1
|
Schubert K, Zhang J, Muscolo ME, Braly M, McCausland JW, Lam HN, Hug K, Loven M, Solis SR, Escobar ME, Moore H, Terciano D, Pacheco DF, Lowe TM, Lesser CF, Jacobs-Wagner C, Wang H, Auerbuch V. The polyadenylase PAPI is required for virulence plasmid maintenance in pathogenic bacteria. PLoS Pathog 2025; 21:e1012655. [PMID: 40424556 DOI: 10.1371/journal.ppat.1012655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Many species of pathogenic bacteria harbor critical plasmid-encoded virulence factors, and yet the regulation of plasmid replication is often poorly understood despite playing a key role in plasmid-encoded gene expression. Human pathogenic Yersinia, including the plague agent Yersinia pestis and its close relative Y. pseudotuberculosis, require the type III secretion system (T3SS) virulence factor to subvert host defense mechanisms and colonize host tissues. The Yersinia T3SS is encoded on the IncFII plasmid for Yersinia virulence (pYV). Several layers of gene regulation enable a large increase in expression of Yersinia T3SS genes at mammalian body temperature. Surprisingly, T3SS expression is also controlled at the level of gene dosage. The number of pYV molecules relative to the number of chromosomes per cell, referred to as plasmid copy number, increases with temperature. The ability to increase and maintain elevated pYV plasmid copy number, and therefore T3SS gene dosage, at 37˚C is important for Yersinia virulence. In addition, pYV is highly stable in Yersinia at all temperatures, despite being dispensable for growth outside the host. Yet how Yersinia reinforces elevated plasmid replication and plasmid stability remains unclear. In this study, we show that the chromosomal gene pcnB encoding the polyadenylase PAP I is required for regulation of pYV plasmid copy number (PCN), maintenance of pYV in the bacterial population outside the host, robust T3SS activity, and Yersinia virulence in a mouse infection model. Likewise, pcnB/PAP I is required for robust expression of the Shigella flexneri T3SS that, similar to Yersinia, is encoded on a virulence plasmid whose replication is regulated by sRNA. Furthermore, Yersinia and Shigella pcnB/PAP I is required for maintaining model antimicrobial resistance (AMR) plasmids whose replication is regulated by sRNA, thereby increasing antibiotic resistance by ten-fold. These data suggest that pcnB/PAP I contributes to the spread and stabilization of sRNA-regulated virulence and AMR plasmids in bacterial pathogens, and is essential in maintaining the gene dosage required to mediate plasmid-encoded traits. Importantly pcnB/PAP I has been bioinformatically identified in many species of bacteria despite being studied in only a few species to date. Our work highlights the potential importance of pcnB/PAP I in antibiotic resistance, and shows for the first time that pcnB/PAP I promotes virulence plasmid stability in natural pathogenic hosts with a direct impact on bacterial virulence.
Collapse
Affiliation(s)
- Katherine Schubert
- Department of Molecular, Cell, and Developmental Biology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Jessica Zhang
- Department of Biology, Stanford University, Stanford, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, United States of America
| | - Michele E Muscolo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Tufts Stuart B Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts, United States of America
| | - Micah Braly
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Joshua W McCausland
- Department of Biology, Stanford University, Stanford, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Hanh N Lam
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Karen Hug
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Matthew Loven
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Santiago Ruiz Solis
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Melissa Estrada Escobar
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Henry Moore
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Derfel Terciano
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Diana Fernandez Pacheco
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Todd M Lowe
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Cammie F Lesser
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Tufts Stuart B Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts, United States of America
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala Universitet, Uppsala, Sweden
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
2
|
Gilet L, Leroy M, Maes A, Condon C, Braun F. Unconventional mRNA processing and degradation pathways for the polycistronic yrzI (spyTA) mRNA in Bacillus subtilis. FEBS Lett 2025; 599:1222-1235. [PMID: 40055937 PMCID: PMC12067863 DOI: 10.1002/1873-3468.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 05/13/2025]
Abstract
The ribosome-associated endoribonuclease Rae1 cleaves the Bacillus subtilis yrzI operon mRNA in a translation-dependent manner. This operon encodes up to four small peptides, S1027, YrzI, S1025, and S1024, whose functions are unknown. Here, we identified the function of YrzI and S1025 and deciphered the degradation pathways of the yrzI polycistronic mRNA. We show that YrzI is toxic at high concentrations, but co-expression with S1025 abolishes its toxicity, and that, in the absence of Rae1, S1025 is the major antidote to the YzI toxin. We show that a highly stable mRNA species containing the YrzI and S1025 open reading frames results from endoribonucleolytic cleavage upstream of yrzI followed by the arrest of 5'-exoribonucleolytic processing by ribosomes bound to its exceptionally strong Shine-Dalgarno sequence. Degradation of this mRNA requires either translation-dependent cleavage within S1025 by Rae1 or direct attack from the structured 3'-end by 3'-exoribonucleases. Neither pathway is common for a B. subtilis mRNA.
