1
|
Lee J, Islam T, Cho S, Arumugam N, Gaur VK, Park S. Energy metabolism coordination for the byproduct-free biosynthesis of 1,3-propanediol in Escherichia coli. BIORESOURCE TECHNOLOGY 2025; 421:132147. [PMID: 39923861 DOI: 10.1016/j.biortech.2025.132147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/02/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
The efficient, byproduct-free production of 1,3-propanediol (1,3-PDO), a valuable chemical widely used in various industries, presents a significant challenge in bio-based manufacturing, due to its reduced nature. In this study, Escherichia coli K12 was engineered to achieve high-yield 1,3-PDO production by optimizing glucose metabolism and utilizing glycerol as a feedstock. Glycolytic flux was rerouted to the NADPH-generating pentose phosphate (PP) pathway, linking NADPH regeneration to 1,3-PDO biosynthesis. These modifications enhanced carbon utilization and eliminated byproduct formation. The engineered strain, PK19-D1Q1, achieved a record 1,3-PDO titer of 1.06 mol/L, with glycerol and glucose yields of 0.99 mol/mol and 2.01 mol/mol, respectively, in fed-batch fermentation. Furthermore, the strain's ability to maintain high productivity with crude glycerol underscores its potential for industrial-scale applications using low-cost, sustainable substrates. This study sets a benchmark for scalable, sustainable 1,3-PDO production, showcasing the integration of cofactor balancing and pathway engineering for bio-based chemical manufacturing.
Collapse
Affiliation(s)
- Junhak Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919 Republic of Korea; R&D Center, ACTIVON Co., Ltd., Cheongju 28104 Republic of Korea
| | - Tayyab Islam
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919 Republic of Korea; R&D Center, ACTIVON Co., Ltd., Cheongju 28104 Republic of Korea
| | - Seunghyun Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919 Republic of Korea
| | - Nandakumar Arumugam
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919 Republic of Korea
| | - Vivek Kumar Gaur
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919 Republic of Korea; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919 Republic of Korea.
| |
Collapse
|
2
|
Lima M, Muddana C, Xiao Z, Bandyopadhyay A, Wangikar PP, Pakrasi HB, Tang YJ. The new chassis in the flask: Advances in Vibrio natriegens biotechnology research. Biotechnol Adv 2024; 77:108464. [PMID: 39389280 DOI: 10.1016/j.biotechadv.2024.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Biotechnology has been built on the foundation of a small handful of well characterized and well-engineered organisms. Recent years have seen a breakout performer gain attention as a new entrant into the bioengineering toolbox: Vibrio natriegens. This review covers recent research efforts into making V. natriegens a biotechnology platform, using a large language model (LLM) and knowledge graph to expedite the literature survey process. Scientists have made advancements in research pertaining to the fundamental metabolic characteristics of V. natriegens, development and characterization of synthetic biology tools, systems biology analysis and metabolic modeling, bioproduction and metabolic engineering, and microbial ecology. Each of these subcategories has relevance to the future of V. natriegens for bioengineering applications. In this review, we cover these recent advancements and offer context for the impact they may have on the field, highlighting benefits and drawbacks of using this organism. From examining the recent bioengineering research, it appears that V. natriegens is on the precipice of becoming a platform bacterium for the future of biotechnology.
Collapse
Affiliation(s)
- Matthew Lima
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | | | - Zhengyang Xiao
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Anindita Bandyopadhyay
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Himadri B Pakrasi
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Yinjie J Tang
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
3
|
Li B, Gao W, Pan Y, Yao Y, Liu G. Progress in 1,3-propanediol biosynthesis. Front Bioeng Biotechnol 2024; 12:1507680. [PMID: 39677837 PMCID: PMC11637877 DOI: 10.3389/fbioe.2024.1507680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
1,3-Propanediol (1,3-PDO) is one of the important organic chemical materials and is widely used in polyester synthesis, and it also shows great potential in medicine, cosmetics, resins, and biodegradable plastics. So far, 1,3-PDO mainly comes from chemical synthesis. However, the by-products and the side effects during chemical synthesis of 1,3-PDO bring about serious damage to the environment. In recent years, the biosynthetic pathway of 1,3-PDO has been elucidated in microorganisms. Under the action of glycerol dehydratase (GDHt) and propanediol oxidoreductase (PDOR), glycerol can be catalyzed to form 1,3-PDO through the reduction pathway. Compared to the chemical synthesis, the biosynthesis of 1,3-PDO is environmentally friendly but would face the problem of low production. To improve the yield, the native 1,3-PDO producing strains have been modified by genetic engineering, and the biosynthetic pathway has been reconstructed in the model microorganism, Escherichia coli. In this review, we summarize the research progress of the 1,3-PDO biosynthesis in microorganisms, and hopefully, it will provide reference for the renewable production of 1,3-PDO in industry.
Collapse
Affiliation(s)
- Boran Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenyan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yongpeng Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Lee Y, Kang M, Jang WD, Choi SY, Yang JE, Lee SY. Microbial production of an aromatic homopolyester. Trends Biotechnol 2024; 42:1453-1478. [PMID: 39174388 DOI: 10.1016/j.tibtech.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 08/24/2024]
Abstract
We report the development of a metabolically engineered bacterium for the fermentative production of polyesters containing aromatic side chains, serving as sustainable alternatives to petroleum-based plastics. A metabolic pathway was constructed in an Escherichia coli strain to produce poly[d-phenyllactate(PhLA)], followed by three strategies to enhance polymer production. First, polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were introduced to increase the polymer accumulation. Next, metabolic engineering was performed to redirect the metabolic flux toward PhLA. Furthermore, PHA synthase was engineered based on in silico simulation results to enhance the polymerization of PhLA. The final strain was capable of producing 12.3 g/l of poly(PhLA), marking it the first bio-based process for producing an aromatic homopolyester. Additional heterologous gene introductions led to the high level production of poly(3-hydroxybutyrate-co-11.7 mol% PhLA) copolymer (61.4 g/l). The strategies described here will be useful for the bio-based production of aromatic polyesters from renewable resources.
Collapse
Affiliation(s)
- Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Minju Kang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Woo Dae Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jung Eun Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
5
|
Colorimetric analysis based on solid-phase extraction with sedimentable dispersed particulates: demonstration of concept and application for on-site environmental water analysis. Anal Bioanal Chem 2022; 414:8389-8400. [PMID: 36260127 DOI: 10.1007/s00216-022-04375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/01/2022]
Abstract
A novel simple and functional colorimetric methodology for on-site environmental water analysis was proposed. This method combines coloration of the analyte and extraction of the colored species on dispersed particulates during their sedimentation in the same container. The whole analysis can be performed within 15 min by comprising the addition of 1 mL of sample solution into a 1.5-mL microtube containing the powders of coloring reagents and the sedimentable fine particulates as an adsorbent. The analyte is determined by comparing the sediment color with the standard color by visual inspection or the color information of the photo image. The potential of this methodology was demonstrated through developing colorimetry for Fe2+ with o-phenanthroline, NO2- by azo-dye formation, HCHO by the MBTH method, and PO43- by the 4-aminoantipyrine method based on the enzyme reactions. The material, size, amount of the adsorbent particles, and other conditions were optimized for each analytes. The advantages of the methodology were as follows: high sensitivity, easy controllability of the sensitivity over the wide range by the amount, size, and material of the particulates, lower interference from the colored matrix components due to obtaining the color data from not the aqueous phase but the sedimented particulates, and acceleration of the color development rate by the particulates as seen in NO2- determination as consequence shorten the operation time. A simple device equipped with twin cells was proposed for on-site analysis which contains two successive different coloring operations. The developed methods were successfully applied to the environmental water samples with the good agreement of the results with those by the usual instrumental methods.
