTHealth McGovern Medical School, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, UTHealth McGovern Medical School, Houston, Texas, USA
- Department of Microbiology and Molecular Genetics, UTHealth McGovern Medical School, Houston, Texas, USA
| | - Seth A Rice
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy & Health Sciences, Detroit, Michigan, USA
| | - An Q Dinh
- Division of Infectious Diseases, UTHealth McGovern Medical School, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, UTHealth McGovern Medical School, Houston, Texas, USA
| | - Truc T Tran
- Division of Infectious Diseases, UTHealth McGovern Medical School, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, UTHealth McGovern Medical School, Houston, Texas, USA
| | - Barbara E Murray
- Division of Infectious Diseases, UTHealth McGovern Medical School, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, UTHealth McGovern Medical School, Houston, Texas, USA
- Department of Microbiology and Molecular Genetics, UTHealth McGovern Medical School, Houston, Texas, USA
| | - Cesar A Arias
- Division of Infectious Diseases, UTHealth McGovern Medical School, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, UTHealth McGovern Medical School, Houston, Texas, USA
- Department of Microbiology and Molecular Genetics, UTHealth McGovern Medical School, Houston, Texas, USA
- Center for Infectious Diseases, UTHealth School of Public Health, Houston, Texas, USA
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics; Universidad El Bosque, Bogotá, Colombia
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy & Health Sciences, Detroit, Michigan, USA
- School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
11
|
Lauten A, Martinović M, Kursawe L, Kikhney J, Affeld K, Kertzscher U, Falk V, Moter A. Bacterial biofilms in infective endocarditis: an in vitro model to investigate emerging technologies of antimicrobial cardiovascular device coatings. Clin Res Cardiol 2020; 110:323-331. [PMID: 32444905 PMCID: PMC7907033 DOI: 10.1007/s00392-020-01669-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 05/08/2020] [Indexed: 12/01/2022]
Abstract
Objective In spite of the progress in antimicrobial and surgical therapy, infective endocarditis (IE) is still associated with a high morbidity and mortality. IE is characterized by bacterial biofilms of the endocardium, especially of the aortic and mitral valve leading to their destruction. About one quarter of patients with formal surgery indication cannot undergo surgery. This group of patients needs further options of therapy, but due to a lack of models for IE prospects of research are low. Therefore, the purpose of this project was to establish an in vitro model of infective endocarditis to allow growth of bacterial biofilms on porcine aortic valves, serving as baseline for further research. Methods and results A pulsatile two-chamber circulation model was constructed that kept native porcine aortic valves under sterile, physiologic hemodynamic and temperature conditions. To create biofilms on porcine aortic valves the system was inoculated with Staphylococcus epidermidis PIA 8400. Aortic roots were incubated in the model for increasing periods of time (24 h and 40 h) and bacterial titration (1.5 × 104 CFU/mL and 1.5 × 105 CFU/mL) with 5 L cardiac output per minute. After incubation, tissue sections were analysed by fluorescence in situ hybridization (FISH) for direct visualization of the biofilms. Pilot tests for biofilm growth showed monospecies colonization consisting of cocci with time- and inocula-dependent increase after 24 h and 40 h (n = 4). In n = 3 experiments for 24 h, with the same inocula, FISH visualized biofilms with ribosome-containing, and thus metabolic active cocci, tissue infiltration and similar colonization pattern as observed by the FISH in human IE heart valves infected by S. epidermidis. Conclusion These results demonstrate the establishment of a novel in vitro model for bacterial biofilm growth on porcine aortic roots mimicking IE. The model will allow to identify predilection sites of valves for bacterial adhesion and biofilm growth and it may serve as baseline for further research on IE therapy and prevention, e.g. the development of antimicrobial transcatheter approaches to IE. Graphic abstract ![]()
Collapse
Affiliation(s)
- Alexander Lauten
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Standort Berlin, Berlin, Germany. .,Department of Cardiology, Charité, Universitaetsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany. .,Department of General and Interventional Cardiology and Rhythmology, HELIOS Klinikum Erfurt, Erfurt, Germany. .,Devie Medical GmbH, Bachstr. 18, 7743, Jena, Deutschland.