Collapse
Affiliation(s)
- Laetitia Gilet
- Expression Génétique Microbienne, CNRS ‐ Université Paris Cité, Institut de Biologie Physico‐ChimiqueParisFrance
| | - Magali Leroy
- Expression Génétique Microbienne, CNRS ‐ Université Paris Cité, Institut de Biologie Physico‐ChimiqueParisFrance
| | - Alexandre Maes
- Plateforme de Génomique Fonctionnel, UMR8226 CNRS Sorbonne Université, Institut de Biologie Physico‐ChimiqueParisFrance
| | - Ciarán Condon
- Expression Génétique Microbienne, CNRS ‐ Université Paris Cité, Institut de Biologie Physico‐ChimiqueParisFrance
| | - Frédérique Braun
- Expression Génétique Microbienne, CNRS ‐ Université Paris Cité, Institut de Biologie Physico‐ChimiqueParisFrance
| |
Collapse
|
3
|
Miller LG, Kim W, Schowe S, Taylor K, Han R, Jain V, Park R, Sherman M, Fang J, Ramirez H, Ellington A, Tamamis P, Resendiz MJE, Zhang YJ, Contreras L. Selective 8-oxo-rG stalling occurs in the catalytic core of polynucleotide phosphorylase (PNPase) during degradation. Proc Natl Acad Sci U S A 2024; 121:e2317865121. [PMID: 39495922 PMCID: PMC11572968 DOI: 10.1073/pnas.2317865121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 11/06/2024] Open
Abstract
RNA oxidation, predominantly through the accumulation of 8-oxo-7,8-dihydroguanosine (8-oxo-rG), represents an important biomarker for cellular oxidative stress. Polynucleotide phosphorylase (PNPase) is a 3'-5' exoribonuclease that has been shown to preferentially recognize 8-oxo-rG-containing RNA and protect Escherichia coli cells from oxidative stress. However, the impact of 8-oxo-rG on PNPase-mediated RNA degradation has not been studied. Here, we show that the presence of 8-oxo-rG in RNA leads to catalytic stalling of E. coli PNPase through in vitro RNA degradation experiments and electrophoretic analysis. We also link this stalling to the active site of the enzyme through resolution of single-particle cryo-EM structures for PNPase in complex with singly or doubly oxidized RNA oligonucleotides. Following identification of Arg399 as a key residue in recognition of both single and sequential 8-oxo-rG nucleotides, we perform follow-up in vitro analysis to confirm the importance of this residue in 8-oxo-rG-specific PNPase stalling. Finally, we investigate the effects of mutations to active site residues implicated in 8-oxo-rG binding through E. coli cell growth experiments under H2O2-induced oxidative stress. Specifically, Arg399 mutations show significant effects on cell growth under oxidative stress. Overall, we demonstrate that 8-oxo-rG-specific stalling of PNPase is relevant to bacterial survival under oxidative stress and speculate that this enzyme might associate with other cellular factors to mediate this stress.
