1
|
Kottom TJ, Carmona EM, Schaefbauer K, Stelzig KE, Pellegrino MR, Bindzus M, Limper AH. The importance of Fcγ and C-type lectin receptors in host immune responses during Pneumocystis pneumonia. Infect Immun 2025; 93:e0027624. [PMID: 39745390 PMCID: PMC11834440 DOI: 10.1128/iai.00276-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/10/2024] [Indexed: 02/19/2025] Open
Abstract
Pneumocystis jirovecii pneumonia (PJP) remains a significant cause of morbidity and mortality during AIDS. In AIDS, the absence of CD4 immunity results in exuberant and often fatal PJP. In addition, organism clearance requires a balanced macrophage response since excessive inflammation promotes lung injury and respiratory failure. Corticosteroids given in addition to antibiotics significantly improve outcomes during PJP. However, concerns exist that corticosteroids further suppress immunity and increase co-infections. New strategies to promote killing and clearance of Pneumocystis while balancing lung inflammation are required. Prior studies have shown that innate immunity to Pneumocystis is mediated by C-type lectin receptors (CLRs) on macrophages and involves downstream CARD9 activation. CARD9 can be targeted by a novel specific small molecule inhibitor (BRD5529) that significantly reduces inflammatory signaling by macrophages. CARD9 serves as the central intracellular molecule through which Dectin-1, Dectin-2, Mincle, and other CLRs signal. Dectin-1 CLR is activated through its own intracytoplasmic domain, whereas other innate CLRs (e.g., Dectin-2 and Mincle) require interactions with a common Fc-gamma receptor (FcγR) accessory chain to mediate responses. We now observe that mice double deficient in both Dectin-1 and Fcer1g (which lack the FcγR gamma chain) exhibit markedly reduced organism clearance compared with Card9-/- infected animals. These mice also possess deficiencies in immunoglobulin (Ig) Fc receptors directly mediating antibody responses, further implicating altered humoral responses in Pneumocystis killing. We further demonstrate in the Pneumocystis pneumonia (PCP) mouse model that BRD5529 administration successfully suppresses inflammatory cytokines. Our data support that innate immune responses through the CLR-CARD9 axis and humoral response act together to mediate effective responses resulting in optimal organism killing and generation of host inflammatory responses. Furthermore, host lung inflammation during PCP may be successfully reduced with a novel CARD9 small molecule inhibitor.IMPORTANCEPneumocystis pneumonia (PCP) causes severe respiratory impairment in hosts with suppressed immunity, particularly those with CD4 deficiencies, such as HIV. In addition to lymphocytic immunity, both innate and humoral immunities also participate in host defense against Pneumocystis. In the current studies, we defined the relative roles of CLR receptor-mediated inflammation, as well as FcgR-related inflammation and clearance of Pneumocystis organisms. Our studies reveal important roles for CLR activities for inducing lung inflammation, which can be ameliorated with a novel small molecule inhibitor of the CARD9 adaptor protein that is necessary for CLR signaling. In contrast, FcgR has a dominant role in organism clearance, underscoring an integral role of humoral responses for the elimination of this infection.
Collapse
MESH Headings
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/immunology
- Animals
- Pneumonia, Pneumocystis/immunology
- Mice
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Pneumocystis carinii/immunology
- Immunity, Innate
- Mice, Inbred C57BL
- Macrophages/immunology
- CARD Signaling Adaptor Proteins/genetics
- CARD Signaling Adaptor Proteins/metabolism
- Disease Models, Animal
- Mice, Knockout
Collapse
Affiliation(s)
- Theodore J. Kottom
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eva M. Carmona
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kyle Schaefbauer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kimberly E. Stelzig
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Madeline R. Pellegrino
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Marc Bindzus
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Andrew H. Limper
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Gong X, Wani MY, Al-Bogami AS, Ahmad A, Robinson K, Khan A. The Road Ahead: Advancing Antifungal Vaccines and Addressing Fungal Infections in the Post-COVID World. ACS Infect Dis 2024; 10:3475-3495. [PMID: 39255073 DOI: 10.1021/acsinfecdis.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In impoverished nations, the COVID-19 pandemic has led to a widespread occurrence of deadly fungal diseases like mucormycosis. The limited availability of effective antifungal treatments and the emergence of drug-resistant fungal strains further exacerbate the situation. Factors such as systemic steroid use, intravenous drug misuse, and overutilization of broad-spectrum antimicrobials contribute to the prevalence of hospital-acquired infections caused by drug-resistant fungi. Fungal infections exploit compromised immune status and employ intricate mechanisms to evade immune surveillance. The immune response involves the innate and adaptive immune systems, leading to phagocytic and complement-mediated elimination of fungi. However, resistance to antifungals poses a challenge, highlighting the importance of antifungal prophylaxis and therapeutic vaccination. Understanding the host-fungal immunological interactions and developing vaccines are vital in combating fungal infections. Further research is needed to address the high mortality and morbidity associated with multidrug-resistant fungal pathogens and to develop innovative treatment drugs and vaccines. This review focuses on the global epidemiological burden of fungal infections, host-fungal immunological interactions, recent advancements in vaccine development and the road ahead.
