1
|
Flannery DD, Ramachandran V, Schrag SJ. Neonatal Early-Onset Sepsis: Epidemiology, Microbiology, and Controversies in Practice. Clin Perinatol 2025; 52:15-31. [PMID: 39892950 DOI: 10.1016/j.clp.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Early-onset sepsis (EOS) remains a substantial contributor to neonatal morbidity and mortality. Continued epidemiologic surveillance of incidence, risk factors, and microbiology is paramount to developing new prevention strategies and optimizing antibiotic administration. Understanding the risks and benefits of maternal antibiotic exposure and neonatal risk assessment can inform clinical management. Maternal vaccination during pregnancy is a promising avenue for EOS prevention, particularly against group B Streptococcus. When EOS is suspected, ampicillin and gentamicin are the appropriate routine empiric regimen in most cases. Finally, a deeper understanding of the existing disparities in EOS can shed light on how to provide more equitable care.
Collapse
Affiliation(s)
- Dustin D Flannery
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, 800 Spruce Street, Philadelphia, PA 19107, USA; Division of Neonatology, Children's Hospital of Philadelphia, 800 Spruce Street, Philadelphia, PA 19107, USA.
| | - Veena Ramachandran
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329, USA
| | - Stephanie J Schrag
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329, USA
| |
Collapse
|
2
|
Drzewiecka D, Levina EA, Shashkov AS, Kalinchuk NA, Knirel YA. Structural and Serological Characterization of Yet Another New O Antigen, O86, in Proteus mirabilis Clinical Strains. Int J Mol Sci 2024; 25:13642. [PMID: 39769403 PMCID: PMC11728032 DOI: 10.3390/ijms252413642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Bacteria from the genus Proteus are facultative human pathogens, primarily attacking the urinary tract and wounds. A total of 85 O serogroups have been identified so far among these bacilli. P. mirabilis Bprz 86 was isolated from the fistula of a patient in Łódź, Poland. Enzyme-Linked Immunosorbent Assay (ELISA) and Western blotting studies involving the P. mirabilis Bprz 86 lipopolysaccharide (LPS) and the strain-specific rabbit antiserum indicated that the strain, which does not belong to any of the O1-O85 serogroups, shares a common epitope with Proteus O17 antigens and is identical to another clinical P. mirabilis strain, Sm 120, isolated from the urine of a patient in the area. The O-specific polysaccharide (O antigen) was obtained from P. mirabilis Bprz 86 LPS through mild acid degradation, and the six-constituent structure of its repeating unit was determined using chemical analyses and 1D and 2D 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopy. It includes (R)-3-hydroxybutanoyl, which, along with fucosamine and glucose residues, forms a fragment also present in the O17 antigens. Based on the obtained serological and chemical data, the two studied P. mirabilis isolates were proposed as candidates for a new successive O serogroup in the genus Proteus, O86.
Collapse
Affiliation(s)
- Dominika Drzewiecka
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Evgeniya A. Levina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.A.L.); (A.S.S.); (N.A.K.); (Y.A.K.)
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexander S. Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.A.L.); (A.S.S.); (N.A.K.); (Y.A.K.)
| | - Nadezhda A. Kalinchuk
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.A.L.); (A.S.S.); (N.A.K.); (Y.A.K.)
| | - Yuriy A. Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.A.L.); (A.S.S.); (N.A.K.); (Y.A.K.)