Collapse
Affiliation(s)
- Lucas G. Miller
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Wantae Kim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Shawn Schowe
- Department of Chemistry, University of Colorado Denver, Denver, CO80217
| | - Kathleen Taylor
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Vashita Jain
- Department of Chemistry, University of Colorado Denver, Denver, CO80217
| | - Raeyeon Park
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX77843
| | - Mark Sherman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Janssen Fang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Haydee Ramirez
- Department of Chemistry, University of Colorado Denver, Denver, CO80217
| | - Andrew Ellington
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX77843
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX77840
| | | | - Y. Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Lydia Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
4
|
Schubert K, Braly M, Zhang J, Muscolo ME, Lam HN, Hug K, Moore H, McCausland JW, Terciano D, Lowe T, Lesser CF, Jacobs-Wagner C, Wang H, Auerbuch V. The polyadenylase PAPI is required for virulence plasmid maintenance in pathogenic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617751. [PMID: 39416138 PMCID: PMC11482874 DOI: 10.1101/2024.10.11.617751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Many species of pathogenic bacteria harbor critical plasmid-encoded virulence factors, and yet the regulation of plasmid replication is often poorly understood despite playing a critical role in plasmid-encoded gene expression. Human pathogenic Yersinia, including the plague agent Y. pestis and its close relative Y. pseudotuberculosis, require the type III secretion system (T3SS) virulence factor to subvert host defense mechanisms and colonize host tissues. The Yersinia T3SS is encoded on the IncFII plasmid for Y ersinia virulence (pYV). Several layers of gene regulation enables a large increase in expression of Yersinia T3SS genes at mammalian body temperature. Surprisingly, T3SS expression is also controlled at the level of gene dosage. The number of pYV molecules relative to the number of chromosomes per cell, referred to as plasmid copy number, increases with temperature. The ability to increase and maintain elevated pYV plasmid copy number, and therefore T3SS gene dosage, at 37°C is important for Yersinia virulence. In addition, pYV is highly stable in Yersinia at all temperatures, despite being dispensable for growth outside the host. Yet how Yersinia reinforces elevated plasmid replication and plasmid stability remains unclear. In this study, we show that the chromosomal gene pcnB encoding the polyadenylase PAP I is required for regulation of pYV plasmid copy number (PCN), maintenance of pYV in the bacterial population outside the host, robust T3SS activity, and Yersinia virulence in a mouse infection model. Likewise, pcnB/PAP I is also required for robust expression of the Shigella flexneri virulence plasmid-encoded T3SS. Furthermore, Yersinia and Shigella pcnB/PAP I is required for maintaining normal PCN of model antimicrobial resistance (AMR) plasmids whose replication is regulated by sRNA, thereby increasing antibiotic resistance by ten-fold. These data suggest that pcnB/PAP I contributes to the spread and stabilization of virulence and AMR plasmids in bacterial pathogens, and is essential in maintaining the gene dosage required to mediate plasmid-encoded traits. Importantly pcnB/PAP I has been bioinformatically identified in many species of bacteria despite being studied in only a few species to date. Our work highlights the potential importance of pcnB/PAP I in antibiotic resistance, and shows for the first time that pcnB/PAP I reinforces PCN and virulence plasmid stability in natural pathogenic hosts with a direct impact on bacterial virulence.
Collapse
Affiliation(s)
- Katherine Schubert
- Department of Molecular, Cell, and Developmental Biology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Micah Braly
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Jessica Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, United States
| | - Michele E Muscolo
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, MA 02115, United States
| | - Hanh N Lam
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Karen Hug
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Henry Moore
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Joshua W McCausland
- Department of Biology, Stanford University, Stanford, CA 94305, United States
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Derfel Terciano
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Todd Lowe
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, MA 02115, United States
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, CA 94305, United States
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| |
Collapse
|
5
|
Cetnar DP, Hossain A, Vezeau GE, Salis HM. Predicting synthetic mRNA stability using massively parallel kinetic measurements, biophysical modeling, and machine learning. Nat Commun 2024; 15:9601. [PMID: 39505899 PMCID: PMC11541907 DOI: 10.1038/s41467-024-54059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
mRNA degradation is a central process that affects all gene expression levels, though it remains challenging to predict the stability of a mRNA from its sequence, due to the many coupled interactions that control degradation rate. Here, we carried out massively parallel kinetic decay measurements on over 50,000 bacterial mRNAs, using a learn-by-design approach to develop and validate a predictive sequence-to-function model of mRNA stability. mRNAs were designed to systematically vary translation rates, secondary structures, sequence compositions, G-quadruplexes, i-motifs, and RppH activity, resulting in mRNA half-lives from about 20 seconds to 20 minutes. We combined biophysical models and machine learning to develop steady-state and kinetic decay models of mRNA stability with high accuracy and generalizability, utilizing transcription rate models to identify mRNA isoforms and translation rate models to calculate ribosome protection. Overall, the developed model quantifies the key interactions that collectively control mRNA stability in bacterial operons and predicts how changing mRNA sequence alters mRNA stability, which is important when studying and engineering bacterial genetic systems.