Collapse
|
6
|
Glycerol promotes biomass accumulation of Klebsiella pneumoniae by activating dha regulon. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Metabolic Engineering and Regulation of Diol Biosynthesis from Renewable Biomass in Escherichia coli. Biomolecules 2022; 12:biom12050715. [PMID: 35625642 PMCID: PMC9138338 DOI: 10.3390/biom12050715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
As bulk chemicals, diols have wide applications in many fields, such as clothing, biofuels, food, surfactant and cosmetics. The traditional chemical synthesis of diols consumes numerous non-renewable energy resources and leads to environmental pollution. Green biosynthesis has emerged as an alternative method to produce diols. Escherichia coli as an ideal microbial factory has been engineered to biosynthesize diols from carbon sources. Here, we comprehensively summarized the biosynthetic pathways of diols from renewable biomass in E. coli and discussed the metabolic-engineering strategies that could enhance the production of diols, including the optimization of biosynthetic pathways, improvement of cofactor supplementation, and reprogramming of the metabolic network. We then investigated the dynamic regulation by multiple control modules to balance the growth and production, so as to direct carbon sources for diol production. Finally, we proposed the challenges in the diol-biosynthesis process and suggested some potential methods to improve the diol-producing ability of the host.
Collapse
|
8
|
Boecker S, Espinel-Ríos S, Bettenbrock K, Klamt S. Enabling anaerobic growth of Escherichia coli on glycerol in defined minimal medium using acetate as redox sink. Metab Eng 2022; 73:50-57. [DOI: 10.1016/j.ymben.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
|
9
|
Wong N, Jantama K. Engineering Escherichia coli for a high yield of 1,3-propanediol near the theoretical maximum through chromosomal integration and gene deletion. Appl Microbiol Biotechnol 2022; 106:2937-2951. [PMID: 35416488 DOI: 10.1007/s00253-022-11898-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 11/02/2022]
Abstract
Glycerol dehydratase (gdrAB-dhaB123) operon from Klebsiella pneumoniae and NADPH-dependent 1,3-propanediol oxidoreductase (yqhD) from Escherichia coli were stably integrated on the chromosomal DNA of E. coli under the control of the native-host ldhA and pflB constitutive promoters, respectively. The developed E. coli NSK015 (∆ldhA::gdrAB-dhaB123 ∆ackA::FRT ∆pflB::yqhD ∆frdABCD::cat-sacB) produced 1,3-propanediol (1,3-PDO) at the level of 36.8 g/L with a yield of 0.99 mol/mol of glycerol consumed when glucose was used as a co-substrate with glycerol. Co-substrate of glycerol and cassava starch was also utilized for 1,3-PDO production with the concentration and yield of 31.9 g/L and 0.84 mol/mol of glycerol respectively. This represents a work for efficient 1,3-PDO production in which the overexpression of heterologous genes on the E. coli host genome devoid of plasmid expression systems. Plasmids, antibiotics, IPTG, and rich nutrients were omitted during 1,3-PDO production. This may allow a further application of E. coli NSK015 for the efficient 1,3-PDO production in an economically industrial scale. KEY POINTS: • gdrAB-dhaB123 and yqhD were overexpressed in E. coli devoid of a plasmid system • E. coli NSK015 produced a high yield of 1,3-PDO at 99% theoretical maximum • Cassava starch was alternatively used as substrate for economical 1,3-PDO production.
Collapse
Affiliation(s)
- Nonthaporn Wong
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree Sub-District, Suranaree University of Technology, 111 University Avenue, Muang district, Nakhon Ratchasima, 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree Sub-District, Suranaree University of Technology, 111 University Avenue, Muang district, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
10
|
Ju JH, Heo SY, Choi SW, Kim YM, Kim MS, Kim CH, Oh BR. Effective bioconversion of 1,3-propanediol from biodiesel-derived crude glycerol using organic acid resistance-enhanced Lactobacillus reuteri JH83. BIORESOURCE TECHNOLOGY 2021; 337:125361. [PMID: 34320778 DOI: 10.1016/j.biortech.2021.125361] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Organic acids produced during the fermentation of lactic acid bacteria inhibit cellular growth and the production of 1,3-propanediol (1,3-PDO). Lactobacillus reuteri JH83, which has an increase of 18.6% in organic acid resistance, was obtained through electron beam irradiation mutagenesis irrelevant to the problem of genetically modified organisms. The maximum bioconversion of 1,3-PDO in fed-batch fermentation using pure glycerol by L. reuteri JH83 was 93.2 g/L at 72 h, and the productivity was 1.29 g/L·h, which achieved an increase by 34.6%, compared to that of the wild-type strain. In addition, the result of fed-batch fermentation for the production of 1,3-PDO using crude glycerol was not significantly different from that of pure glycerol. Additionally, transcriptome analysis confirmed changes in the expression levels of sucrose phosphorylase, which is a major facilitator superfamily transporter, and muramyl ligase family proteins, which protect lactic acid bacteria from various stressors, such as organic acids.
Collapse
Affiliation(s)
- Jung-Hyun Ju
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Sun-Yeon Heo
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Sang-Wha Choi
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Young-Min Kim
- Department of Food Science & Technology and Functional Food Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Min-Soo Kim
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Chul-Ho Kim
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Baek-Rock Oh
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212, Republic of Korea.
| |
Collapse
|
11
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
12
|
Selvakumari IAE, Jayamuthunagai J, Bharathiraja B. Exploring the potential of biodiesel derived crude glycerol into high value malic acid: Biosynthesis, process optimization and kinetic assessment. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Bilić L, Barić D, Sandala GM, Smith DM, Kovačević B. Glycerol as a Substrate and Inactivator of Coenzyme B 12 -Dependent Diol Dehydratase. Chemistry 2021; 27:7930-7941. [PMID: 33792120 DOI: 10.1002/chem.202100416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 11/09/2022]
Abstract
Diol dehydratase, dependent on coenzyme B12 (B12 -dDDH), displays a peculiar feature of being inactivated by its native substrate glycerol (GOL). Surprisingly, the isofunctional enzyme, B12 -independent glycerol dehydratase (B12 -iGDH), does not undergo suicide inactivation by GOL. Herein we present a series of QM/MM and MD calculations aimed at understanding the mechanisms of substrate-induced suicide inactivation in B12 -dDDH and that of resistance of B12 -iGDH to inactivation. We show that the first step in the enzymatic transformation of GOL, hydrogen abstraction, can occur from both ends of the substrate (either C1 or C3 of GOL). Whereas C1 abstraction in both enzymes leads to product formation, C3 abstraction in B12 -dDDH results in the formation of a low energy radical intermediate, which is effectively trapped within a deep well on the potential energy surface. The long lifetime of this radical intermediate likely enables its side reactions, leading to inactivation. In B12 -iGDH, by comparison, C3 abstraction is an endothermic step; consequently, the resultant radical intermediate is not of low energy, and the reverse process of reforming the reactant is possible.
Collapse
Affiliation(s)
- Luka Bilić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,PULS Group, Institute for Theoretical Physics FAU Erlangen-Nürnberg, Staudtstraße 7, Erlangen, Germany
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Gregory M Sandala
- Department of Chemistry and Biochemistry, Mount Allison University, New Brunswick, E4L 1G8, Sackville, Canada
| | - David Mathew Smith
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Borislav Kovačević
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| |
Collapse
|
14
|
Verma R, Ellis JM, Mitchell-Koch KR. Dynamic Preference for NADP/H Cofactor Binding/Release in E. coli YqhD Oxidoreductase. Molecules 2021; 26:E270. [PMID: 33430436 PMCID: PMC7826944 DOI: 10.3390/molecules26020270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
YqhD, an E. coli alcohol/aldehyde oxidoreductase, is an enzyme able to produce valuable bio-renewable fuels and fine chemicals from a broad range of starting materials. Herein, we report the first computational solution-phase structure-dynamics analysis of YqhD, shedding light on the effect of oxidized and reduced NADP/H cofactor binding on the conformational dynamics of the biocatalyst using molecular dynamics (MD) simulations. The cofactor oxidation states mainly influence the interdomain cleft region conformations of the YqhD monomers, involved in intricate cofactor binding and release. The ensemble of NADPH-bound monomers has a narrower average interdomain space resulting in more hydrogen bonds and rigid cofactor binding. NADP-bound YqhD fluctuates between open and closed conformations, while it was observed that NADPH-bound YqhD had slower opening/closing dynamics of the cofactor-binding cleft. In the light of enzyme kinetics and structural data, simulation findings have led us to postulate that the frequently sampled open conformation of the cofactor binding cleft with NADP leads to the more facile release of NADP while increased closed conformation sampling during NADPH binding enhances cofactor binding affinity and the aldehyde reductase activity of the enzyme.