Collapse
Affiliation(s)
- Xiaolong Gong
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Keven Robinson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Amber Khan
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Whitehead AJ, Woodring T, Klein BS. Immunity to fungi and vaccine considerations. Cell Host Microbe 2024; 32:1681-1690. [PMID: 39389032 PMCID: PMC11980782 DOI: 10.1016/j.chom.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Fungal disease poses a growing threat to public health that our current antifungal therapies are not well equipped to meet. As the population of immunocompromised hosts expands, and ecological changes favor the emergence of fungal pathogens, the development of new antifungal agents, including vaccines, becomes a global priority. Here, we summarize recent advancements in the understanding of fungal pathogenesis, key features of the host antifungal immune response, and how these findings could be leveraged to design novel approaches to deadly fungal disease.
Collapse
Affiliation(s)
- Alexander J Whitehead
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Therese Woodring
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bruce S Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
4
|
Roe K. The epithelial cell types and their multi-phased defenses against fungi and other pathogens. Clin Chim Acta 2024; 563:119889. [PMID: 39117034 DOI: 10.1016/j.cca.2024.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Mucus and its movements are essential to epithelial tissue immune defenses against pathogens, including fungal pathogens, which can infect respiratory, gastrointestinal or the genito-urinary tracts. Several epithelial cell types contribute to their immune defense. This review focuses on the respiratory tract because of its paramount importance, but the observations will apply to epithelial cell defenses of other mucosal tissue, including the gastrointestinal and genito-urinary tracts. Mucus and its movements can enhance or degrade the immune defenses of the respiratory tract, particularly the lungs. The enhancements include inhaled pathogen entrapments, including fungal pathogens, pollutants and particulates, for their removal. The detriments include smaller lung airway obstructions by mucus, impairing the physical removal of pathogens and impairing vital transfers of oxygen and carbon dioxide between the alveolar circulatory system and the pulmonary air. Inflammation, edema and/or alveolar cellular damage can also reduce vital transfers of oxygen and carbon dioxide between the lung alveolar circulatory system and the pulmonary air. Furthermore, respiratory tract defenses are affected by several fatty acid mediators which activate cellular receptors to manipulate neutrophils, macrophages, dendritic cells, various innate lymphoid cells including the natural killer cells, T cells, γδ T cells, mucosal-associated invariant T cells, NKT cells and mast cells. These mediators include the inflammatory and frequently immunosuppressive prostaglandins and leukotrienes, and the special pro-resolving mediators, which normally resolve inflammation and immunosuppression. The total effects on the various epithelial cell and immune cell types, after exposures to pathogens, pollutants or particulates, will determine respiratory tract health or disease.
Collapse
Affiliation(s)
- Kevin Roe
- Retired United States Patent and Trademark Office, San Jose, CA, United States.