| |
Collapse
|
3
|
Chorro L, Ciolino T, Torres CL, Illenberger A, Aglione J, Corts P, Lypowy J, Ponce C, La Porte A, Burt D, Volberg GL, Ramaiah L, McGovern K, Hu J, Anderson AS, Silmon de Monerri NC, Kanevsky I, Donald RGK. A cynomolgus monkey E. coli urinary tract infection model confirms efficacy of new FimH vaccine candidates. Infect Immun 2024; 92:e0016924. [PMID: 39297649 PMCID: PMC11475676 DOI: 10.1128/iai.00169-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 10/16/2024] Open
Abstract
The increase in urinary tract infections (UTI) caused by antibiotic-resistant Escherichia coli requires the development of new therapeutic agents and prophylactic vaccines. To evaluate the efficacy of new lead candidates, we implemented a cynomolgus macaque UTI challenge model that mimics human uncomplicated cystitis in response to transurethral challenge with a multidrug-resistant (MDR) E. coli serotype O25b ST131 isolate. E. coli fimbrial adhesin FimH and O-antigens are separately under clinical evaluation by others as vaccine candidates to prevent UTI and invasive urosepsis disease, respectively. Accordingly, we assessed the protective efficacy of three 50-µg intramuscular doses of a novel recombinant FimH antigen adjuvanted with liposomal QS21/MPLA compared with saline placebo in groups of nine animals. A third group was vaccinated with this FimH formulation in combination with 1 µg each of a four-valent mixture of serotype O1a, O2, O6, and O25b O-antigen CRM197 lattice glycoconjugates. Both vaccines elicited high levels of serum FimH IgG and adhesin blocking antibodies at the time of bacterial challenge and, for the combination group, O-antigen-specific antibodies. Following bacterial challenge, both vaccinated groups showed >200- and >700-fold reduction in bacteriuria at day 2 and day 7 post-infection compared with placebo, respectively. In parallel, both vaccines significantly reduced levels of inflammatory biomarkers IL-8 and myeloperoxidase in the urine at day 2 post-infection relative to placebo. Results provide preclinical proof-of-concept for the prevention of an MDR UTI infection by these new vaccine formulations.
Collapse
Affiliation(s)
- Laurent Chorro
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Tara Ciolino
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | | | | | - JohnPaul Aglione
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Paula Corts
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | | | | | | | - Deborah Burt
- Pfizer Drug Safety Research and Development, Groton, Connecticut, USA
| | | | - Lila Ramaiah
- Pfizer Drug Safety Research and Development, Pearl River, New York, USA
| | - Kathryn McGovern
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Jianfang Hu
- Pfizer Research Biostatistics, Collegeville, Pennsylvania, USA
| | | | | | - Isis Kanevsky
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | | |
Collapse
|
4
|
Chorro L, Ndreu D, Patel A, Kodali S, Li Z, Keeney D, Dutta K, Sasmal A, Illenberger A, Torres CL, Pan R, Silmon de Monerri NC, Chu L, Simon R, Anderson AS, Donald RGK. Preclinical validation of an Escherichia coli O-antigen glycoconjugate for the prevention of serotype O1 invasive disease. Microbiol Spectr 2024; 12:e0421323. [PMID: 38700324 PMCID: PMC11237799 DOI: 10.1128/spectrum.04213-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
A US collection of invasive Escherichia coli serotype O1 bloodstream infection (BSI) isolates were assessed for genotypic and phenotypic diversity as the basis for designing a broadly protective O-antigen vaccine. Eighty percent of the BSI isolate serotype O1 strains were genotypically ST95 O1:K1:H7. The carbohydrate repeat unit structure of the O1a subtype was conserved in the three strains tested representing core genome multi-locus sequence types (MLST) sequence types ST95, ST38, and ST59. A long-chain O1a CRM197 lattice glycoconjugate antigen was generated using oxidized polysaccharide and reductive amination chemistry. Two ST95 strains were investigated for use in opsonophagocytic assays (OPA) with immune sera from vaccinated animals and in murine lethal challenge models. Both strains were susceptible to OPA killing with O1a glycoconjugate post-immune sera. One of these, a neonatal sepsis strain, was found to be highly lethal in the murine challenge model for which virulence was shown to be dependent on the presence of the K1 capsule. Mice immunized with the O1a glycoconjugate were protected from challenges with this strain or a second, genotypically related, and similarly virulent neonatal isolate. This long-chain O1a CRM197 lattice glycoconjugate shows promise as a component of a multi-valent vaccine to prevent invasive E. coli infections. IMPORTANCE The Escherichia coli serotype O1 O-antigen serogroup is a common cause of invasive bloodstream infections (BSI) in populations at risk such as newborns and the elderly. Sequencing of US BSI isolates and structural analysis of O polysaccharide antigens purified from strains that are representative of genotypic sub-groups confirmed the relevance of the O1a subtype as a vaccine antigen. O polysaccharide was purified from a strain engineered to produce long-chain O1a O-antigen and was chemically conjugated to CRM197 carrier protein. The resulting glycoconjugate elicited functional antibodies and was protective in mice against lethal challenges with virulent K1-encapsulated O1a isolates.