Collapse
Affiliation(s)
- Rajni Verma
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA
| | - Jonathan M. Ellis
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA;
| | - Katie R. Mitchell-Koch
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA
| |
Collapse
|
15
|
Motwalli O, Uludag M, Mijakovic I, Alazmi M, Bajic VB, Gojobori T, Gao X, Essack M. PATH cre8: A Tool That Facilitates the Searching for Heterologous Biosynthetic Routes. ACS Synth Biol 2020; 9:3217-3227. [PMID: 33198455 DOI: 10.1021/acssynbio.0c00058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Developing computational tools that can facilitate the rational design of cell factories producing desired products at increased yields is challenging, as the tool needs to take into account that the preferred host organism usually has compounds that are consumed by competing reactions that reduce the yield of the desired product. On the other hand, the preferred host organisms may not have the native metabolic reactions needed to produce the compound of interest; thus, the computational tool needs to identify the metabolic reactions that will most efficiently produce the desired product. In this regard, we developed the generic tool PATHcre8 to facilitate an optimized search for heterologous biosynthetic pathway routes. PATHcre8 finds and ranks biosynthesis routes in a large number of organisms, including Cyanobacteria. The tool ranks the pathways based on feature scores that reflect reaction thermodynamics, the potentially toxic products in the pathway (compound toxicity), intermediate products in the pathway consumed by competing reactions (product consumption), and host-specific information such as enzyme copy number. A comparison with several other similar tools shows that PATHcre8 is more efficient in ranking functional pathways. To illustrate the effectiveness of PATHcre8, we further provide case studies focused on isoprene production and the biodegradation of cocaine. PATHcre8 is free for academic and nonprofit users and can be accessed at https://www.cbrc.kaust.edu.sa/pathcre8/.
Collapse
Affiliation(s)
- Olaa Motwalli
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Saudi Electronic University (SEU), College of Computing and Informatics, Madinah 41538-53307, Kingdom of Saudi Arabia
| | - Mahmut Uludag
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ivan Mijakovic
- Chalmers University of Technology, Division of Systems & Synthetic Biology, Department of Biology and Biological Engineering, Kemivägen 10, 41296 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Meshari Alazmi
- Department of Information and Computer Science, College of Computer Science and Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81411, Kingdom of Saudi Arabia
| | - Vladimir B. Bajic
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Sedlar K, Vasylkivska M, Musilova J, Branska B, Provaznik I, Patakova P. Phenotypic and genomic analysis of isopropanol and 1,3-propanediol producer Clostridium diolis DSM 15410. Genomics 2020; 113:1109-1119. [PMID: 33166602 DOI: 10.1016/j.ygeno.2020.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Clostridium diolis DSM 15410 is a type strain of solventogenic clostridium capable of conducting isopropanol-butanol-ethanol fermentation. By studying its growth on different carbohydrates, we verified its ability to utilize glycerol and produce 1,3-propanediol and discovered its ability to produced isopropanol. Complete genome sequencing showed that its genome is a single circular chromosome and belongs to the cluster I (sensu scricto) of the genus Clostridium. By cultivation analysis we highlighted its specific behavior in comparison to two selected closely related strains. Despite the fact that several CRISPR loci were found, 16 putative prophages showed the ability to receive foreign DNA. Thus, the strain has the necessary features for future engineering of its 1,3-propanediol biosynthetic pathway and for the possible industrial utilization in the production of biofuels.
Collapse
Affiliation(s)
- Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno, Czech Republic.
| | - Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Jana Musilova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno, Czech Republic
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno, Czech Republic
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| |
Collapse
|
17
|
Xie M, Lu X, Zong H, Zhuge B. Strengthening the TCA cycle to alleviate metabolic stress due to blocking by-products synthesis pathway in Klebsiella pneumoniae. FEMS Microbiol Lett 2020; 367:5903268. [PMID: 32901814 DOI: 10.1093/femsle/fnaa148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/06/2020] [Indexed: 11/14/2022] Open
Abstract
1,3-Propanediol (1,3-PDO) is an important synthetic monomer for the production of polytrimethylene terephthalate (PTT). Here, we engineered Klebsiella pneumoniae by a multi-strategy to improve 1,3-PDO production and reduce by-products synthesis. First, the 2,3-butanediol (2,3-BDO) synthesis pathway was blocked by deleting the budB gene, resulting in a 74% decrease of 2,3-BDO titer. The synthesis of lactate was decreased by 79% via deleting the ldhA gene, leading to a 10% increase of 1,3-PDO titer. Further, reducing ethanol synthesis by deleting the aldA gene led to a 64% decrease of ethanol titer, and the 1,3-PDO titer and yield on glycerol increased by 12 and 10%, respectively. Strengthening the TCA cycle by overexpressing the mdh gene improved 1,3-PDO synthesis effectively. Under 5-L fed-batch fermentation conditions, compared to wild type strain, the production of 2,3-BDO, lactate and ethanol in the mutant strain decreased by 73, 65 and 50%, respectively. Finally, the production of 1,3-PDO was 73.5 g/L with a molar yield of 0.67 mol/mol glycerol, improved 16% and 20%, respectively. This work provides a combined strategy for improving 1,3-PDO production by strengthening the TCA cycle to relieve metabolic stress by deleting genes of by-products synthesis, which was also beneficial for the extraction and separation of downstream products.
Collapse
Affiliation(s)
- Mengmeng Xie
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Frazão CJR, Trichez D, Serrano-Bataille H, Dagkesamanskaia A, Topham CM, Walther T, François JM. Construction of a synthetic pathway for the production of 1,3-propanediol from glucose. Sci Rep 2019; 9:11576. [PMID: 31399628 PMCID: PMC6689062 DOI: 10.1038/s41598-019-48091-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/25/2019] [Indexed: 11/09/2022] Open
Abstract
In this work, we describe the construction of a synthetic metabolic pathway enabling direct biosynthesis of 1,3-propanediol (PDO) from glucose via the Krebs cycle intermediate malate. This non-natural pathway extends a previously published synthetic pathway for the synthesis of (L)-2,4-dihydroxybutyrate (L-DHB) from malate by three additional reaction steps catalyzed respectively, by a DHB dehydrogenase, a 2-keto-4-hydroxybutyrate (OHB) dehydrogenase and a PDO oxidoreductase. Screening and structure-guided protein engineering provided a (L)-DHB dehydrogenase from the membrane-associated (L)-lactate dehydrogenase of E. coli and OHB decarboxylase variants derived from the branched-chain keto-acid decarboxylase encoded by kdcA from Lactococcus lactis or pyruvate decarboxylase from Zymomonas mobilis. The simultaneous overexpression of the genes encoding these enzymes together with the endogenous ydhD-encoded aldehyde reductase enabled PDO biosynthesis from (L)-DHB. While the simultaneous expression of the six enzymatic activities in a single engineered E. coli strain resulted in a low production of 0.1 mM PDO from 110 mM glucose, a 40-fold increased PDO titer was obtained by co-cultivation of an E. coli strain expressing the malate-DHB pathway with another strain harboring the DHB-to-PDO pathway.