Collapse
Affiliation(s)
- Daniel P Cetnar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Ayaan Hossain
- Graduate Program in Bioinformatics and Genomics, The Pennsylvania State University, University Park, PA, USA
| | - Grace E Vezeau
- Department of Biological Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Howard M Salis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Biological Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
6
|
Liu D, Lv H, Wang Y, Chen J, Li D, Huang R. Selective RNA Processing and Stabilization are Multi-Layer and Stoichiometric Regulators of Gene Expression in Escherichia coli. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301459. [PMID: 37845007 PMCID: PMC10667835 DOI: 10.1002/advs.202301459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/29/2023] [Indexed: 10/18/2023]
Abstract
Selective RNA processing and stabilization (SRPS) facilitates the differential expression of multiple genes in polycistronic operons. However, how the coordinated actions of SRPS-related enzymes affect stoichiometric regulation remains unclear. In the present study, the first genome-wide targetome analysis is reported of these enzymes in Escherichia coli, at a single-nucleotide resolution. A strictly linear relationship is observed between the RNA pyrophosphohydrolase processing ratio and scores assigned to the first three nucleotides of the primary transcript. Stem-loops associated with PNPase targetomes exhibit a folding free energy that is negatively correlated with the termination ratio of PNPase at the 3' end. More than one-tenth of the RNase E processing sites in the 5'-untranslated regions(UTR) form different stem-loops that affect ribosome-binding and translation efficiency. The effectiveness of the SRPS elements is validated using a dual-fluorescence reporter system. The findings highlight a multi-layer and quantitative regulatory method for optimizing the stoichiometric expression of genes in bacteria and promoting the application of SRPS in synthetic biology.
Collapse
Affiliation(s)
- Daixi Liu
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong, 266237, China
- School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Haibo Lv
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Yafei Wang
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Jinyu Chen
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Dexin Li
- School of Computer Science and Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ranran Huang
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong, 266237, China
| |
Collapse
|
7
|
Chung H, Kim J, Lee YJ, Choi KR, Jeong KJ, Kim GJ, Lee SY. Enhanced production of difficult-to-express proteins through knocking down rnpA gene expression. Biotechnol J 2023; 18:e2200641. [PMID: 37285237 DOI: 10.1002/biot.202200641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Escherichia coli has been employed as a workhorse for the efficient production of recombinant proteins. However, some proteins were found to be difficult to produce in E. coli. The stability of mRNA has been considered as one of the important factors affecting recombinant protein production. Here we report a generally applicable and simple strategy for enhancing mRNA stability, and consequently improving recombinant protein production in E. coli. RNase P, a ribozyme comprising an RNA subunit (RnpB) and a protein subunit (RnpA), is involved in tRNA maturation. Based on the finding that purified RnpA can digest rRNA and mRNA in vitro, it was reasoned that knocking down the level of RnpA might enhance recombinant protein production. For this, the synthetic small regulatory RNA-based knockdown system was applied to reduce the expression level of RnpA. The developed RnpA knockdown system allowed successful overexpression of 23 different recombinant proteins of various origins and sizes, including Cas9 protein, antibody fragment, and spider silk protein. Notably, a 284.9-kDa ultra-high molecular weight, highly repetitive glycine-rich spider silk protein, which is one of the most difficult proteins to produce, could be produced to 1.38 g L-1 , about two-fold higher than the highest value previously achieved, by a fed-batch culture of recombinant E. coli strain employing the RnpA knockdown system. The RnpA-knockdown strategy reported here will be generally useful for the production of recombinant proteins including those that have been difficult to produce.