Collapse
Affiliation(s)
- Laurent Chorro
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Duston Ndreu
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Axay Patel
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Srinivas Kodali
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Zhenghui Li
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - David Keeney
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Kaushik Dutta
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Aniruddha Sasmal
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | | | - C. Lynn Torres
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Rosalind Pan
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | | | - Ling Chu
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Raphael Simon
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | | | | |
Collapse
|
5
|
Xing Y, Clark JR, Chang JD, Zulk JJ, Chirman DM, Piedra FA, Vaughan EE, Hernandez Santos HJ, Patras KA, Maresso AW. Progress toward a vaccine for extraintestinal pathogenic E. coli (ExPEC) II: efficacy of a toxin-autotransporter dual antigen approach. Infect Immun 2024; 92:e0044023. [PMID: 38591882 PMCID: PMC11075464 DOI: 10.1128/iai.00440-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a leading cause of worldwide morbidity and mortality, the top cause of antimicrobial-resistant (AMR) infections, and the most frequent cause of life-threatening sepsis and urinary tract infections (UTI) in adults. The development of an effective and universal vaccine is complicated by this pathogen's pan-genome, its ability to mix and match virulence factors and AMR genes via horizontal gene transfer, an inability to decipher commensal from pathogens, and its intimate association and co-evolution with mammals. Using a pan virulome analysis of >20,000 sequenced E. coli strains, we identified the secreted cytolysin α-hemolysin (HlyA) as a high priority target for vaccine exploration studies. We demonstrate that a catalytically inactive pure form of HlyA, expressed in an autologous host using its own secretion system, is highly immunogenic in a murine host, protects against several forms of ExPEC infection (including lethal bacteremia), and significantly lowers bacterial burdens in multiple organ systems. Interestingly, the combination of a previously reported autotransporter (SinH) with HlyA was notably effective, inducing near complete protection against lethal challenge, including commonly used infection strains ST73 (CFT073) and ST95 (UTI89), as well as a mixture of 10 of the most highly virulent sequence types and strains from our clinical collection. Both HlyA and HlyA-SinH combinations also afforded some protection against UTI89 colonization in a murine UTI model. These findings suggest recombinant, inactive hemolysin and/or its combination with SinH warrant investigation in the development of an E. coli vaccine against invasive disease.
Collapse
Affiliation(s)
- Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - James D. Chang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob J. Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Dylan M. Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Felipe-Andres Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ellen E. Vaughan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Haroldo J. Hernandez Santos
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Qiu L, Chirman D, Clark JR, Xing Y, Hernandez Santos H, Vaughan EE, Maresso AW. Vaccines against extraintestinal pathogenic Escherichia coli (ExPEC): progress and challenges. Gut Microbes 2024; 16:2359691. [PMID: 38825856 PMCID: PMC11152113 DOI: 10.1080/19490976.2024.2359691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
The emergence of antimicrobial resistance (AMR) is a principal global health crisis projected to cause 10 million deaths annually worldwide by 2050. While the Gram-negative bacteria Escherichia coli is commonly found as a commensal microbe in the human gut, some strains are dangerously pathogenic, contributing to the highest AMR-associated mortality. Strains of E. coli that can translocate from the gastrointestinal tract to distal sites, called extraintestinal E. coli (ExPEC), are particularly problematic and predominantly afflict women, the elderly, and immunocompromised populations. Despite nearly 40 years of clinical trials, there is still no vaccine against ExPEC. One reason for this is the remarkable diversity in the ExPEC pangenome across pathotypes, clades, and strains, with hundreds of genes associated with pathogenesis including toxins, adhesins, and nutrient acquisition systems. Further, ExPEC is intimately associated with human mucosal surfaces and has evolved creative strategies to avoid the immune system. This review summarizes previous and ongoing preclinical and clinical ExPEC vaccine research efforts to help identify key gaps in knowledge and remaining challenges.