Collapse
Affiliation(s)
- Cláudio J R Frazão
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Débora Trichez
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Hélène Serrano-Bataille
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Adilia Dagkesamanskaia
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | | | - Thomas Walther
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France.,TWB, 3 Rue des Satellites, Canal Biotech Building 2, F-31400, Toulouse, France.,TU Dresden, Institute of Natural Materials Technology, 01062, Dresden, Germany
| | - Jean Marie François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France. .,TWB, 3 Rue des Satellites, Canal Biotech Building 2, F-31400, Toulouse, France.
| |
Collapse
|
19
|
Westbrook AW, Miscevic D, Kilpatrick S, Bruder MR, Moo-Young M, Chou CP. Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnol Adv 2019; 37:538-568. [DOI: 10.1016/j.biotechadv.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
|
20
|
Bilić L, Barić D, Banhatti RD, Smith DM, Kovačević B. Computational Study of Glycerol Binding within the Active Site of Coenzyme B12-Dependent Diol Dehydratase. J Phys Chem B 2019; 123:6178-6187. [DOI: 10.1021/acs.jpcb.9b04071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Luka Bilić
- Division of Physical Chemistry, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Danijela Barić
- Division of Physical Chemistry, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Radha Dilip Banhatti
- Division of Physical Chemistry, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - David M. Smith
- Division of Physical Chemistry, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Borislav Kovačević
- Division of Physical Chemistry, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
21
|
Li Z, Yan L, Zhou J, Wang X, Sun Y, Xiu ZL. Two-step salting-out extraction of 1,3-propanediol, butyric acid and acetic acid from fermentation broths. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Sánchez-Andrea I, Florentino AP, Semerel J, Strepis N, Sousa DZ, Stams AJM. Co-culture of a Novel Fermentative Bacterium, Lucifera butyrica gen. nov. sp. nov., With the Sulfur Reducer Desulfurella amilsii for Enhanced Sulfidogenesis. Front Microbiol 2018; 9:3108. [PMID: 30631314 PMCID: PMC6315149 DOI: 10.3389/fmicb.2018.03108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/30/2018] [Indexed: 11/28/2022] Open
Abstract
Biosulfidogenesis can be used to remediate low pH and high metal content waters such as acid mine drainage and recover the present metals. The selection of a cheap electron donor for the process is important for the economic viability. In this work we isolated a novel versatile acidotolerant fermentative bacterium (strain ALET) that is able to use a great variety of substrates including glycerol. Strain ALET is an obligate anaerobe, and cells are motile, rod-shaped, spore-forming, and stain Gram-positive. Growth occurred in a pH range from 3.5 to 7 (optimum 5.5), and temperature range from 25 to 40°C (optimum 37°C). It grows by fermentation of sugars, organic acids and glycerol. It has the ability to use thiosulfate, iron and DMSO as electron acceptors. Its genome is 4.7 Mb with 5122 protein-coding sequences, and a G+C content of 46.9 mol%. Based on 16S rRNA gene sequence analysis, the closest cultured species is Propionispora hippei (91.4% 16S rRNA gene identity) from the Sporomusaceae family (Selenomonadales order, Negativicutes class, Firmicutes phylum). Based on the distinctive physiological and phylogenetic characteristics of strain ALET, a new genus and species Lucifera butyrica gen. nov., sp. nov., is proposed. The type strain is ALET (=JCM 19373T = DSM 27520T). Strain ALET is an incomplete oxidizer and acetate, among other products, accumulates during glycerol conversion. Strain ALET was used to extend the substrate range for sulfur reduction by constructing co-cultures with the acetate oxidizer and sulfur reducer Desulfurella amilsii. The co-culture was tested with glycerol as substrate in batch and chemostat experiments. Acetate formed by fermentation of glycerol by strain ALET resulted in sulfur reduction by D. amilsii. The co-culture strategy offers good perspectives to use a wide range of cost-efficient substrates, including glycerol, to produce sulfide by specialized sulfur reducers. The recovery of heavy metals from metalliferous streams may become economically feasible by this approach. Note: The locus tag for the genes encoded in Lucifera butyrica is LUCI_∗. To avoid repetition of the prefix along the text, the locus tags are represented by the specific identifier.
Collapse
Affiliation(s)
| | | | - Jeltzlin Semerel
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Nikolaos Strepis
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands.,Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
23
|
|
24
|
Kovačević B, Barić D, Babić D, Bilić L, Hanževački M, Sandala GM, Radom L, Smith DM. Computational Tale of Two Enzymes: Glycerol Dehydration With or Without B12. J Am Chem Soc 2018; 140:8487-8496. [DOI: 10.1021/jacs.8b03109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Borislav Kovačević
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Danijela Barić
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Darko Babić
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Luka Bilić
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Marko Hanževački
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Gregory M. Sandala
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick E4L 1G8, Canada
| | - Leo Radom
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - David M. Smith
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Vivek N, Sindhu R, Madhavan A, Anju AJ, Castro E, Faraco V, Pandey A, Binod P. Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate - Metabolic aspects, challenges and possibilities: An overview. BIORESOURCE TECHNOLOGY 2017; 239:507-517. [PMID: 28550990 DOI: 10.1016/j.biortech.2017.05.056] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/06/2017] [Accepted: 05/10/2017] [Indexed: 05/12/2023]
Abstract
One of the major ecological concerns associated with biodiesel production is the generation of waste/crude glycerol during the trans-esterification process. Purification of this crude glycerol is not economically viable. In this context, the development of an efficient and economically viable strategy would be biotransformation reactions converting the biodiesel derived crude glycerol into value added chemicals. Hence the process ensures the sustainability and waste management in biodiesel industry, paving a path to integrated biorefineries. This review addresses a waste to wealth approach for utilization of crude glycerol in the production of value added chemicals, current trends, challenges, future perspectives, metabolic approaches and the genetic tools developed for the improved synthesis over wild type microorganisms were described.
Collapse
Affiliation(s)
- Narisetty Vivek
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram 695 019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Aravind Madhavan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Alphonsa Jose Anju
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram 695 019, Kerala, India
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, 80126 Naples, Italy
| | - Ashok Pandey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Center of Innovative and Applied Bioprocessing, Sector 81, Mohali 160 071, Punjab, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India.
| |
Collapse
|
26
|
Bagnato G, Iulianelli A, Sanna A, Basile A. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors. MEMBRANES 2017; 7:membranes7020017. [PMID: 28333121 PMCID: PMC5489851 DOI: 10.3390/membranes7020017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/01/2017] [Accepted: 03/17/2017] [Indexed: 12/21/2022]
Abstract
Glycerol represents an emerging renewable bio-derived feedstock, which could be used as a source for producing hydrogen through steam reforming reaction. In this review, the state-of-the-art about glycerol production processes is reviewed, with particular focus on glycerol reforming reactions and on the main catalysts under development. Furthermore, the use of membrane catalytic reactors instead of conventional reactors for steam reforming is discussed. Finally, the review describes the utilization of the Pd-based membrane reactor technology, pointing out the ability of these alternative fuel processors to simultaneously extract high purity hydrogen and enhance the whole performances of the reaction system in terms of glycerol conversion and hydrogen yield.