| | - Marc Martinović
- Department of Cardiology, Charité, Universitaetsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Laura Kursawe
- Biofilmcenter, Department of Microbiology, Infectious Diseases and Immunology, Charité, Universitaetsmedizin Berlin, Berlin, Germany
| | - Judith Kikhney
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Standort Berlin, Berlin, Germany.,Biofilmcenter, Department of Microbiology, Infectious Diseases and Immunology, Charité, Universitaetsmedizin Berlin, Berlin, Germany
| | - Klaus Affeld
- Institute for Cardiovascular Computer-Assisted Medicine, Labor für Biofluidmechanik, Charité, Universitaetsmedizin Berlin, Berlin, Germany
| | - Ulrich Kertzscher
- Institute for Cardiovascular Computer-Assisted Medicine, Labor für Biofluidmechanik, Charité, Universitaetsmedizin Berlin, Berlin, Germany
| | - Volkmar Falk
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Standort Berlin, Berlin, Germany.,Department of Cardiology, Charité, Universitaetsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.,Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Annette Moter
- Biofilmcenter, Department of Microbiology, Infectious Diseases and Immunology, Charité, Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Daptomycin Dose-Ranging Evaluation with Single-Dose versus Multidose Ceftriaxone Combinations against Streptococcus mitis /oralis in an Ex Vivo Simulated Endocarditis Vegetation Model. Antimicrob Agents Chemother 2019; 63:AAC.00386-19. [PMID: 30962347 DOI: 10.1128/aac.00386-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The viridans group streptococci (VGS) are a heterogeneous group of organisms which are important components of the normal human oral flora. Among the VGS, the Streptococcus mitis /oralis subgroup is one of the most common causes of infective endocarditis (IE). Daptomycin (DAP) is a potential alternative therapeutic option for invasive S. mitis infections, given high rates of β-lactam resistance and vancomycin tolerance in such strains. However, the ability of these strains to rapidly evolve high-level and durable DAP resistance (DAP-R) is problematic. Recent data suggest that combination DAP-β-lactam therapy circumvents this issue. Human-simulated dose-escalating DAP-alone dose regimens (6, 8, 10, or 12 mg/kg/day times 4 days) versus DAP (6 mg/kg/day) plus ceftriaxone (CRO) (2 g once daily times 4 days or 0.5 g, single dose) were assessed against two prototypical DAP-susceptible (DAP-S) S. mitis /oralis strains (SF100 and 351), as measured by a pharmacokinetic/pharmacodynamic (PK/PD) model of simulated endocardial vegetations (SEVs). No DAP-alone regimen was effective, with regrowth of high-level DAP-R isolates observed for both strains over 96-h exposures. Combinations of DAP-CRO with either single- or multidose regimens yielded significant reductions in log10 CFU/g amounts within SEVs for both strains (∼6 log10 CFU/g) within 24 h. In addition, no DAP-R strains were detected in either DAP-CRO combination regimens over the 96-h exposure. In contrast to prior in vitro studies, no perturbations in two key cardiolipin biosynthetic genes (cdsA and pgsA) were identified in DAP-R SEV isolates emerging from strain 351, despite defective phospholipid production. The combination of DAP-CRO warrants further investigation for treatment of IE due to S. mitis /oralis.
Collapse
|
13
|
Bolocan AS, Upadrasta A, Bettio PHDA, Clooney AG, Draper LA, Ross RP, Hill C. Evaluation of Phage Therapy in the Context of Enterococcus faecalis and Its Associated Diseases. Viruses 2019; 11:E366. [PMID: 31010053 PMCID: PMC6521178 DOI: 10.3390/v11040366] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages (phages) or bacterial viruses have been proposed as natural antimicrobial agents to fight against antibiotic-resistant bacteria associated with human infections. Enterococcus faecalis is a gut commensal, which is occasionally found in the mouth and vaginal tract, and does not usually cause clinical problems. However, it can spread to other areas of the body and cause life-threatening infections, such as septicemia, endocarditis, or meningitis, in immunocompromised hosts. Although E. faecalis phage cocktails are not commercially available within the EU or USA, there is an accumulated evidence from in vitro and in vivo studies that have shown phage efficacy, which supports the idea of applying phage therapy to overcome infections associated with E. faecalis. In this review, we discuss the potency of bacteriophages in controlling E. faecalis, in both in vitro and in vivo scenarios. E. faecalis associated bacteriophages were compared at the genome level and an attempt was made to categorize phages with respect to their suitability for therapeutic application, using orthocluster analysis. In addition, E. faecalis phages have been examined for the presence of antibiotic-resistant genes, to ensure their safe use in clinical conditions. Finally, the domain architecture of E. faecalis phage-encoded endolysins are discussed.
Collapse
Affiliation(s)
- Andrei S Bolocan
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Aditya Upadrasta
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Pedro H de Almeida Bettio
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| |
Collapse
|
14
|
Influence of Inoculum Effect on the Efficacy of Daptomycin Monotherapy and in Combination with β-Lactams against Daptomycin-Susceptible Enterococcus faecium Harboring LiaSR Substitutions. Antimicrob Agents Chemother 2018; 62:AAC.00315-18. [PMID: 29760141 DOI: 10.1128/aac.00315-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/01/2018] [Indexed: 12/23/2022] Open
Abstract
Enterococcus faecium isolates that harbor LiaFSR substitutions but are phenotypically susceptible to daptomycin (DAP) by current breakpoints are problematic, since predisposition to resistance may lead to therapeutic failure. Using a simulated endocardial vegetation (SEV) pharmacokinetic/pharmacodynamic (PK/PD) model, we investigated DAP regimens (6, 8, and 10 mg/kg of body weight/day) as monotherapy and in combination with ampicillin (AMP), ceftaroline (CPT), or ertapenem (ERT) against E. faecium HOU503, a DAP-susceptible strain that harbors common LiaS and LiaR substitutions found in clinical isolates (T120S and W73C, respectively). Of interest, the efficacy of DAP monotherapy, at any dose regimen, was dependent on the size of the inoculum. At an inoculum of ∼109 CFU/g, DAP doses of 6 to 8 mg/kg/day were not effective and led to significant regrowth with emergence of resistant derivatives. In contrast, at an inoculum of ∼107 CFU/g, marked reductions in bacterial counts were observed with DAP at 6 mg/kg/day, with no resistance. The inoculum effect was confirmed in a rat model using humanized DAP exposures. Combinations of DAP with AMP, CPT, or ERT demonstrated enhanced eradication and reduced potential for resistance, allowing de-escalation of the DAP dose. Persistence of the LiaRS substitutions was identified in DAP-resistant isolates recovered from the SEV model and in DAP-resistant derivatives of an initially DAP-susceptible clinical isolate of E. faecium (HOU668) harboring LiaSR substitutions that was recovered from a patient with a recurrent bloodstream infection. Our results provide novel data for the use of DAP monotherapy and combinations for recalcitrant E. faecium infections and pave the way for testing these approaches in humans.