Collapse
Affiliation(s)
- Hannah Chung
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- MedicosBiotech Inc, Daejeon, Republic of Korea
| | - Jiyong Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- MedicosBiotech Inc, Daejeon, Republic of Korea
| | - Yong Jae Lee
- Protein Engineering Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ki Jun Jeong
- Protein Engineering Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- MedicosBiotech Inc, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Jain C. Suppression of multiple phenotypic and RNA processing defects by over-expression of Oligoribonuclease in Escherichia coli. J Biol Chem 2023; 299:104567. [PMID: 36870683 PMCID: PMC10124918 DOI: 10.1016/j.jbc.2023.104567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 03/06/2023] Open
Abstract
Oligoribonuclease (Orn) is an essential Ribonuclease (RNase) from Escherichia coli (E. coli), which plays a critical role in the conversion of short RNA molecules (NanoRNAs) to mononucleotides. Although no additional functions have been ascribed to Orn since its discovery nearly 50 years ago, it was observed in this study that the growth defects caused by a lack of two other RNases that do not digest NanoRNAs, PNPase and RNase PH, could be suppressed by Orn over-expression. Further analyses showed that Orn over-expression can alleviate the growth defects caused by an absence of other RNases even when its expression was increased by a small degree, and it can carry out molecular reactions that are normally performed by RNase T and RNase PH. In addition, biochemical assays revealed that Orn can fully digest single stranded RNAs within a variety of structural contexts. These studies provide new insights into Orn function and its ability to participate in multiple aspects of E. coli RNA metabolism.
Collapse
Affiliation(s)
- Chaitanya Jain
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
9
|
Wang X, N MPA, Jeon HJ, He J, Lim HM. Identification of a Rho-Dependent Termination Site In Vivo Using Synthetic Small RNA. Microbiol Spectr 2023; 11:e0395022. [PMID: 36651730 PMCID: PMC9927376 DOI: 10.1128/spectrum.03950-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Rho promotes Rho-dependent termination (RDT) at the Rho-dependent terminator, producing a variable-length region without secondary structure at the 3' end of mRNA. Determining the exact RDT site in vivo is challenging, because the 3' end of mRNA is rapidly removed after RDT by 3'-to-5' exonuclease processing. Here, we applied synthetic small RNA (sysRNA) to identify the RDT region in vivo by exploiting its complementary base-pairing ability to target mRNA. Through the combined analyses of rapid amplification of cDNA 3' ends, primer extension, and capillary electrophoresis, we could precisely map and quantify mRNA 3' ends. We found that complementary double-stranded RNA (dsRNA) formed between sysRNA and mRNA was efficiently cleaved by RNase III in the middle of the dsRNA region. The formation of dsRNA appeared to protect the cleaved RNA 3' ends from rapid degradation by 3'-to-5' exonuclease, thereby stabilizing the mRNA 3' end. We further verified that the signal intensity at the 3' end was positively correlated with the amount of mRNA. By constructing a series of sysRNAs with close target sites and comparing the difference in signal intensity at the 3' end of wild-type and Rho-impaired strains, we finally identified a region of increased mRNA expression within the 21-bp range, which was determined as the RDT region. Our results demonstrated the ability to use sysRNA as a novel tool to identify RDT regions in vivo and expand the range of applications of sysRNA. IMPORTANCE sysRNA, which was formerly widely employed, has steadily lost popularity as more novel techniques for suppressing gene expression come into existence because of issues such as unstable inhibition effect and low inhibition efficiency. However, it remains an interesting topic as a regulatory tool due to its ease of design and low metabolic burden on cells. Here, for the first time, we discovered a new method to identify RDT regions in vivo using sysRNA. This new feature is important because since the discovery of the Rho protein in 1969, specific identification of RDT sites in vivo has been difficult due to the rapid processing of RNA 3' ends by exonucleases, and sysRNA might provide a new approach to address this challenge.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Monford Paul Abishek N
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Heung Jin Jeon
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Heon M. Lim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Single-exonuclease nanocircuits reveal the RNA degradation dynamics of PNPase and demonstrate potential for RNA sequencing. Nat Commun 2023; 14:552. [PMID: 36725855 PMCID: PMC9892577 DOI: 10.1038/s41467-023-36278-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
The degradation process of RNA is decisive in guaranteeing high-fidelity translation of genetic information in living organisms. However, visualizing the single-base degradation process in real time and deciphering the degradation mechanism at the single-enzyme level remain formidable challenges. Here, we present a reliable in-situ single-PNPase-molecule dynamic electrical detector based on silicon nanowire field-effect transistors with ultra-high temporal resolution. These devices are capable of realizing real-time and label-free monitoring of RNA analog degradation with single-base resolution, including RNA analog binding, single-nucleotide hydrolysis, and single-base movement. We discover a binding event of the enzyme (near the active site) with the nucleoside, offering a further understanding of the RNA degradation mechanism. Relying on systematic analyses of independent reads, approximately 80% accuracy in RNA nucleoside sequencing is achieved in a single testing process. This proof-of-concept sets up a Complementary Metal Oxide Semiconductor (CMOS)-compatible playground for the development of high-throughput detection technologies toward mechanistic exploration and single-molecule sequencing.