Collapse
Affiliation(s)
- Ling Qiu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Dylan Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Haroldo Hernandez Santos
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Ellen E. Vaughan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Flores C, Ling J, Loh A, Maset RG, Aw A, White IJ, Fernando R, Rohn JL. A human urothelial microtissue model reveals shared colonization and survival strategies between uropathogens and commensals. SCIENCE ADVANCES 2023; 9:eadi9834. [PMID: 37939183 PMCID: PMC10631729 DOI: 10.1126/sciadv.adi9834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Urinary tract infection is among the most common infections worldwide, typically studied in animals and cell lines with limited uropathogenic strains. Here, we assessed diverse bacterial species in a human urothelial microtissue model exhibiting full stratification, differentiation, innate epithelial responses, and urine tolerance. Several uropathogens invaded intracellularly, but also commensal Escherichia coli, suggesting that invasion is a shared survival strategy, not solely a virulence hallmark. The E. coli adhesin FimH was required for intracellular bacterial community formation, but not for invasion. Other shared lifestyles included filamentation (Gram-negatives), chaining (Gram-positives), and hijacking of exfoliating cells, while biofilm-like aggregates were formed mainly with Pseudomonas and Proteus. Urothelial cells expelled invasive bacteria in Rab-/LC3-decorated structures, while highly cytotoxic/invasive uropathogens, but not commensals, disrupted host barrier function and strongly induced exfoliation and cytokine production. Overall, this work highlights diverse species-/strain-specific infection strategies and corresponding host responses in a human urothelial microenvironment, providing insights at the microtissue, cell, and molecular level.
Collapse
Affiliation(s)
- Carlos Flores
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Jefferson Ling
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Amanda Loh
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Ramón G. Maset
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Angeline Aw
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK
| | - Raymond Fernando
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
- Royal Free London NHS Foundation Trust & Anthony Nolan Laboratories, NW3 2QG London, UK
| | - Jennifer L. Rohn
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| |
Collapse
|
8
|
Hamilton WL, Coscione S, Maes M, Warne B, Pike LJ, Khokhar FA, Blane B, Brown NM, Gouliouris T, Dougan G, Török ME, Baker S. The clinical, genomic, and microbiological profile of invasive multi-drug resistant Escherichia coli in a major teaching hospital in the United Kingdom. Microb Genom 2023; 9:001122. [PMID: 37902454 PMCID: PMC10634454 DOI: 10.1099/mgen.0.001122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
Escherichia coli is a ubiquitous component of the human gut microbiome, but is also a common pathogen, causing around 40, 000 bloodstream infections (BSI) in the United Kingdom (UK) annually. The number of E. coli BSI has increased over the last decade in the UK, and emerging antimicrobial resistance (AMR) profiles threaten treatment options. Here, we combined clinical, epidemiological, and whole genome sequencing data with high content imaging to characterise over 300 E. coli isolates associated with BSI in a large teaching hospital in the East of England. Overall, only a limited number of sequence types (ST) were responsible for the majority of organisms causing invasive disease. The most abundant (20 % of all isolates) was ST131, of which around 90 % comprised the pandemic O25b:H4 group. ST131-O25b:H4 isolates were frequently multi-drug resistant (MDR), with a high prevalence of extended spectrum β-lactamases (ESBL) and fluoroquinolone resistance. There was no association between AMR phenotypes and the source of E. coli bacteraemia or whether the infection was healthcare-associated. Several clusters of ST131 were genetically similar, potentially suggesting a shared transmission network. However, there was no clear epidemiological associations between these cases, and they included organisms from both healthcare-associated and non-healthcare-associated origins. The majority of ST131 isolates exhibited strong binding with an anti-O25b antibody, raising the possibility of developing rapid diagnostics targeting this pathogen. In summary, our data suggest that a restricted set of MDR E. coli populations can be maintained and spread across both community and healthcare settings in this location, contributing disproportionately to invasive disease and AMR.