Collapse
|
15
|
Khalifa L, Gelman D, Shlezinger M, Dessal AL, Coppenhagen-Glazer S, Beyth N, Hazan R. Defeating Antibiotic- and Phage-Resistant Enterococcus faecalis Using a Phage Cocktail in Vitro and in a Clot Model. Front Microbiol 2018. [PMID: 29541067 PMCID: PMC5835721 DOI: 10.3389/fmicb.2018.00326] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The deteriorating effectiveness of antibiotics is propelling researchers worldwide towards alternative techniques such as phage therapy: curing infectious diseases using viruses of bacteria called bacteriophages. In a previous paper, we isolated phage EFDG1, highly effective against both planktonic and biofilm cultures of one of the most challenging pathogenic species, the vancomycin-resistant Enterococcus (VRE). Thus, it is a promising phage to be used in phage therapy. Further experimentation revealed the emergence of a mutant resistant to EFDG1 phage: EFDG1r. This kind of spontaneous resistance to antibiotics would be disastrous occurrence, however for phage-therapy it is only a minor hindrance. We quickly and successfully isolated a new phage, EFLK1, which proved effective against both the resistant mutant EFDG1r and its parental VRE, Enterococcus faecalis V583. Furthermore, combining both phages in a cocktail produced an additive effect against E. faecalis V583 strains regardless of their antibiotic or phage-resistance profile. An analysis of the differences in genome sequence, genes, mutations, and tRNA content of both phages is presented. This work is a proof-of-concept of one of the most significant advantages of phage therapy, namely the ability to easily overcome emerging resistant bacteria.
Collapse
Affiliation(s)
- Leron Khalifa
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Gelman
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Shlezinger
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Prosthodontics, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Axel Lionel Dessal
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shunit Coppenhagen-Glazer
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nurit Beyth
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Prosthodontics, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronen Hazan
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
16
|
Lattwein KR, Shekhar H, van Wamel WJB, Gonzalez T, Herr AB, Holland CK, Kooiman K. An in vitro proof-of-principle study of sonobactericide. Sci Rep 2018; 8:3411. [PMID: 29467474 PMCID: PMC5821825 DOI: 10.1038/s41598-018-21648-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 02/06/2018] [Indexed: 12/24/2022] Open
Abstract
Infective endocarditis (IE) is associated with high morbidity and mortality rates. The predominant bacteria causing IE is Staphylococcus aureus (S. aureus), which can bind to existing thrombi on heart valves and generate vegetations (biofilms). In this in vitro flow study, we evaluated sonobactericide as a novel strategy to treat IE, using ultrasound and an ultrasound contrast agent with or without other therapeutics. We developed a model of IE biofilm using human whole-blood clots infected with patient-derived S. aureus (infected clots). Histology and live-cell imaging revealed a biofilm layer of fibrin-embedded living Staphylococci around a dense erythrocyte core. Infected clots were treated under flow for 30 minutes and degradation was assessed by time-lapse microscopy imaging. Treatments consisted of either continuous plasma flow alone or with different combinations of therapeutics: oxacillin (antibiotic), recombinant tissue plasminogen activator (rt-PA; thrombolytic), intermittent continuous-wave low-frequency ultrasound (120-kHz, 0.44 MPa peak-to-peak pressure), and an ultrasound contrast agent (Definity). Infected clots exposed to the combination of oxacillin, rt-PA, ultrasound, and Definity achieved 99.3 ± 1.7% loss, which was greater than the other treatment arms. Effluent size measurements suggested low likelihood of emboli formation. These results support the continued investigation of sonobactericide as a therapeutic strategy for IE.