Collapse
Affiliation(s)
- Giuseppe Bagnato
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Adolfo Iulianelli
- Institute on Membrane Technology of the Italian National Research Council (ITM-CNR), c/o University of Calabria, via P. Bucci Cubo 17/C, 87036 Rende (CS), Italy.
| | - Aimaro Sanna
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Angelo Basile
- Institute on Membrane Technology of the Italian National Research Council (ITM-CNR), c/o University of Calabria, via P. Bucci Cubo 17/C, 87036 Rende (CS), Italy.
| |
Collapse
|
27
|
Huang J, Wu Y, Wu W, Zhang Y, Liu D, Chen Z. Cofactor recycling for co-production of 1,3-propanediol and glutamate by metabolically engineered Corynebacterium glutamicum. Sci Rep 2017; 7:42246. [PMID: 28176878 PMCID: PMC5296756 DOI: 10.1038/srep42246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/05/2017] [Indexed: 01/03/2023] Open
Abstract
Production of 1,3-propanediol (1,3-PDO) from glycerol is a promising route toward glycerol biorefinery. However, the yield of 1,3-PDO is limited due to the requirement of NADH regeneration via glycerol oxidation process, which generates large amounts of undesired byproducts. Glutamate fermentation by Corynebacterium glutamicum is an important oxidation process generating excess NADH. In this study, we proposed a novel strategy to couple the process of 1,3-PDO synthesis with glutamate production for cofactor regeneration. With the optimization of 1,3-PDO synthesis route, C. glutamicum can efficiently convert glycerol into 1,3-PDO with the yield of ~ 1.0 mol/mol glycerol. Co-production of 1,3-PDO and glutamate was also achieved which increased the yield of glutamate by 18% as compared to the control. Since 1,3-PDO and glutamate can be easily separated in downstream process, this study provides a potential green route for coupled production of 1,3-PDO and glutamate to enhance the economic viability of biorefinery process.
Collapse
Affiliation(s)
- Jinhai Huang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yao Wu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenjun Wu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ye Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.,Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
| | - Zhen Chen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.,Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
| |
Collapse
|
28
|
Abstract
Alcohols (CnHn+2OH) are classified into primary, secondary, and tertiary alcohols, which can be branched or unbranched. They can also feature more than one OH-group (two OH-groups = diol; three OH-groups = triol). Presently, except for ethanol and sugar alcohols, they are mainly produced from fossil-based resources, such as petroleum, gas, and coal. Methanol and ethanol have the highest annual production volume accounting for 53 and 91 million tons/year, respectively. Most alcohols are used as fuels (e.g., ethanol), solvents (e.g., butanol), and chemical intermediates.This chapter gives an overview of recent research on the production of short-chain unbranched alcohols (C1-C5), focusing in particular on propanediols (1,2- and 1,3-propanediol), butanols, and butanediols (1,4- and 2,3-butanediol). It also provides a short summary on biobased higher alcohols (>C5) including branched alcohols.
Collapse
|
29
|
Yang M, Yun J, Zhang H, Magocha TA, Zabed H, Xue Y, Fokum E, Sun W, Qi X. Genetically Engineered Strains: Application and Advances for 1,3-Propanediol Production from Glycerol. Food Technol Biotechnol 2017; 56:3-15. [PMID: 29795992 DOI: 10.17113/ftb.56.01.18.5444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1,3-Propanediol (1,3-PD) is one of the most important chemicals widely used as monomers for synthesis of some commercially valuable products, including cosmetics, foods, lubricants and medicines. Although 1,3-PD can be synthesized both chemically and biosynthetically, the latter offers more merits over chemical approach as it is economically viable, environmentally friendly and easy to carry out. The biosynthesis of 1,3-PD can be done by transforming glycerol or other similar substrates using some bacteria, such as Clostridium butyricum and Klebsiella pneumoniae. However, these natural microorganisms pose some bottlenecks like low productivity and metabolite inhibition. To overcome these problems, recent research efforts have been focused more on the development of new strains by modifying the genome through different techniques, such as mutagenesis and genetic engineering. Genetically engineered strains obtained by various strategies cannot only gain higher yield than wild types, but also overcome some of the barriers in production by the latter. This review paper presents an overview on the recent advances in the technological approaches to develop genetically engineered microorganisms for efficient biosynthesis of 1,3-PD.
Collapse
Affiliation(s)
| | | | | | - Tinashe A Magocha
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu, PR China
| | - Hossain Zabed
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu, PR China
| | - Yanbo Xue
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu, PR China
| | - Ernest Fokum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu, PR China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu, PR China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu, PR China
| |
Collapse
|
30
|
Roume H, Arends JBA, Ameril CP, Patil SA, Rabaey K. Enhanced Product Recovery from Glycerol Fermentation into 3-Carbon Compounds in a Bioelectrochemical System Combined with In Situ Extraction. Front Bioeng Biotechnol 2016; 4:73. [PMID: 27725929 PMCID: PMC5035740 DOI: 10.3389/fbioe.2016.00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/06/2016] [Indexed: 11/20/2022] Open
Abstract
Given the large amount of crude glycerol formed as a by-product in the biodiesel industries and the concomitant decrease in its overall market price, there is a need to add extra value to this biorefinery side stream. Upgrading can be achieved by new biotechnologies dealing with recovery and conversion of glycerol present in wastewaters into value-added products, aiming at a zero-waste policy and developing an economically viable process. In microbial bioelectrochemical systems (BESs), the mixed microbial community growing on the cathode can convert glycerol reductively to 1,3-propanediol (1,3-PDO). However, the product yield is rather limited in BESs compared with classic fermentation processes, and the synthesis of side-products, resulting from oxidation of glycerol, such as organic acids, represents a major burden for recovery of 1,3-PDO. Here, we show that the use of an enriched mixed-microbial community of glycerol degraders and in situ extraction of organic acids positively impacts 1,3-PDO yield and allows additional recovery of propionate from glycerol. We report the highest production yield achieved (0.72 mol1,3-PDO mol−1glycerol) in electricity-driven 1,3-PDO biosynthesis from raw glycerol, which is very close to the 1,3-PDO yield reported thus far for a mixed-microbial culture-based glycerol fermentation process. We also present a combined approach for 1,3-PDO production and propionate extraction in a single three chamber reactor system, which leads to recovery of additional 3-carbon compounds in BESs. This opens up further opportunities for an economical upgrading of biodiesel refinery side or waste streams.
Collapse
Affiliation(s)
- Hugo Roume
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University , Gent , Belgium
| | - Jan B A Arends
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University , Gent , Belgium
| | - Camar P Ameril
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University , Gent , Belgium
| | - Sunil A Patil
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University , Gent , Belgium
| | - Korneel Rabaey
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University , Gent , Belgium
| |
Collapse
|
31
|
Vivek N, Pandey A, Binod P. Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. BIORESOURCE TECHNOLOGY 2016; 213:222-230. [PMID: 26920628 DOI: 10.1016/j.biortech.2016.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
The aim of the study was to evaluate a novel onsite enrichment approach to isolate a crude glycerol utilizing facultative anaerobic bacteria. An onsite enrichment in natural conditions resulted an isolate, Lactobacillus brevis N1E9.3.3, that can utilize glycerol and produce 1,3-propanediol with a yield of 0.89g1,3-PDO/gGlycerol and productivity of 0.78g1,3-PDO/l/h at pH-8.5 under anaerobic conditions. Batch fermentation experiments with glycerol-glucose co-fermentation strategy was carried out to evaluate the production of 1,3-propanediol and other byproducts. The effect of other carbon sources as co-substrate was also evaluated. At the optimized condition, 18.6g/l 1,3-propanediol was monitored when biodiesel industry generated crude glycerol and 2.5% glucose were used as the substrate.