Collapse
Affiliation(s)
- William L. Hamilton
- University of Cambridge, Department of Medicine, Cambridge Biomedical Campus, Hills Road, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1RQ, UK
| | - Suny Coscione
- University of Cambridge, Department of Medicine, Cambridge Biomedical Campus, Hills Road, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Mailis Maes
- University of Cambridge, Department of Medicine, Cambridge Biomedical Campus, Hills Road, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1RQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Ben Warne
- University of Cambridge, Department of Medicine, Cambridge Biomedical Campus, Hills Road, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Lindsay J. Pike
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1RQ, UK
| | - Fahad A. Khokhar
- University of Cambridge, Department of Medicine, Cambridge Biomedical Campus, Hills Road, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - Beth Blane
- University of Cambridge, Department of Medicine, Cambridge Biomedical Campus, Hills Road, UK
| | - Nicholas M. Brown
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
- Clinical Microbiology and Public Health Laboratory, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Theodore Gouliouris
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
- Clinical Microbiology and Public Health Laboratory, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Gordon Dougan
- University of Cambridge, Department of Medicine, Cambridge Biomedical Campus, Hills Road, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - M. Estée Török
- University of Cambridge, Department of Medicine, Cambridge Biomedical Campus, Hills Road, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Stephen Baker
- University of Cambridge, Department of Medicine, Cambridge Biomedical Campus, Hills Road, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| |
Collapse
|
9
|
Cross AS. Hit 'em Where It Hurts: Gram-Negative Bacterial Lipopolysaccharide as a Vaccine Target. Microbiol Mol Biol Rev 2023; 87:e0004522. [PMID: 37432116 PMCID: PMC10521362 DOI: 10.1128/mmbr.00045-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
Infections with antimicrobial-resistant (AMR) bacteria pose an increasing threat to the ability to perform surgical procedures, organ transplantation, and treat cancer among many other medical conditions. There are few new antimicrobials in the development pipeline. Vaccines against AMR Gram-negative bacteria may reduce the use of antimicrobials and prevent bacterial transmission. This review traces the origins of lipopolysaccharide (LPS)-based vaccines against Gram-negative bacteria, the role of O polysaccharides and LPS core regions as potential vaccine targets, the development of new vaccine technologies, and their application to vaccines in current development.