Collapse
|
11
|
Onodera H, Niwa T, Taguchi H, Chadani Y. Prophage excision switches the primary ribosome rescue pathway and rescue-associated gene regulations in Escherichia coli. Mol Microbiol 2023; 119:44-58. [PMID: 36471624 PMCID: PMC10107115 DOI: 10.1111/mmi.15003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Escherichia coli has multiple pathways to release nonproductive ribosome complexes stalled at the 3' end of nonstop mRNA: tmRNA (SsrA RNA)-mediated trans-translation and stop codon-independent termination by ArfA/RF2 or ArfB (YaeJ). The arfA mRNA lacks a stop codon and its expression is repressed by trans-translation. Therefore, ArfA is considered to complement the ribosome rescue activity of trans-translation, but the physiological situations in which ArfA is expressed have not been elucidated. Here, we found that the excision of CP4-57 prophage adjacent to E. coli ssrA leads to the inactivation of tmRNA and switches the primary rescue pathway from trans-translation to ArfA/RF2. This "rescue-switching" rearranges not only the proteome landscape in E. coli but also the phenotype such as motility. Furthermore, among the proteins with significantly increased abundance in the ArfA+ cells, we found ZntR, whose mRNA is transcribed together as the upstream part of nonstop arfA mRNA. Repression of ZntR and reconstituted model genes depends on the translation of the downstream nonstop ORFs that trigger the trans-translation-coupled exonucleolytic degradation by polynucleotide phosphorylase (PNPase). Namely, our studies provide a novel example of trans-translation-dependent regulation and re-define the physiological roles of prophage excision.
Collapse
Affiliation(s)
- Haruka Onodera
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tatsuya Niwa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuhei Chadani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
12
|
Mohanty BK, Kushner SR. Processing of the alaW alaX operon encoding the Ala2 tRNAs in Escherichia coli requires both RNase E and RNase P. Mol Microbiol 2022; 118:698-715. [PMID: 36268779 DOI: 10.1111/mmi.14991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023]
Abstract
The alaW alaX operon encodes the Ala2 tRNAs, one of the two alanine tRNA isotypes in Escherichia coli. Our previous RNA-seq study showed that alaW alaX dicistronic RNA levels increased significantly in the absence of both RNase P and poly(A) polymerase I (PAP I), suggesting a role of polyadenylation in its stability. In this report, we show that RNase E initiates the processing of the primary alaW alaX precursor RNA by removing the Rho-independent transcription terminator, which appears to be the rate limiting step in the separation and maturation of the Ala2 pre-tRNAs by RNase P. Failure to separate the alaW and alaX pre-tRNAs by RNase P leads to poly(A)-mediated degradation of the dicistronic RNAs by polynucleotide phosphorylase (PNPase) and RNase R. Surprisingly, the thermosensitive RNase E encoded by the rne-1 allele is highly efficient in removing the terminator (>99%) at the nonpermissive temperature suggesting a significant caveat in experiments using this allele. Together, our data present a comprehensive picture of the Ala2 tRNA processing pathway and demonstrate that unprocessed RNase P substrates are degraded via a poly(A) mediated decay pathway.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Sidney R Kushner
- Department of Genetics, University of Georgia, Athens, Georgia, USA.,Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
13
|
Mandell ZF, Zemba D, Babitzke P. Factor-stimulated intrinsic termination: getting by with a little help from some friends. Transcription 2022; 13:96-108. [PMID: 36154805 PMCID: PMC9715273 DOI: 10.1080/21541264.2022.2127602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023] Open