| |
Collapse
|
5
|
Chechi JL, da Costa FAC, Figueiredo JM, de Souza CM, Valdez AF, Zamith-Miranda D, Camara AC, Taborda CP, Nosanchuk JD. Vaccine development for pathogenic fungi: current status and future directions. Expert Rev Vaccines 2023; 22:1136-1153. [PMID: 37936254 PMCID: PMC11500455 DOI: 10.1080/14760584.2023.2279570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Fungal infections are caused by a broad range of pathogenic fungi that are found worldwide with different geographic distributions, incidences, and mortality rates. Considering that there are relatively few approved medications available for combating fungal diseases and no vaccine formulation commercially available, multiple groups are searching for new antifungal drugs, examining drugs for repurposing and developing antifungal vaccines, in order to control deaths, sequels, and the spread of these complex infections. AREAS COVERED This review provides a summary of advances in fungal vaccine studies and the different approaches under development, such as subunit vaccines, whole organism vaccines, and DNA vaccines, as well as studies that optimize the use of adjuvants. We conducted a literature search of the PubMed with terms: fungal vaccines and genus of fungal pathogens (Cryptococcus spp. Candida spp. Coccidioides spp. Aspergillus spp. Sporothrix spp. Histoplasma spp. Paracoccidioides spp. Pneumocystis spp. and the Mucorales order), a total of 177 articles were collected from database. EXPERT OPINION Problems regarding the immune response development in an immunocompromised organism, the similarity between fungal and mammalian cells, and the lack of attention by health organizations to fungal infections are closely related to the fact that, at present, there are no fungal vaccines available for clinical use.
Collapse
Affiliation(s)
- Jéssica L. Chechi
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Felipe A. C. da Costa
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Julia M. Figueiredo
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Cássia M. de Souza
- Laboratório de Fisiologia e Biologia Molecular de Fungos, Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, Brasil
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brasil
| | - Alessandro F. Valdez
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Daniel Zamith-Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Aline C. Camara
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Carlos P. Taborda
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| |
Collapse
|
6
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
7
|
Tong T, Wang Z, Xu Y, Shen J. Immunization with Pneumocystis carinii A12 1-85 antigen activates immune function against P. carinii. BMC Immunol 2021; 22:40. [PMID: 34174820 PMCID: PMC8236001 DOI: 10.1186/s12865-021-00436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pneumocystis pneumonia (PcP), which is caused by Pneumocystis carinii, is a life-threatening infection that affects immunocompromised individuals. Unfortunately, chemoprophylaxis and dapsone are only effective for half of the patients with PcP, indicating that additional preventive methods are needed. We predicated the pneumocystis surface protein A12 sequence 1-85 by DNAStar software and BepiPred, and identified it as a potential vaccine candidate by bioresearch. METHODS We used recombinant A121-85 as antigen to immunized mice and detected serum titer of IgG, expression of inflammatory factors by EILSA, qRT-PCR and flow cytometry. RESULTS Our results showed that immunization with recombinant A121-85 increased the serum titer of IgG, promoted the secretion of T lymphocytes, increased the expression of inflammatory factors, and elevated lung inflammatory injury in mice. CONCLUSIONS Our findings suggest that A121-85 is a potential vaccine target for preventing Pneumocystis carinii. The evaluation of A121-85-elicited antibodies in the prevention of PcP in humans deserves further investigation.
Collapse
Affiliation(s)
- Tong Tong
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022 People’s Republic of China
| | - Zhongxin Wang
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022 People’s Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022 People’s Republic of China
| | - Jilu Shen
- Department of Clinical Laboratory, Fourth Affiliated Hospital, Anhui Medical University, 100 Huaihai Road, Hefei, Anhui People’s Republic of China
| |
Collapse
|
8
|
Gingerich AD, Norris KA, Mousa JJ. Pneumocystis Pneumonia: Immunity, Vaccines, and Treatments. Pathogens 2021; 10:pathogens10020236. [PMID: 33669726 PMCID: PMC7921922 DOI: 10.3390/pathogens10020236] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
For individuals who are immunocompromised, the opportunistic fungal pathogen Pneumocystis jirovecii is capable of causing life-threatening pneumonia as the causative agent of Pneumocystis pneumonia (PCP). PCP remains an acquired immunodeficiency disease (AIDS)-defining illness in the era of antiretroviral therapy. In addition, a rise in non-human immunodeficiency virus (HIV)-associated PCP has been observed due to increased usage of immunosuppressive and immunomodulating therapies. With the persistence of HIV-related PCP cases and associated morbidity and mortality, as well as difficult to diagnose non-HIV-related PCP cases, an improvement over current treatment and prevention standards is warranted. Current therapeutic strategies have primarily focused on the administration of trimethoprim-sulfamethoxazole, which is effective at disease prevention. However, current treatments are inadequate for treatment of PCP and prevention of PCP-related death, as evidenced by consistently high mortality rates for those hospitalized with PCP. There are no vaccines in clinical trials for the prevention of PCP, and significant obstacles exist that have slowed development, including host range specificity, and the inability to culture Pneumocystis spp. in vitro. In this review, we overview the immune response to Pneumocystis spp., and discuss current progress on novel vaccines and therapies currently in the preclinical and clinical pipeline.