Collapse
Affiliation(s)
- Alan S. Cross
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Mba IE, Sharndama HC, Anyaegbunam ZKG, Anekpo CC, Amadi BC, Morumda D, Doowuese Y, Ihezuo UJ, Chukwukelu JU, Okeke OP. Vaccine development for bacterial pathogens: Advances, challenges and prospects. Trop Med Int Health 2023; 28:275-299. [PMID: 36861882 DOI: 10.1111/tmi.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The advent and use of antimicrobials have played a key role in treating potentially life-threatening infectious diseases, improving health, and saving the lives of millions of people worldwide. However, the emergence of multidrug resistant (MDR) pathogens has been a significant health challenge that has compromised the ability to prevent and treat a wide range of infectious diseases that were once treatable. Vaccines offer potential as a promising alternative to fight against antimicrobial resistance (AMR) infectious diseases. Vaccine technologies include reverse vaccinology, structural biology methods, nucleic acid (DNA and mRNA) vaccines, generalised modules for membrane antigens, bioconjugates/glycoconjugates, nanomaterials and several other emerging technological advances that are offering a potential breakthrough in the development of efficient vaccines against pathogens. This review covers the opportunities and advancements in vaccine discovery and development targeting bacterial pathogens. We reflect on the impact of the already-developed vaccines targeting bacterial pathogens and the potential of those currently under different stages of preclinical and clinical trials. More importantly, we critically and comprehensively analyse the challenges while highlighting the key indices for future vaccine prospects. Finally, the issues and concerns of AMR for low-income countries (sub-Saharan Africa) and the challenges with vaccine integration, discovery and development in this region are critically evaluated.
Collapse
Affiliation(s)
- Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | - Zikora Kizito Glory Anyaegbunam
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
| | - Chijioke Chinedu Anekpo
- Department of Ear Nose and Throat, College of Medicine, Enugu State University of Science and Technology, Enugu, Nigeria
| | - Ben Chibuzo Amadi
- Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Nigeria
| | - Daji Morumda
- Department of Microbiology, Federal University Wukari, Wukari, Taraba, Nigeria
| | - Yandev Doowuese
- Department of Microbiology, Federal University of Health Sciences, Otukpo, Nigeria
| | - Uchechi Justina Ihezuo
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
| | | | | |
Collapse
|
11
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
12
|
Xing Y, Clark JR, Chang JD, Chirman DM, Green S, Zulk JJ, Jelinski J, Patras KA, Maresso AW. Broad protective vaccination against systemic Escherichia coli with autotransporter antigens. PLoS Pathog 2023; 19:e1011082. [PMID: 36800400 PMCID: PMC9937491 DOI: 10.1371/journal.ppat.1011082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/26/2022] [Indexed: 02/18/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of adult life-threatening sepsis and urinary tract infections (UTI). The emergence and spread of multidrug-resistant (MDR) ExPEC strains result in a considerable amount of treatment failure and hospitalization costs, and contribute to the spread of drug resistance amongst the human microbiome. Thus, an effective vaccine against ExPEC would reduce morbidity and mortality and possibly decrease carriage in healthy or diseased populations. A comparative genomic analysis demonstrated a gene encoding an invasin-like protein, termed sinH, annotated as an autotransporter protein, shows high prevalence in various invasive ExPEC phylogroups, especially those associated with systemic bacteremia and UTI. Here, we evaluated the protective efficacy and immunogenicity of a recombinant SinH-based vaccine consisting of either domain-3 or domains-1,2, and 3 of the putative extracellular region of surface-localized SinH. Immunization of a murine host with SinH-based antigens elicited significant protection against various strains of the pandemic ExPEC sequence type 131 (ST131) as well as multiple sequence types in two distinct models of infection (colonization and bacteremia). SinH immunization also provided significant protection against ExPEC colonization in the bladder in an acute UTI model. Immunized cohorts produced significantly higher levels of vaccine-specific serum IgG and urinary IgG and IgA, findings consistent with mucosal protection. Collectively, these results demonstrate that autotransporter antigens such as SinH may constitute promising ExPEC phylogroup-specific and sequence-type effective vaccine targets that reduce E. coli colonization and virulence.