Collapse
Affiliation(s)
- Narisetty Vivek
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram 695019, Kerala, India
| | - Ashok Pandey
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Parameswaran Binod
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India.
| |
Collapse
|
32
|
Wischral D, Zhang J, Cheng C, Lin M, De Souza LMG, Pessoa FLP, Pereira N, Yang ST. Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: Process optimization and metabolic engineering. BIORESOURCE TECHNOLOGY 2016; 212:100-110. [PMID: 27085150 DOI: 10.1016/j.biortech.2016.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 05/23/2023]
Abstract
1,3-Propanediol (1,3-PDO) production from crude glycerol, a byproduct from biodiesel manufacturing, by Clostridium beijerinckii DSM 791 was studied with corn steep liquor as an inexpensive nitrogen source replacing yeast extract in the fermentation medium. A stable, long-term 1,3-PDO production from glycerol was demonstrated with cells immobilized in a fibrous bed bioreactor operated in a repeated batch mode, which partially circumvented the 1,3-PDO inhibition problem. The strain was then engineered to overexpress Escherichia coli gldA encoding glycerol dehydrogenase (GDH) and dhaKLM encoding dihydroxyacetone kinase (DHAK), which increased 1,3-PDO productivity by 26.8-37.5% compared to the wild type, because of greatly increased specific growth rate (0.25-0.40h(-1) vs. 0.13-0.20h(-1) for the wild type). The engineered strain gave a high 1,3-PDO titer (26.1g/L), yield (0.55g/g) and productivity (0.99g/L·h) in fed-batch fermentation. Overexpressing GDH and DHAK was thus effective in increasing 1,3-PDO production from glycerol.
Collapse
Affiliation(s)
- Daiana Wischral
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA; School of Chemistry, Department of Biochemical Engineering, Federal University of Rio de Janeiro, Av. Horácio Macedo 2030, Bloco E., Rio de Janeiro, RJ 21949-900, Brazil
| | - Jianzhi Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Chi Cheng
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Meng Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Lucas Monteiro Galotti De Souza
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Fernando L Pellegrini Pessoa
- School of Chemistry, Department of Chemical Engineering, Federal University of Rio de Janeiro, Av. Horácio Macedo 2030, Bloco E., Rio de Janeiro, RJ 21949-900, Brazil
| | - Nei Pereira
- School of Chemistry, Department of Biochemical Engineering, Federal University of Rio de Janeiro, Av. Horácio Macedo 2030, Bloco E., Rio de Janeiro, RJ 21949-900, Brazil
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
33
|
Kuwahara H, Alazmi M, Cui X, Gao X. MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind. Nucleic Acids Res 2016; 44:W217-25. [PMID: 27131375 PMCID: PMC4987905 DOI: 10.1093/nar/gkw342] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
To rationally design a productive heterologous biosynthesis system, it is essential to consider the suitability of foreign reactions for the specific endogenous metabolic infrastructure of a host. We developed a novel web server, called MRE, which, for a given pair of starting and desired compounds in a given chassis organism, ranks biosynthesis routes from the perspective of the integration of new reactions into the endogenous metabolic system. For each promising heterologous biosynthesis pathway, MRE suggests actual enzymes for foreign metabolic reactions and generates information on competing endogenous reactions for the consumption of metabolites. These unique, chassis-centered features distinguish MRE from existing pathway design tools and allow synthetic biologists to evaluate the design of their biosynthesis systems from a different angle. By using biosynthesis of a range of high-value natural products as a case study, we show that MRE is an effective tool to guide the design and optimization of heterologous biosynthesis pathways. The URL of MRE is http://www.cbrc.kaust.edu.sa/mre/.
Collapse
Affiliation(s)
- Hiroyuki Kuwahara
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955, Saudi Arabia
| | - Meshari Alazmi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955, Saudi Arabia
| | - Xuefeng Cui
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
34
|
Kalia VC, Prakash J, Koul S. Biorefinery for Glycerol Rich Biodiesel Industry Waste. Indian J Microbiol 2016; 56:113-25. [PMID: 27570302 DOI: 10.1007/s12088-016-0583-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 11/30/2022] Open
Abstract
The biodiesel industry has the potential to meet the fuel requirements in the future. A few inherent lacunae of this bioprocess are the effluent, which is 10 % of the actual product, and the fact that it is 85 % glycerol along with a few impurities. Biological treatments of wastes have been known as a dependable and economical direction of overseeing them and bring some value added products as well. A novel eco-biotechnological strategy employs metabolically diverse bacteria, which ensures higher reproducibility and economics. In this article, we have opined, which organisms and what bioproducts should be the focus, while exploiting glycerol as feed.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Jyotsana Prakash
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Shikha Koul
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| |
Collapse
|
35
|
Liu JZ, Xu W, Chistoserdov A, Bajpai RK. Glycerol Dehydratases: Biochemical Structures, Catalytic Mechanisms, and Industrial Applications in 1,3-Propanediol Production by Naturally Occurring and Genetically Engineered Bacterial Strains. Appl Biochem Biotechnol 2016; 179:1073-100. [DOI: 10.1007/s12010-016-2051-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
|
36
|
Jiang W, Wang S, Wang Y, Fang B. Key enzymes catalyzing glycerol to 1,3-propanediol. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:57. [PMID: 26966462 PMCID: PMC4785665 DOI: 10.1186/s13068-016-0473-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/24/2016] [Indexed: 05/27/2023]
Abstract
Biodiesel can replace petroleum diesel as it is produced from animal fats and vegetable oils, and it produces about 10 % (w/w) glycerol, which is a promising new industrial microbial carbon, as a major by-product. One of the most potential applications of glycerol is its biotransformation to high value chemicals such as 1,3-propanediol (1,3-PD), dihydroxyacetone (DHA), succinic acid, etc., through microbial fermentation. Glycerol dehydratase, 1,3-propanediol dehydrogenase (1,3-propanediol-oxydoreductase), and glycerol dehydrogenase, which were encoded, respectively, by dhaB, dhaT, and dhaD and with DHA kinase are encompassed by the dha regulon, are the three key enzymes in glycerol bioconversion into 1,3-PD and DHA, and these are discussed in this review article. The summary of the main research direction of these three key enzyme and methods of glycerol bioconversion into 1,3-PD and DHA indicates their potential application in future enzymatic research and industrial production, especially in biodiesel industry.
Collapse
Affiliation(s)
- Wei Jiang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
- />The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 China
| | - Shizhen Wang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
- />The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 China
| | - Yuanpeng Wang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Baishan Fang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
- />The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 China
- />The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005 Fujian China
| |
Collapse
|
37
|
Microbial Factories for the Production of Benzylisoquinoline Alkaloids. Trends Biotechnol 2016; 34:228-241. [DOI: 10.1016/j.tibtech.2015.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/24/2015] [Accepted: 12/10/2015] [Indexed: 12/28/2022]
|
38
|
Sun X, Shen X, Jain R, Lin Y, Wang J, Sun J, Wang J, Yan Y, Yuan Q. Synthesis of chemicals by metabolic engineering of microbes. Chem Soc Rev 2016; 44:3760-85. [PMID: 25940754 DOI: 10.1039/c5cs00159e] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolic engineering is a powerful tool for the sustainable production of chemicals. Over the years, the exploration of microbial, animal and plant metabolism has generated a wealth of valuable genetic information. The prudent application of this knowledge on cellular metabolism and biochemistry has enabled the construction of novel metabolic pathways that do not exist in nature or enhance existing ones. The hand in hand development of computational technology, protein science and genetic manipulation tools has formed the basis of powerful emerging technologies that make the production of green chemicals and fuels a reality. Microbial production of chemicals is more feasible compared to plant and animal systems, due to simpler genetic make-up and amenable growth rates. Here, we summarize the recent progress in the synthesis of biofuels, value added chemicals, pharmaceuticals and nutraceuticals via metabolic engineering of microbes.