Collapse
Affiliation(s)
- Aaron D. Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.D.G.); (K.A.N.)
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Karen A. Norris
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.D.G.); (K.A.N.)
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.D.G.); (K.A.N.)
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
9
|
Dai G, Wanek A, Eddens T, Volden P, Kolls JK. Toward a humanized mouse model of Pneumocystis pneumonia. JCI Insight 2021; 6:139573. [PMID: 33491669 PMCID: PMC7934868 DOI: 10.1172/jci.insight.139573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Pneumocystis is an important opportunistic fungus that causes pneumonia in children and immunocompromised individuals. Recent genomic data show that divergence of major surface glycoproteins may confer speciation and host range selectivity. On the other hand, immune clearance between mice and humans is well correlated. Thus, we hypothesized that humanize mice may provide information about human immune responses involved in controlling Pneumocystis infection. CD34-engrafted huNOG-EXL mice controlled fungal burdens to a greater extent than nonengrafted mice. Moreover, engrafted mice generated fungal-specific IgM. Fungal control was associated with a transcriptional signature that was enriched for genes associated with nonopsonic recognition of trophs (CD209) and asci (CLEC7A). These same genes were downregulated in CD4-deficient mice as well as twins with bare lymphocyte syndrome with Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Guixiang Dai
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, Louisiana, USA
| | - Alanna Wanek
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, Louisiana, USA
| | - Taylor Eddens
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul Volden
- Taconic Biosciences, Germantown, New York, USA
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
10
|
Edey MM, Gunasekera PN, Lobb M, Imran M. Intravenous immunoglobulin as adjunctive therapy in kidney transplant recipients with severe pneumocystis pneumonia. Transpl Infect Dis 2020; 23:e13454. [PMID: 32869412 DOI: 10.1111/tid.13454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022]
Abstract
Pneumocystis jirovecii is an opportunistic pathogen that may cause severe, life-threatening respiratory infections in immunocompromised patients such as those with kidney transplants. Although antimicrobial prophylaxis is now universally recommended in the early post-transplant period, Pneumocystis pneumonia (PCP) can occur later. If such infection occurs, mortality rates are high. Beyond standard therapy with trimethoprim-sulfamethoxazole, there is a lack of evidence-based options for intensifying treatment when initial therapy fails to show improvement. Moreover, it is usual to minimize immunosuppression in life-threatening infection, but graft damage may occur, particularly in kidney transplant recipients at above-average immunological risk. Here we present two cases of severe PCP in high immunological risk recipients who were managed with adjunctive intravenous immunoglobulin and withdrawal of immunosuppression. Both patients recovered and were discharged from hospital with functioning grafts.
Collapse
Affiliation(s)
- Matthew M Edey
- Department of Nephrology, Hull University Teaching Hospitals NHS Trust, Hull, UK.,Hull-York Medical School, Kingston-upon-Hull, UK
| | - Pumali N Gunasekera
- Department of Critical Care Medicine, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Mark Lobb
- Department of Transplant and Cellular Immunology, St James's University Hospital, Leeds, UK
| | - Muhammad Imran
- Department of Nephrology, Hull University Teaching Hospitals NHS Trust, Hull, UK.,Hull-York Medical School, Kingston-upon-Hull, UK
| |
Collapse
|
11
|
Hooft van Huijsduijnen R, Kojima S, Carter D, Okabe H, Sato A, Akahata W, Wells TNC, Katsuno K. Reassessing therapeutic antibodies for neglected and tropical diseases. PLoS Negl Trop Dis 2020; 14:e0007860. [PMID: 31999695 PMCID: PMC6991954 DOI: 10.1371/journal.pntd.0007860] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In the past two decades there has been a significant expansion in the number of new therapeutic monoclonal antibodies (mAbs) that are approved by regulators. The discovery of these new medicines has been driven primarily by new approaches in inflammatory diseases and oncology, especially in immuno-oncology. Other recent successes have included new antibodies for use in viral diseases, including HIV. The perception of very high costs associated with mAbs has led to the assumption that they play no role in prophylaxis for diseases of poverty. However, improvements in antibody-expression yields and manufacturing processes indicate this is a cost-effective option for providing protection from many types of infection that should be revisited. Recent technology developments also indicate that several months of protection could be achieved with a single dose. Moreover, new methods in B cell sorting now enable the systematic identification of high-quality antibodies from humanized mice, or patients. This Review discusses the potential for passive immunization against schistosomiasis, fungal infections, dengue, and other neglected diseases.