Collapse
Affiliation(s)
- Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - James D. Chang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dylan M. Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sabrina Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jacob J. Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joseph Jelinski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
13
|
Sorieul C, Dolce M, Romano MR, Codée J, Adamo R. Glycoconjugate vaccines against antimicrobial resistant pathogens. Expert Rev Vaccines 2023; 22:1055-1078. [PMID: 37902243 DOI: 10.1080/14760584.2023.2274955] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is responsible for the death of millions worldwide and stands as a major threat to our healthcare systems, which are heavily reliant on antibiotics to fight bacterial infections. The development of vaccines against the main pathogens involved is urgently required as prevention remains essential against the rise of AMR. AREAS COVERED A systematic research review was conducted on MEDLINE database focusing on the six AMR pathogens defined as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli), which are considered critical or high priority pathogens by the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC). The analysis was intersecated with the terms carbohydrate, glycoconjugate, bioconjugate, glyconanoparticle, and multiple presenting antigen system vaccines. EXPERT OPINION Glycoconjugate vaccines have been successful in preventing meningitis and pneumoniae, and there are high expectations that they will play a key role in fighting AMR. We herein discuss the recent technological, preclinical, and clinical advances, as well as the challenges associated with the development of carbohydrate-based vaccines against leading AMR bacteria, with focus on the ESKAPE pathogens. The need of innovative clinical and regulatory approaches to tackle these targets is also highlighted.
Collapse
Affiliation(s)
- Charlotte Sorieul
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marta Dolce
- GSK, Via Fiorentina 1, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Jeroen Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
14
|
Naini A, Bartetzko MP, Sanapala SR, Broecker F, Wirtz V, Lisboa MP, Parameswarappa SG, Knopp D, Przygodda J, Hakelberg M, Pan R, Patel A, Chorro L, Illenberger A, Ponce C, Kodali S, Lypowy J, Anderson AS, Donald RGK, von Bonin A, Pereira CL. Semisynthetic Glycoconjugate Vaccine Candidates against Escherichia coli O25B Induce Functional IgG Antibodies in Mice. JACS AU 2022; 2:2135-2151. [PMID: 36186572 PMCID: PMC9516715 DOI: 10.1021/jacsau.2c00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a major health concern due to emerging antibiotic resistance. Along with O1A, O2, and O6A, E. coli O25B is a major serotype within the ExPEC group, which expresses a unique O-antigen. Clinical studies with a glycoconjugate vaccine of the above-mentioned O-types revealed O25B as the least immunogenic component, inducing relatively weak IgG titers. To evaluate the immunological properties of semisynthetic glycoconjugate vaccine candidates against E. coli O25B, we here report the chemical synthesis of an initial set of five O25B glycan antigens differing in length, from one to three repeat units, and frameshifts of the repeat unit. The oligosaccharide antigens were conjugated to the carrier protein CRM197. The resulting semisynthetic glycoconjugates induced functional IgG antibodies in mice with opsonophagocytic activity against E. coli O25B. Three of the oligosaccharide-CRM197 conjugates elicited functional IgGs in the same order of magnitude as a conventional CRM197 glycoconjugate prepared with native O25B O-antigen and therefore represent promising vaccine candidates for further investigation. Binding studies with two monoclonal antibodies (mAbs) revealed nanomolar anti-O25B IgG responses with nanomolar K D values and with varying binding epitopes. The immunogenicity and mAb binding data now allow for the rational design of additional synthetic antigens for future preclinical studies, with expected further improvements in the functional antibody responses. Moreover, acetylation of a rhamnose residue was shown to be likely dispensable for immunogenicity, as a deacylated antigen was able to elicit strong functional IgG responses. Our findings strongly support the feasibility of a semisynthetic glycoconjugate vaccine against E. coli O25B.
Collapse
Affiliation(s)
- Arun Naini
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Max Peter Bartetzko
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Someswara Rao Sanapala
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Felix Broecker
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Victoria Wirtz
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Marilda P. Lisboa
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | | | - Daniel Knopp
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Jessica Przygodda
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Matthias Hakelberg
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Rosalind Pan
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Axay Patel
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Laurent Chorro
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Arthur Illenberger
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Christopher Ponce
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Srinivas Kodali
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Jacqueline Lypowy
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | | | - Robert G. K. Donald
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Arne von Bonin
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Claney L. Pereira
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| |
Collapse
|