Collapse
Affiliation(s)
- Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15#, Beisanhuan East Road, Chaoyang District, Beijing 100029, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Maervoet VET, De Maeseneire SL, Avci FG, Beauprez J, Soetaert WK, De Mey M. High yield 1,3-propanediol production by rational engineering of the 3-hydroxypropionaldehyde bottleneck in Citrobacter werkmanii. Microb Cell Fact 2016; 15:23. [PMID: 26822953 PMCID: PMC4731958 DOI: 10.1186/s12934-016-0421-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/13/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Imbalance in cofactors causing the accumulation of intermediates in biosynthesis pathways is a frequently occurring problem in metabolic engineering when optimizing a production pathway in a microorganism. In our previous study, a single knock-out Citrobacter werkmanii ∆dhaD was constructed for improved 1,3-propanediol (PDO) production. Instead of an enhanced PDO concentration on this strain, the gene knock-out led to the accumulation of the toxic intermediate 3-hydroxypropionaldehyde (3-HPA). The hypothesis was emerged that the accumulation of this toxic intermediate, 3-HPA, is due to a cofactor imbalance, i.e. to the limited supply of reducing equivalents (NADH). Here, this bottleneck is alleviated by rationally engineering cell metabolism to balance the cofactor supply. RESULTS By eliminating non-essential NADH consuming enzymes (such as lactate dehydrogenase coded by ldhA, and ethanol dehydrogenase coded by adhE) or by increasing NADH producing enzymes, the accumulation of 3-HPA is minimized. Combining the above modifications in C. werkmanii ∆dhaD resulted in the strain C. werkmanii ∆dhaD∆ldhA∆adhE::ChlFRT which provided the maximum theoretical yield of 1.00 ± 0.03 mol PDO/mol glycerol when grown on glucose/glycerol (0.33 molar ratio) on flask scale under anaerobic conditions. On bioreactor scale, the yield decreased to 0.73 ± 0.01 mol PDO/mol glycerol although no 3-HPA could be measured, which indicates the existence of a sink of glycerol by a putative glycerol dehydrogenase, channeling glycerol to the central metabolism. CONCLUSIONS In this study, a multiple knock-out was created in Citrobacter species for the first time. As a result, the concentration of the toxic intermediate 3-HPA was reduced to below the detection limit and the maximal theoretical PDO yield on glycerol was reached.
Collapse
Affiliation(s)
- Veerle E T Maervoet
- Department of Biochemical and Microbial Technology, Centre of Expertise-Industrial Biotechnology and Biocatalysis, Ghent University, Coupure links 653, 9000, Ghent, Belgium. .,Department of Applied Bioscience Engineering, Laboratory of Applied Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| | - Sofie L De Maeseneire
- Department of Biochemical and Microbial Technology, Centre of Expertise-Industrial Biotechnology and Biocatalysis, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| | - Fatma G Avci
- Department of Biochemical and Microbial Technology, Centre of Expertise-Industrial Biotechnology and Biocatalysis, Ghent University, Coupure links 653, 9000, Ghent, Belgium. .,Bioengineering Department, Faculty of Engineering, Ege University, 35100, Bornova-Izmir, Turkey.
| | - Joeri Beauprez
- Department of Biochemical and Microbial Technology, Centre of Expertise-Industrial Biotechnology and Biocatalysis, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| | - Wim K Soetaert
- Department of Biochemical and Microbial Technology, Centre of Expertise-Industrial Biotechnology and Biocatalysis, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| | - Marjan De Mey
- Department of Biochemical and Microbial Technology, Centre of Expertise-Industrial Biotechnology and Biocatalysis, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| |
Collapse
|
40
|
Chen Z, Liu D. Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:205. [PMID: 27729943 PMCID: PMC5048440 DOI: 10.1186/s13068-016-0625-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/24/2016] [Indexed: 05/03/2023]
Abstract
As an inevitable by-product of the biofuel industry, glycerol is becoming an attractive feedstock for biorefinery due to its abundance, low price and high degree of reduction. Converting crude glycerol into value-added products is important to increase the economic viability of the biofuel industry. Metabolic engineering of industrial strains to improve its performance and to enlarge the product spectrum of glycerol biotransformation process is highly important toward glycerol biorefinery. This review focuses on recent metabolic engineering efforts as well as challenges involved in the utilization of glycerol as feedstock for the production of fuels and chemicals, especially for the production of diols, organic acids and biofuels.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
| | - Dehua Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
| |
Collapse
|
41
|
Lin J, Zhang Y, Xu D, Xiang G, Jia Z, Fu S, Gong H. Deletion of poxB, pta, and ackA improves 1,3-propanediol production by Klebsiella pneumoniae. Appl Microbiol Biotechnol 2015; 100:2775-84. [DOI: 10.1007/s00253-015-7237-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/29/2015] [Accepted: 12/07/2015] [Indexed: 12/24/2022]
|
42
|
Garlapati VK, Shankar U, Budhiraja A. Bioconversion technologies of crude glycerol to value added industrial products. ACTA ACUST UNITED AC 2015; 9:9-14. [PMID: 28352587 PMCID: PMC5360980 DOI: 10.1016/j.btre.2015.11.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/14/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
Abstract
Crude glycerol that is produced as the by-product from biodiesel, has to be effectively utilized to contribute to the viability of biodiesel. Crude glycerol in large amounts can pose a threat to the environment. Therefore, there is a need to convert this crude glycerol into valued added products using biotechnological processes, which brings new revenue to biodiesel producers. Crude glycerol can serve as a feedstock for biopolymers, poly unsaturated fatty acids, ethanol, hydrogen and n-butanol production and as a raw material for different value added industrial products. Hence, in this review we have presented different bioconversion technologies of glycerol to value added industrial products.
Collapse
|
43
|
Sun J, Alper HS. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. ACTA ACUST UNITED AC 2015; 42:423-36. [DOI: 10.1007/s10295-014-1539-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022]
Abstract
Abstract
A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5–50 g/L), and lab-scale (0–5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.
Collapse
Affiliation(s)
- Jie Sun
- grid.89336.37 0000000419369924 McKetta Department of Chemical Engineering The University of Texas at Austin 200 E Dean Keeton St. Stop C0400 78712 Austin TX USA
| | - Hal S Alper
- grid.89336.37 0000000419369924 McKetta Department of Chemical Engineering The University of Texas at Austin 200 E Dean Keeton St. Stop C0400 78712 Austin TX USA
- grid.89336.37 0000000419369924 Institute for Cellular and Molecular Biology The University of Texas at Austin 2500 Speedway Avenue 78712 Austin TX USA
| |
Collapse
|
44
|
Przystałowska H, Zeyland J, Szymanowska-Powałowska D, Szalata M, Słomski R, Lipiński D. 1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria. Microbiol Res 2015; 171:1-7. [DOI: 10.1016/j.micres.2014.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/09/2014] [Accepted: 12/14/2014] [Indexed: 11/26/2022]
|
45
|
Gungormusler-Yilmaz M, Cicek N, Levin DB, Azbar N. Cell immobilization for microbial production of 1,3-propanediol. Crit Rev Biotechnol 2015; 36:482-94. [PMID: 25600463 DOI: 10.3109/07388551.2014.992386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell and enzyme immobilization are often used for industrial production of high-value products. In recent years, immobilization techniques have been applied to the production of value-added chemicals such as 1,3-Propanediol (1,3-PDO). Biotechnological fermentation is an attractive alternative to current 1,3-PDO production methods, which are primarily thermochemical processes, as it generates high volumetric yields of 1,3-PDO, is a much less energy intensive process, and generates lower amounts of environmental organic pollutants. Although several approaches including: batch, fed-batch, continuous-feed and two-step continuous-feed were tested in suspended systems, it has been well demonstrated that cell immobilization techniques can significantly enhance 1,3-PDO production and allow robust continuous production in smaller bioreactors. This review covers various immobilization methods and their application for 1,3-PDO production.