Collapse
Affiliation(s)
| | | | - Dee Carter
- School of Life and Environmental Sciences and The Marie Bashir Institute, University of Sydney, NSW, Australia
| | | | | | - Wataru Akahata
- VLP Therapeutics, Gaithersburg, Maryland, United States of America
| | | | - Kei Katsuno
- Global Health Innovative Technology Fund, Tokyo, Japan
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Nagasaki University School of Tropical Medicine and Global Health, Nagasaki, Japan
| |
Collapse
|
12
|
CD4 + T Cell Regulation of Antibodies Cross-Reactive with Fungal Cell Wall-Associated Carbohydrates after Pneumocystis murina Infection. Infect Immun 2019; 87:IAI.00158-19. [PMID: 31010812 DOI: 10.1128/iai.00158-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/13/2019] [Indexed: 01/02/2023] Open
Abstract
Pneumocystis pneumonia is a life-threatening opportunistic fungal infection observed in individuals with severe immunodeficiencies, such as AIDS. Molecules with the ability to bind β-glucan and signal at Fcγ receptors enhance defense against Pneumocystis f. sp. murina, though it is unclear whether antibodies reactive with fungal cell wall carbohydrates are induced during Pneumocystis infection. We observed that systemic and lung mucosal immunoglobulins cross-reactive with β-glucan and chitosan/chitin are generated after Pneumocystis infection, with increased quantities within the lung mucosal fluid after challenge. While IgG responses against Pneumocystis protein antigens are markedly CD4+ T cell dependent, CD4+ T cell depletion did not impact quantities of IgG cross-reactive with β-glucan or chitosan/chitin in the serum or mucosa after challenge. Notably, lung mucosal quantities of IgA cross-reactive with β-glucan or chitosan/chitin are decreased in the setting of CD4+ T cell deficiency, occurring in the setting of concurrent reduced quantities of active transforming growth factor β, while mucosal IgM is significantly increased in the setting of CD4+ T cell deficiency. Interleukin-21 receptor deficiency does not lead to reduction in mucosal IgA reactive with fungal carbohydrate antigens after Pneumocystis challenge. These studies demonstrate differential CD4+ T cell-dependent regulation of mucosal antibody responses against β-glucan and chitosan/chitin after Pneumocystis challenge, suggesting that different B cell subsets may be responsible for the generation of these antibody responses, and suggest a potential immune response against fungi that may be operative in the setting of CD4+ T cell-related immunodeficiency.