Collapse
Affiliation(s)
- Kirby R Lattwein
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Room Ee2302, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA. .,Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands.
| | - Himanshu Shekhar
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Willem J B van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Tammy Gonzalez
- Cincinnati Children's Hospital Medical Center, Division of Immunobiology, Center for Systems Immunology, and Division of Infectious Diseases, Cincinnati, Ohio, USA
| | - Andrew B Herr
- Cincinnati Children's Hospital Medical Center, Division of Immunobiology, Center for Systems Immunology, and Division of Infectious Diseases, Cincinnati, Ohio, USA
| | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Room Ee2302, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Yim J, Smith JR, Singh NB, Rice S, Stamper K, Garcia de la Maria C, Bayer AS, Mishra NN, Miró JM, Tran TT, Arias CA, Sullam P, Rybak MJ. Evaluation of daptomycin combinations with cephalosporins or gentamicin against Streptococcus mitis group strains in an in vitro model of simulated endocardial vegetations (SEVs). J Antimicrob Chemother 2018; 72:2290-2296. [PMID: 28475731 DOI: 10.1093/jac/dkx130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023] Open
Abstract
Objectives Among viridans group streptococcal infective endocarditis (IE), the Streptococcus mitis group is the most common aetiological organism. Treatment of IE caused by the S. mitis group is challenging due to the high frequency of β-lactam resistance, drug allergy and intolerability of mainstay antimicrobial agents such as vancomycin or gentamicin. Daptomycin has been suggested as an alternative therapeutic option in these scenarios based on its excellent susceptibility profile against S. mitis group strains . However, the propensity of many S. mitis group strains to rapidly evolve stable, high-level daptomycin resistance potentially limits this approach. Methods We evaluated the activity of 6 mg/kg/day daptomycin alone or in combination with gentamicin, ceftriaxone or ceftaroline against two daptomycin-susceptible S. mitis group strains over 96 h in a pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations. Results Daptomycin alone was not bactericidal and high-level daptomycin resistance evolved at 96 h in both organisms. Combinations of daptomycin + ceftriaxone and daptomycin + ceftaroline demonstrated enhanced killing activity compared with each antibiotic alone and prevented emergence of daptomycin resistance at 96 h. Use of gentamicin as an adjunctive agent neither improved the efficacy of daptomycin nor prevented the development of daptomycin resistance. Conclusions Addition of ceftriaxone or ceftaroline to daptomycin improves the bactericidal activity against S. mitis group strains and prevents daptomycin resistance emergence. Further investigation with combinations of daptomycin and β-lactams in a large number of strains is warranted to fully elucidate the clinical implications of such combinations for treatment of S. mitis group IE.
Collapse
Affiliation(s)
- Juwon Yim
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Jordan R Smith
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Nivedita B Singh
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Seth Rice
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Kyle Stamper
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | | | - Arnold S Bayer
- LA Biomedical Research Institute, Torrance, CA and Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Nagendra N Mishra
- LA Biomedical Research Institute, Torrance, CA and Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - José M Miró
- Infectious Diseases Service, Hosp. Clinic-IDIBAPS, Univ. Barcelona, Barcelona, Spain
| | - Truc T Tran
- The University of Texas Medical School, Houston, TX, USA
| | - Cesar A Arias
- LA Biomedical Research Institute, Torrance, CA and Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Paul Sullam
- University of California, San Francisco and VA Medical Center, San Francisco, CA, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
18
|
Goh HMS, Yong MHA, Chong KKL, Kline KA. Model systems for the study of Enterococcal colonization and infection. Virulence 2017; 8:1525-1562. [PMID: 28102784 PMCID: PMC5810481 DOI: 10.1080/21505594.2017.1279766] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are common inhabitants of the human gastrointestinal tract, as well as frequent opportunistic pathogens. Enterococci cause a range of infections including, most frequently, infections of the urinary tract, catheterized urinary tract, bloodstream, wounds and surgical sites, and heart valves in endocarditis. Enterococcal infections are often biofilm-associated, polymicrobial in nature, and resistant to antibiotics of last resort. Understanding Enterococcal mechanisms of colonization and pathogenesis are important for identifying new ways to manage and intervene with these infections. We review vertebrate and invertebrate model systems applied to study the most common E. faecalis and E. faecium infections, with emphasis on recent findings examining Enterococcal-host interactions using these models. We discuss strengths and shortcomings of each model, propose future animal models not yet applied to study mono- and polymicrobial infections involving E. faecalis and E. faecium, and comment on the significance of anti-virulence strategies derived from a fundamental understanding of host-pathogen interactions in model systems.
Collapse
Affiliation(s)
- H. M. Sharon Goh
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - M. H. Adeline Yong
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kelvin Kian Long Chong
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
19
|
Brotzki CR, Mergenhagen KA, Bulman ZP, Tsuji BT, Berenson CS. Native valve Proteus mirabilis endocarditis: successful treatment of a rare entity formulated by in vitro synergy antibiotic testing. BMJ Case Rep 2016; 2016:bcr-2016-215956. [PMID: 27797858 DOI: 10.1136/bcr-2016-215956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Infective endocarditis caused by Proteus mirabilis is a rare and poorly reported disease, with no well-defined effective antibiotic regimen. Here, we present a case of P. mirabilis aortic valve endocarditis. We reviewed prior cases and treatment regimens, and devised effective treatment, which was guided by in vitro sensitivity and synergy testing on the pathogen. Our patient survived without complications or the need for a surgical intervention.