Collapse
Affiliation(s)
- Mine Gungormusler-Yilmaz
- a Department of Bioengineering, Faculty of Engineering , Ege University , Bornova , Izmir , Turkey and
| | - Nazim Cicek
- b Department of Biosystems Engineering , University of Manitoba , Winnipeg , MB , Canada
| | - David B Levin
- b Department of Biosystems Engineering , University of Manitoba , Winnipeg , MB , Canada
| | - Nuri Azbar
- a Department of Bioengineering, Faculty of Engineering , Ege University , Bornova , Izmir , Turkey and
| |
Collapse
|
46
|
Kurosawa K, Radek A, Plassmeier JK, Sinskey AJ. Improved glycerol utilization by a triacylglycerol-producing Rhodococcus opacus strain for renewable fuels. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:31. [PMID: 25763105 PMCID: PMC4355421 DOI: 10.1186/s13068-015-0209-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/21/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Glycerol generated during renewable fuel production processes is potentially an attractive substrate for the production of value-added materials by fermentation. An engineered strain MITXM-61 of the oleaginous bacterium Rhodococcus opacus produces large amounts of intracellular triacylglycerols (TAGs) for lipid-based biofuels on high concentrations of glucose and xylose. However, on glycerol medium, MITXM-61 does not produce TAGs and grows poorly. The aim of the present work was to construct a TAG-producing R. opacus strain capable of high-cell-density cultivation at high glycerol concentrations. RESULTS An adaptive evolution strategy was applied to improve the conversion of glycerol to TAGs in R. opacus MITXM-61. An evolved strain, MITGM-173, grown on a defined medium with 16 g L(-1) glycerol, produced 2.3 g L(-1) of TAGs, corresponding to 40.4% of the cell dry weight (CDW) and 0.144 g g(-1) of TAG yield per glycerol consumed. MITGM-173 was able to grow on high concentrations (greater than 150 g L(-1)) of glycerol. Cultivated in a medium containing an initial concentration of 20 g L(-1) glycerol, 40 g L(-1) glucose, and 40 g L(-1) xylose, MITGM-173 was capable of simultaneously consuming the mixed substrates and yielding 13.6 g L(-1) of TAGs, representing 51.2% of the CDM. In addition, when 20 g L(-1) glycerol was pulse-loaded into the culture with 40 g L(-1) glucose and 40 g L(-1) xylose at the stationary growth phase, MITGM-173 produced 14.3 g L(-1) of TAGs corresponding to 51.1% of the CDW although residual glycerol in the culture was observed. The addition of 20 g L(-1) glycerol in the glucose/xylose mix resulted in a TAG yield per glycerol consumed of 0.170 g g(-1) on the initial addition and 0.279 g g(-1) on the pulse addition of glycerol. CONCLUSION We have generated a TAG-producing R. opacus MITGM-173 strain that shows significantly improved glycerol utilization in comparison to the parental strain. The present study demonstrates that the evolved R. opacus strain shows significant promise for developing a cost-effective bioprocess to generate advanced renewable fuels from mixed sugar feedstocks supplemented with glycerol.
Collapse
Affiliation(s)
- Kazuhiko Kurosawa
- />Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Andreas Radek
- />Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- />Present address: Institute of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Jens K Plassmeier
- />Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Anthony J Sinskey
- />Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- />Engineering Systems Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
47
|
Jiang Y, Liu W, Zou H, Cheng T, Tian N, Xian M. Microbial production of short chain diols. Microb Cell Fact 2014; 13:165. [PMID: 25491899 PMCID: PMC4269916 DOI: 10.1186/s12934-014-0165-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 11/14/2014] [Indexed: 11/28/2022] Open
Abstract
Short chain diols (propanediols, butanediols, pentanediols) have been widely used in bulk and fine chemical industries as fuels, solvents, polymer monomers and pharmaceutical precursors. The chemical production of short chain diols from fossil resources has been developed and optimized for decades. Consideration of the exhausting fossil resources and the increasing environment issues, the bio-based process to produce short chain diols is attracting interests. Currently, a variety of biotechnologies have been developed for the microbial production of the short chain diols from renewable feed-stocks. In order to efficiently produce bio-diols, the techniques like metabolically engineering the production strains, optimization of the fermentation processes, and integration of a reasonable downstream recovery processes have been thoroughly investigated. In this review, we summarized the recent development in the whole process of bio-diols production including substrate, microorganism, metabolic pathway, fermentation process and downstream process.
Collapse
Affiliation(s)
- Yudong Jiang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Wei Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| | - Huibin Zou
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| | - Tao Cheng
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| | - Ning Tian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| |
Collapse
|
48
|
Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab Eng 2014; 25:140-58. [DOI: 10.1016/j.ymben.2014.07.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 11/17/2022]
|
49
|
Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng 2014; 25:227-37. [PMID: 25108218 DOI: 10.1016/j.ymben.2014.07.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/30/2014] [Accepted: 07/30/2014] [Indexed: 01/15/2023]
Abstract
Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90-99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2-C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production.
Collapse
|
50
|
Liu Z, Xu C, Zhang J, Chen Y, Liu X, Wu L, Zhang Z, Meng X, Liu H, Jiang Z, Wang T. Functionally active rat S100A4 from a polymerase chain reaction-synthesized gene expressed in soluble form in Escherichia coli.. Oncol Lett 2014; 7:1179-1184. [PMID: 24944689 PMCID: PMC3961442 DOI: 10.3892/ol.2014.1870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 12/11/2013] [Indexed: 11/13/2022] Open
Abstract
S100A4 protein is associated with Ca2+-dependent regulation of intracellular activities and is significant in the invasion, growth and metastasis of cancer. In order to express rat S100A4 functionally and identify its biological activity following purification, an S100A4 gene fragment was optimized and fully synthesized via overlapping polymerase chain reaction. The gene was inserted into the prokaryotic expression vector, pBV220, with phage λ PRPL promoters following confirmation by DNA sequencing. The pBV220-S100A4 plasmid was constructed and transformed into Escherichia coli DH5α. Following temperature induction, rat S100A4 was overexpressed and the protein was observed to be located in the supernatant of the lysates, which was ~30–40% of the total protein within the host. The protein was isolated and purified by metal-chelate affinity chromatography. High purity protein (>98% purity) was obtained and in vitro western blot analysis identified that the recombinant S100A4 was able to bind to the antibody against wild-type S100A4. The bioactivity of the recombinant protein was detected via Transwell migration and invasion assays. The polyclonal antibody of rat S100A4 protein was prepared for rabbit immunization and exhibited similar efficacies when compared with commercial S100A4. Therefore, rat S100A4 was functionally expressed in E. coli; thus, the production of active recombinant S100A4 protein in E. coli may further aid with the investigation and application of S100A4.
Collapse
Affiliation(s)
- Ziquan Liu
- Institute of Health and Environmental Medicine, Heping, Tianjin 300050, P.R. China ; Department of Physiology and Pathophysiology, Logistics College of Chinese People's Armed Police Force, Hedong, Tianjin 300162, P.R. China
| | - Chuanxiang Xu
- Institute of Health and Environmental Medicine, Heping, Tianjin 300050, P.R. China
| | - Jianwei Zhang
- Institute of Health and Environmental Medicine, Heping, Tianjin 300050, P.R. China ; Tianjin University of Sport, Nankai, Tianjin 300381, P.R. China
| | - Yunyun Chen
- Institute of Health and Environmental Medicine, Heping, Tianjin 300050, P.R. China ; Tianjin University of Sport, Nankai, Tianjin 300381, P.R. China
| | - Xiaohua Liu
- Institute of Health and Environmental Medicine, Heping, Tianjin 300050, P.R. China
| | - Lei Wu
- Institute of Health and Environmental Medicine, Heping, Tianjin 300050, P.R. China
| | - Zhiqing Zhang
- Institute of Health and Environmental Medicine, Heping, Tianjin 300050, P.R. China
| | - Xiangyan Meng
- Institute of Health and Environmental Medicine, Heping, Tianjin 300050, P.R. China ; Department of Physiology and Pathophysiology, Logistics College of Chinese People's Armed Police Force, Hedong, Tianjin 300162, P.R. China
| | - Hongtao Liu
- Institute of Health and Environmental Medicine, Heping, Tianjin 300050, P.R. China
| | - Zifeng Jiang
- Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing 100101, P.R. China
| | - Tianhui Wang
- Institute of Health and Environmental Medicine, Heping, Tianjin 300050, P.R. China
| |
Collapse
|