Abstract
Transcription termination is known to occur via two mechanisms in bacteria, intrinsic termination (also frequently referred to as Rho-independent or factor-independent termination) and Rho-dependent termination. Based primarily on in vitro studies using Escherichia coli RNA polymerase, it was generally assumed that intrinsic termination and Rho-dependent termination are distinct mechanisms and that the signals required for intrinsic termination are present primarily within the nucleic acids. In this review, we detail recent findings from studies in Bacillus subtilis showing that intrinsic termination in this organism is highly stimulated by NusA, NusG, and even Rho. In NusA-stimulated intrinsic termination, NusA facilitates the formation of weak terminator hairpins and compensates for distal U-rich tract interruptions. In NusG-stimulated intrinsic termination, NusG stabilizes a sequence-dependent pause at the point of termination, which extends the time frame for RNA hairpins with weak terminal base pairs to form in either a NusA-stimulated or a NusA-independent fashion. In Rho-stimulated intrinsic termination, Rho prevents the formation of antiterminator-like RNA structures that could otherwise compete with the terminator hairpin. Combined, NusA, NusG, and Rho stimulate approximately 97% of all intrinsic terminators in B. subtilis. Thus, the general view that intrinsic termination is primarily a factor-independent process needs to be revised to account for recent findings. Moreover, the historical distinction between Rho-dependent and intrinsic termination is overly simplistic and needs to be modernized.
Collapse
Affiliation(s)
- Zachary F. Mandell
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Department of Molecular Biology and Genetics and Department of Biology, Johns Hopkins University, Baltimore, MD, United State
| | - Dani Zemba
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
14
|
The absence of PNPase activity in Enterococcus faecalis results in alterations of the bacterial cell-wall but induces high proteolytic and adhesion activities. Gene 2022; 833:146610. [PMID: 35609794 DOI: 10.1016/j.gene.2022.146610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022]
Abstract
Enterococci are lactic acid bacteria (LAB) used as starters and probiotics, delineating their positive attributes. Nevertheless, enterococci can be culprit for thousands of infectious diseases, including urinary tract infections, bacteremia and endocarditis. Here, we aim to determine the impact of polynucleotide phosphorylase (PNPase) in the biology of Enterococcus faecalis 14; a human isolate from meconium. Thus, a mutant strain deficient in PNPase synthesis, named ΔpnpA mutant, was genetically obtained. After that, a transcriptomic study revealed a set of 244 genes differentially expressed in the ΔpnpA mutant compared with the wild-type strain, when exploiting RNAs extracted from these strains after 3 and 6 h of growth. Differentially expressed genes include those involved in cell wall synthesis, adhesion, biofilm formation, bacterial competence and conjugation, stress response, transport, DNA repair and many other functions related to the primary and secondary metabolism of the bacteria. Moreover, the ΔpnpA mutant showed an altered cell envelope ultrastructure compared with the WT strain, and is also distinguished by a strong adhesion capacity on eukaryotic cell as well as a high proteolytic activity. This study, which combines genetics, physiology and transcriptomics enabled us to show further biological functions that could be directly or indirectly controlled by the PNPase in E. faecalis 14.