Collapse
Affiliation(s)
- Caroline R Brotzki
- Department of Medicine, University at Buffalo State University of New York, School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Kari A Mergenhagen
- Department of Pharmacy, Veterans Administration Western New York Healthcare System, Buffalo, New York, USA
| | - Zackery P Bulman
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, Buffalo, New York, USA
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, Buffalo, New York, USA
| | - Charles S Berenson
- State University of New York at Buffalo, Buffalo, New York, USA.,Veterans Administration Western New York Healthcare System, Buffalo, NY, USA
| |
Collapse
|
20
|
Defining daptomycin resistance prevention exposures in vancomycin-resistant Enterococcus faecium and E. faecalis. Antimicrob Agents Chemother 2014; 58:5253-61. [PMID: 24957825 DOI: 10.1128/aac.00098-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Daptomycin is used off-label for enterococcal infections; however, dosing targets for resistance prevention remain undefined. Doses of 4 to 6 mg/kg of body weight/day approved for staphylococci are likely inadequate against enterococci due to reduced susceptibility. We modeled daptomycin regimens in vitro to determine the minimum exposure to prevent daptomycin resistance (Dapr) in enterococci. Daptomycin simulations of 4 to 12 mg/kg/day (maximum concentration of drug in serum [Cmax] of 57.8, 93.9, 123.3, 141.1, and 183.7 mg/liter; half-life [t1/2] of 8 h) were tested against one Enterococcus faecium strain (S447) and one Enterococcus faecalis strain (S613) in a simulated endocardial vegetation pharmacokinetic/pharmacodynamic model over 14 days. Samples were plated on media containing 3× the MIC of daptomycin to detect Dapr. Mutations in genes encoding proteins associated with cell envelope homeostasis (yycFG and liaFSR) and phospholipid metabolism (cardiolipin synthase [cls] and cyclopropane fatty acid synthetase [cfa]) were investigated in Dapr derivatives. Dapr derivatives were assessed for changes in susceptibility, surface charge, membrane depolarization, cell wall thickness (CWT), and growth rate. Strains S447 and S613 developed Dapr after simulations of 4 to 8 mg/kg/day but not 10 to 12 mg/kg/day. MICs for Dapr strains ranged from 8 to 256 mg/liter. Some S613 derivatives developed mutations in liaF or cls. S447 derivatives lacked mutations in these genes. Dapr derivatives from both strains exhibited lowered growth rates, up to a 72% reduction in daptomycin-induced depolarization and up to 6-nm increases in CWT (P<0.01). Peak/MIC and AUC0-24/MIC ratios (AUC0-24 is the area under the concentration-time curve from 0 to 24 h) associated with Dapr prevention were 72.1 and 780 for S447 and 144 and 1561 for S613, respectively. Daptomycin doses of 10 mg/kg/day may be required to prevent Dapr in serious enterococcal infections.
Collapse
|
21
|
Activity of daptomycin or linezolid in combination with rifampin or gentamicin against biofilm-forming Enterococcus faecalis or E. faecium in an in vitro pharmacodynamic model using simulated endocardial vegetations and an in vivo survival assay using Galleria mellonella larvae. Antimicrob Agents Chemother 2014; 58:4612-20. [PMID: 24867993 DOI: 10.1128/aac.02790-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are the third most frequent cause of infective endocarditis. A high-inoculum stationary-phase in vitro pharmacodynamic model with simulated endocardial vegetations was used to simulate the human pharmacokinetics of daptomycin at 6 or 10 mg/kg of body weight/day or linezolid at 600 mg every 12 h (q12h), alone or in combination with gentamicin at 1.3 mg/kg q12h or rifampin at 300 mg q8h or 900 mg q24h. Biofilm-forming, vancomycin-susceptible Enterococcus faecalis and vancomycin-resistant Enterococcus faecium (vancomycin-resistant enterococcus [VRE]) strains were tested. At 24, 48, and 72 h, all daptomycin-containing regimens demonstrated significantly more activity (decline in CFU/g) than any linezolid-containing regimen against biofilm-forming E. faecalis. The addition of gentamicin to daptomycin (at 6 or 10 mg/kg) in the first 24 h significantly improved bactericidal activity. In contrast, the addition of rifampin delayed the bactericidal activity of daptomycin against E. faecalis, and the addition of rifampin antagonized the activities of all regimens against VRE at 24 h. Also, against VRE, the addition of gentamicin to linezolid at 72 h improved activity and was bactericidal. Rifampin significantly antagonized the activity of linezolid against VRE at 72 h. In in vivo Galleria mellonella survival assays, linezolid and daptomycin improved survival. Daptomycin at 10 mg/kg improved survival significantly over that with linezolid against E. faecalis. The addition of gentamicin improved the efficacy of daptomycin against E. faecalis and those of linezolid and daptomycin against VRE. We conclude that in enterococcal infection models, daptomycin has more activity than linezolid alone. Against biofilm-forming E. faecalis, the addition of gentamicin in the first 24 h causes the most rapid decline in CFU/g. Of interest, the addition of rifampin decreased the activity of daptomycin against both E. faecalis and VRE.