Collapse
|
13
|
Evans HM, Garvy BA. The trophic life cycle stage of Pneumocystis species induces protective adaptive responses without inflammation-mediated progression to pneumonia. Med Mycol 2019; 56:994-1005. [PMID: 29267980 DOI: 10.1093/mmy/myx145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/22/2017] [Indexed: 12/28/2022] Open
Abstract
Pneumocystis species are fungal pathogens that cause pneumonia in immunocompromised hosts. Lung damage during Pneumocystis pneumonia is predominately due to the inflammatory immune response. Pneumocystis species have a biphasic life cycle. Optimal innate immune responses to Pneumocystis species are dependent on stimulation with the cyst life cycle stage. Conversely, the trophic life cycle stage broadly suppresses proinflammatory responses to multiple pathogen-associated molecular patterns (PAMPs), including β-1,3-glucan. Little is known about the contribution of these life cycle stages to the development of protective adaptive responses to Pneumocystis infection. Here we report that CD4+ T cells primed in the presence of trophic forms are sufficient to mediate clearance of trophic forms and cysts. In addition, primary infection with trophic forms is sufficient to prime B-cell memory responses capable of clearing a secondary infection with Pneumocystis following CD4+ T cell depletion. While trophic forms are sufficient for initiation of adaptive immune responses in immunocompetent mice, infection of immunocompromised recombination-activating gene 2 knockout (RAG2-/-) mice with trophic forms in the absence of cysts does not lead to the severe weight loss and infiltration of innate immune cells associated with the development of Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Heather M Evans
- Department of Microbiology, Immunology, and Molecular Genetics
| | - Beth A Garvy
- Department of Microbiology, Immunology, and Molecular Genetics.,Division of Infectious Diseases, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
14
|
Iturra PA, Rojas DA, Pérez FJ, Méndez A, Ponce CA, Bonilla P, Bustamante R, Rodríguez H, Beltrán CJ, Vargas SL. Progression of Type 2 Helper T Cell-Type Inflammation and Airway Remodeling in a Rodent Model of Naturally Acquired Subclinical Primary Pneumocystis Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:417-431. [PMID: 29169991 DOI: 10.1016/j.ajpath.2017.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/03/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022]
Abstract
Subclinical primary Pneumocystis infection is the most common pulmonary infection in early infancy, making it important to determine whether it damages the lung. Pneumocystis peaks at 2 to 5 months of age, when respiratory morbidity coincidently increases. We have documented that Pneumocystis increases mucus production in infant lungs, and animal models reveal lung lesions that warrant characterization. Herein, immunocompetent rats infected at birth with Pneumocystis by cohabitation, to resemble community-acquired infection, underwent lung assessments at 45, 60, and 75 days of age. Lungs fixed by vascular perfusion to prevent collapse during necropsy were used for morphometry evaluations of mucus production, airway epithelial thickening, perivascular and peribronchiolar inflammation, and structural airway remodeling. Changes in these histologic features indicate lung disease. Selected immune markers were assessed in parallel using fresh-frozen lung tissue from sibling rats of the same cages. Sequential activation of NF-κB and an increased Gata3/T-bet mRNA level ratio, consistent with a type 2 helper T-cell-type inflammatory response, and subacute fibrosis were recognized. Therefore, documenting subclinical Pneumocystis infection induces lung disease in the immunocompetent host. Taken together with the peak age of primary Pneumocystis infection, results warrant investigating the clinical impact of this often subclinical infection on the severity of respiratory diseases in early infancy. This model can also be used to assess the effects of airway insults, including coinfections by recognized respiratory pathogens.
Collapse
Affiliation(s)
- Pablo A Iturra
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Diego A Rojas
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Francisco J Pérez
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Andrea Méndez
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Carolina A Ponce
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Paula Bonilla
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Rebeca Bustamante
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Héctor Rodríguez
- Anatomy and Developmental Biology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Caroll J Beltrán
- Gastroenterology Division, University Hospital, University of Chile School of Medicine, Santiago, Chile
| | - Sergio L Vargas
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile.
| |
Collapse
|
15
|
Hoving JC, Kolls JK. New advances in understanding the host immune response to Pneumocystis. Curr Opin Microbiol 2017; 40:65-71. [PMID: 29136537 DOI: 10.1016/j.mib.2017.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
Pneumocystis jirovecii causes clinical pneumonia in immunocompromised hosts. Despite this, the inability to cultivate this organism in vitro has likely hindered the field in ascertaining the true impact of Pneumocystis in human infection. However the recent release of the genome as well as in advances in understanding host genetics, and other risk factors for infection and robust experimental models of disease have shed new light on the impact of this fungal pathogen as to better define populations at risk. This review will highlight these recent advances as well as highlight future needed areas of research.
Collapse
Affiliation(s)
- J Claire Hoving
- Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa.
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, USA.
| |
Collapse
|
16
|
Overcoming Hurdles to Development of a Vaccine against Pneumocystis jirovecii. Infect Immun 2017; 85:IAI.00035-17. [PMID: 28115507 DOI: 10.1128/iai.00035-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Development of Pneumocystis pneumonia (PCP) is a common problem among immunosuppressed individuals. There are windows of opportunity in which vaccination would be beneficial, but to date, no vaccines have made it to clinical trials. Significant hurdles to vaccine development include host range specificity, making it difficult to translate from animal models to humans. Discovery of cross-reactive epitopes is critical to moving vaccine candidates from preclinical animal studies to clinical trials.
Collapse
|