Collapse
|
22
|
Butterfield J, Lodise TP, Pai MP. Applications of Pharmacokinetic and Pharmacodynamic Principles to Optimize Drug Dosage Selection. Ther Drug Monit 2012. [DOI: 10.1016/b978-0-12-385467-4.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Evaluation of telavancin activity versus daptomycin and vancomycin against daptomycin-nonsusceptible Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 2011; 56:955-9. [PMID: 22123693 DOI: 10.1128/aac.05849-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Daptomycin-nonsusceptible (DNS) Staphylococcus aureus strains have been reported over the last several years. Telavancin is a lipoglycopeptide with a dual mechanism of action, as it inhibits peptidoglycan polymerization/cross-linking and disrupts the membrane potential. Three clinical DNS S. aureus strains, CB1814, R6212, and SA-684, were evaluated in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model with simulated endocardial vegetations (starting inoculum, 10(8.5) CFU/g) for 120 h. Simulated regimens included telavancin at 10 mg/kg every 24 h (q24h; peak, 87.5 mg/liter; t(1/2), 7.5 h), daptomycin at 6 mg/kg q24h (peak, 95.7 mg/liter; t(1/2), 8 h), and vancomycin at 1 g q12h (peak, 30 mg/liter; t(1/2), 6 h). Differences in CFU/g between regimens at 24 through 120 h were evaluated by analysis of variance with a Tukey's post hoc test. Bactericidal activity was defined as a ≥3-log(10) CFU/g decrease in colony count from the initial inoculum. MIC values were 1, 0.25, and 0.5 mg/liter (telavancin), 4, 2, and 2 mg/liter (daptomycin), and 2, 2, and 2 mg/liter (vancomycin) for CB1814, R6212, and SA-684, respectively. Telavancin displayed bactericidal activities against R6212 (32 to 120 h; -4.31 log(10) CFU/g), SA-684 (56 to 120 h; -3.06 log(10) CFU/g), and CB1814 (48 to 120 h; -4.9 log(10) CFU/g). Daptomycin displayed initial bactericidal activity followed by regrowth with all three strains. Vancomycin did not exhibit sustained bactericidal activity against any strain. At 120 h, telavancin was significantly better at reducing colony counts than vancomycin against all three tested strains and better than daptomycin against CB1814 (P < 0.05). Telavancin displayed bactericidal activity in vitro against DNS S. aureus isolates.
Collapse
|
24
|
|
25
|
Activities of daptomycin and vancomycin alone and in combination with rifampin and gentamicin against biofilm-forming methicillin-resistant Staphylococcus aureus isolates in an experimental model of endocarditis. Antimicrob Agents Chemother 2009; 53:3880-6. [PMID: 19564363 DOI: 10.1128/aac.00134-09] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The findings of clinical and in vitro research support the theory that infective endocarditis (IE)-causing bacteria form biofilms and that biofilms negatively affect treatment outcomes. The purpose of the present study was to quantify the biofilm formation of methicillin (meticillin)-resistant Staphylococcus aureus (MRSA) isolates obtained from patients with IE and to evaluate the in vitro activities of daptomycin and vancomycin alone and in combination with rifampin (rifampicin) or gentamicin while monitoring the isolates for the development of resistance. A high-inoculum, stationary-phase infection model of IE was used to simulate the pharmacokinetics in humans of daptomycin at 6 mg/kg of body weight/day, vancomycin at 1.25 g every 12 h (q12h) alone and in combination with rifampin at 300 mg every 8 h, and gentamicin at 1.3 mg/kg q12h. Two randomly selected clinical MRSA isolates were obtained from patients with IE; both MRSA isolates quantitatively produced biofilms. The time to bactericidal activity in the presence of daptomycin was isolate dependent but was achieved by 24 h for both MRSA isolates. Vancomycin did not achieve bactericidal activity throughout the experiment. At 24, 48, and 72 h, daptomycin-containing regimens had significantly more activity (greater declines in the mean number of CFU/g) than any of the vancomycin-containing regimens (P = 0.03). Rifampin and gentamicin antagonized or delayed the bactericidal activity of daptomycin (against MRSA B346846 for rifampin and against both isolates for gentamicin) in the first 24 h. Increases in the daptomycin and vancomycin MICs were not observed. We conclude that in an IE model of biofilm-forming MRSA, daptomycin monotherapy has better in vitro activity than daptomycin in combination with rifampin or gentamicin or any vancomycin-containing regimen studied within the first 24 h. Further investigations are needed to understand the initial delay in bactericidal activity observed when gentamicin or rifampin is combined with daptomycin.
Collapse
|
26
|
Efficacy of iclaprim against wild-type and thymidine kinase-deficient methicillin-resistant Staphylococcus aureus isolates in an in vitro fibrin clot model. Antimicrob Agents Chemother 2009; 53:3635-41. [PMID: 19564362 DOI: 10.1128/aac.00325-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iclaprim is a novel diaminopyrimidine antibiotic that is active against methicillin-resistant Staphylococcus aureus (MRSA). However, it is known that the activity of diaminopyrimidines against S. aureus is antagonized by thymidine through uptake and conversion to thymidylate by thymidine kinase. Unlike with humans, for whom thymidine levels are low, thymidine levels in rodents are high, thus precluding the accurate evaluation of iclaprim efficacy in animal models. We have studied the bactericidal activity of iclaprim against an isogenic pair of MRSA isolates, the wild-type parent AW6 and its thymidine kinase-deficient mutant AH1252, in an in vitro fibrin clot model. Clots, which were aimed at mimicking vegetation structure, were made from human or rat plasma containing either the parent AW6 or the mutant AH1252, and they were exposed to homologous serum supplemented with iclaprim (3.5 microg/ml), trimethoprim-sulfamethoxazole (TMP-SMX; 8/40 microg/ml), vancomycin (40 microg/ml), or saline, each of which was added one time for 48 h. In rat clots, iclaprim and TMP-SMX were bacteriostatic against the parent, AW6. In contrast, they were bactericidal (> or = 3 log10 CFU/clot killing of the original inoculum) against the mutant AH1252. Vancomycin was the most active drug against AW6 (P < 0.05), but it showed an activity similar those of iclaprim and TMP-SMX against AH1252. In human clots, iclaprim was bactericidal against both AW6 and AH1252 strains and was as effective as TMP-SMX and vancomycin (P > 0.05). Future studies of animals using simulated human kinetics of iclaprim and thymidine kinase-deficient MRSA, which eliminate the thymidine-induced confounding effect, are warranted to support the use of iclaprim in the treatment of severe MRSA infections in humans.
Collapse
|
27
|
Martineau L, Dosch HM. In vitro bactericidal efficacy of a new sun- and heat burn gel. Burns 2006; 32:748-54. [PMID: 16920268 DOI: 10.1016/j.burns.2006.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 01/10/2006] [Indexed: 11/21/2022]
Abstract
We assessed the in vitro bactericidal efficacy of a new sunburn gel (Rescudermtrade mark; RESC) against planktonic and sessile Pseudomonas aeruginosa (PSEUD) and Staphylococcus epidermidis (STAPH). While PSEUD levels were 4log(10) lower than those of STAPH within 24h of adding RESC to contaminated nutrient broths, all bacterial counts were comparable by 48h. PSEUD and STAPH levels were then measured after applying either a single or three consecutive aliquots of RESC to polyurethane sponges. Gel was removed after 5 or 20min, or left on for 72h. Bacterial counts in placebo-treated sponges had plateaued by 24h to values above 9log(10)CFU/mL. In contrast, six out of seven of the RESC application modalities reduced bacterial levels below 4log(10)CFU/mL for 72h. RESC remained effective against STAPH despite up to a 24h treatment delay, irrespective of the number of applications. Repeated RESC applications were required to maintain PSEUD below 4log(10)CFU/mL when the delay exceeded 7h. These data demonstrate the differential susceptibility of planktonic and sessile bacteria to RescuDermtrade mark. This product might be a good candidate for reducing the opportunity for wound infection, especially in burns.
Collapse
Affiliation(s)
- Lucie Martineau
- Operational Medicine Section, Trauma Group, Defence Research & Development Canada (DRDC) Toronto, 1133 Sheppard Avenue West, Toronto, Ont. M3M 3B9, Canada.
| | | |
Collapse
|
28
|
LaPlante KL, Rybak MJ. Impact of high-inoculum Staphylococcus aureus on the activities of nafcillin, vancomycin, linezolid, and daptomycin, alone and in combination with gentamicin, in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 2005; 48:4665-72. [PMID: 15561842 PMCID: PMC529225 DOI: 10.1128/aac.48.12.4665-4672.2004] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the impact of high (9.5 log10 CFU/g) and moderate (5.5 log10 CFU/g) inocula of methicillin-susceptible and -resistant Staphylococcus aureus (MSSA and MRSA, respectively) on the activities of nafcillin, linezolid, vancomycin, and daptomycin, alone and in combination with gentamicin in an in vitro pharmacodynamic model with simulated endocardial vegetations over 72 h. Human therapeutic dosing regimens for nafcillin, daptomycin, vancomycin, linezolid, and gentamicin were simulated. At a moderate inoculum, nafcillin (MSSA only), vancomycin, and daptomycin demonstrated equivalent and significant (P < 0.01) bactericidal (99.9% kill) activities (decreases of 3.34 +/- 1.1, 3.28 +/- 0.4, and 3.34 +/- 0.8 log10 CFU/g, respectively). Bactericidal activity was demonstrated at 4 h for nafcillin and daptomycin and at 32 h for vancomycin. Linezolid demonstrated bacteriostatic activity over the course of the study period. At a high inoculum, daptomycin exhibited bactericidal activity against both MSSA and MRSA by 24 h (decrease of 5.51 to 6.31 +/- 0.10 log10 CFU/g). Nafcillin (versus MSSA), vancomycin, and linezolid (MSSA and MRSA) did not achieve bactericidal activity throughout the 72-h experiment. The addition of gentamicin increased the rate of 99.9% kill to 8 h for daptomycin (P < 0.01) and 48 h for nafcillin (MSSA only) (P = 0.01). The addition of gentamicin did not improve the activity of vancomycin or linezolid for either isolate for the 72-h period. Overall, high-inoculum Staphylococcus aureus had a significant impact on the activities of nafcillin and vancomycin. In contrast, daptomycin was affected minimally and linezolid was not affected by inoculum.
Collapse
Affiliation(s)
- Kerry L LaPlante
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
29
|
Mercier RC, Dietz RM, Mazzola JL, Bayer AS, Yeaman MR. Beneficial influence of platelets on antibiotic efficacy in an in vitro model of Staphylococcus aureus-induced endocarditis. Antimicrob Agents Chemother 2004; 48:2551-7. [PMID: 15215108 PMCID: PMC434186 DOI: 10.1128/aac.48.7.2551-2557.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelets contribute to antimicrobial host defense against infective endocarditis (IE) by releasing platelet microbicidal proteins (PMPs). We investigated the influence of thrombin-stimulated human platelets on the evolution of simulated IE in the presence and absence of vancomycin or nafcillin. Staphylococcus aureus strains differing in intrinsic susceptibility to PMPs or antibiotics were studied: ISP479C (thrombin-induced PMP-1 [tPMP-1] susceptible; nafcillin and vancomycin susceptible), ISP479R (tPMP-1 resistant; nafcillin and vancomycin susceptible), and GISA-NJ (tPMP-1 intermediate-susceptible; vancomycin intermediate-susceptible). Platelets were introduced and thrombin activated within the in vitro IE model 30 min prior to inoculation with S. aureus. At 0 to 24 h postinoculation, bacterial densities in chamber fluid and simulated endocardial vegetations (SEVs) were quantified and compared among groups. Activated platelets alone, or in combination with antibiotics, inhibited the proliferation of ISP479C in chamber fluid or SEVs over the initial 4-h period (P < 0.05 versus controls). Moreover, nafcillin-containing regimens exerted inhibitory effects beyond 4 h against ISP479C in both model phases. By comparison, activated platelets inhibited GISA-NJ proliferation in SEVs but not in chamber fluid. The combination of platelets plus nafcillin or vancomycin significantly inhibited proliferation of the GISA-NJ strain in SEVs compared to the effect of platelets or antibiotics alone (P < 0.05). In contrast, platelets did not significantly alter the antistaphylococcal efficacies of nafcillin or vancomycin against ISP479R. These data support our hypothesis that a beneficial antimicrobial effect may result from the interaction among platelets, PMPs, and anti-infective agents against antibiotic-susceptible or -resistant staphylococci that exhibit a tPMP-1-susceptible or -intermediate-susceptible phenotype.
Collapse
Affiliation(s)
- Renee-Claude Mercier
- College of Pharmacy MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | | | | | |
Collapse
|
30
|
Lee DG, Chun HS, Yim DS, Choi SM, Choi JH, Yoo JH, Shin WS, Kang MW. Efficacies of vancomycin, arbekacin, and gentamicin alone or in combination against methicillin-resistant Staphylococcus aureus in an in vitro infective endocarditis model. Antimicrob Agents Chemother 2004; 47:3768-73. [PMID: 14638480 PMCID: PMC296184 DOI: 10.1128/aac.47.12.3768-3773.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We adopted an in vitro infective endocarditis model (IVIEM) to compare the efficacy of vancomycin (VAN), arbekacin (ABK), and gentamicin (GEN) alone or in combination. Using two strains of clinically isolated methicillin-resistant Staphylococcus aureus, one GEN susceptible (GS171) and one GEN resistant (GR153), fibrin clots were prepared and suspended in the IVIEM. Antibiotics were given as boluses every 6 h (q6h), q12h, or q24h or by continuous infusion with VAN, q12h or q24h with ABK, and q8h or q24h with GEN. For combination treatment, VAN q12h plus ABK q24h and VAN q12h plus GEN q24h were given. Fibrin clots were removed from each model at 0, 8, 24, 32, 48, and 72 h, and the bacterial densities were determined. The number of colonies within the fibrin clot was significantly decreased in all study groups compared with control groups (P<0.001). When VAN and ABK were administered alone, the number of colonies was significantly lower in GS171 than in GR153 by 8 h after administration (P=0.02) and was lowest in GS171 when ABK was administered q12h (P=0.01). At 72 h, ABK or VAN alone produced equivalent bacterial reductions regardless of dosing frequency and GEN resistance. In GR153, VAN plus ABK showed an additive effect till 24 h, although VAN plus GEN showed indifference. Our data suggest that ABK could be used as an alternative to VAN in GEN-resistant staphylococcal endocarditis. An additive effect was seen when VAN and ABK were used together in GEN-resistant strains until 24 h; however, further studies are warranted for the clinical application of this combination.
Collapse
Affiliation(s)
- Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|