Collapse
|
15
|
Menendez-Gil P, Catalan-Moreno A, Caballero CJ, Toledo-Arana A. Staphylococcus aureus ftnA 3'-Untranslated Region Modulates Ferritin Production Facilitating Growth Under Iron Starvation Conditions. Front Microbiol 2022; 13:838042. [PMID: 35572681 PMCID: PMC9093591 DOI: 10.3389/fmicb.2022.838042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Iron acquisition and modulation of its intracellular concentration are critical for the development of all living organisms. So far, several proteins have been described to be involved in iron homeostasis. Among them, ferritins act as the major iron storage proteins, sequestering internalized iron and modulating its concentration inside bacterial cells. We previously described that the deletion of the 3’-untranslated region (3’UTR) of the ftnA gene, which codes for ferritin in Staphylococcus aureus, increased the ftnA mRNA and ferritin levels. Here, we show that the ferritin levels are affected by RNase III and PNPase, which target the ftnA 3’UTR. Rifampicin mRNA stability experiments revealed that the half-life of the ftnA mRNA is affected by both RNase III and the ftnA 3’UTR. A transcriptional fusion of the ftnA 3’UTR to the gfp reporter gene decreased green fluorescent protein (GFP) expression, indicating that the ftnA 3’UTR could work as an independent module. Additionally, a chromosomal deletion of the ftnA 3’UTR impaired S. aureus growth under conditions of iron starvation. Overall, this work highlights the biological relevance of the ftnA 3’UTR for iron homeostasis in S. aureus.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Arancha Catalan-Moreno
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Carlos J Caballero
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| |
Collapse
|
16
|
Chhabra S, Mandell ZF, Liu B, Babitzke P, Bechhofer DH. Analysis of mRNA Decay Intermediates in Bacillus subtilis 3' Exoribonuclease and RNA Helicase Mutant Strains. mBio 2022; 13:e0040022. [PMID: 35311531 PMCID: PMC9040804 DOI: 10.1128/mbio.00400-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
The Bacillus subtilis genome encodes four 3' exoribonucleases: polynucleotide phosphorylase (PNPase), RNase R, RNase PH, and YhaM. Previous work showed that PNPase, encoded by the pnpA gene, is the major 3' exonuclease involved in mRNA turnover; in a pnpA deletion strain, numerous mRNA decay intermediates accumulate. Whether B. subtilis mRNA decay occurs in the context of a degradosome complex is controversial. In this study, global mapping of mRNA decay intermediate 3' ends within coding sequences was performed in strains that were either deleted for or had an inactivating point mutation in the pnpA gene. The patterns of 3'-end accumulation in these strains were highly similar, which may have implications for the role of a degradosome in mRNA decay. A comparison with mapped 3' ends in a strain lacking CshA, the major RNA helicase, indicated that many mRNAs require both PNPase and CshA for efficient decay. Transcriptome sequencing (RNA-seq) analysis of strains lacking RNase R suggested that this enzyme did not play a major role in mRNA turnover in the wild-type strain. Strains were constructed that contained only one of the four known 3' exoribonucleases. When RNase R was the only 3' exonuclease present, it was able to degrade a model mRNA efficiently, showing processive decay even through a strong stem-loop structure that inhibits PNPase processivity. Strains containing only RNase PH or only YhaM were also insensitive to this RNA secondary structure, suggesting the existence of another, as-yet-unidentified, 3' exoribonuclease. IMPORTANCE The ability to rapidly change bacterial gene expression programs in response to environmental conditions is highly dependent on the efficient turnover of mRNA. While much is known about the regulation of gene expression at the transcriptional and translational levels, much less is known about the intermediate step of mRNA decay. Here, we mapped the 3' ends of mRNA decay intermediates in strains that were missing the major 3' exoribonuclease PNPase or the RNA helicase CshA. We also assessed the roles of three other B. subtilis 3' exonucleases in the mRNA decay process. The data confirm the primary role of PNPase in mRNA turnover and suggest the involvement of one or more unknown RNases.
Collapse
Affiliation(s)
- Shivani Chhabra
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| | - Zachary F. Mandell
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, University Park, Pennsylvania, USA
| | - Bo Liu
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| | - Paul Babitzke
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, University Park, Pennsylvania, USA
| | - David H. Bechhofer
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| |
Collapse
|
17
|
Mohanty BK, Kushner SR. Regulation of mRNA decay in E. coli. Crit Rev Biochem Mol Biol 2022; 57:48-72. [PMID: 34547957 PMCID: PMC9973670 DOI: 10.1080/10409238.2021.1968784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Detailed studies of the Gram-negative model bacterium, Escherichia coli, have demonstrated that post-transcriptional events exert important and possibly greater control over gene regulation than transcription initiation or effective translation. Thus, over the past 30 years, considerable effort has been invested in understanding the pathways of mRNA turnover in E. coli. Although it is assumed that most of the ribonucleases and accessory proteins involved in mRNA decay have been identified, our understanding of the regulation of mRNA decay is still incomplete. Furthermore, the vast majority of the studies on mRNA decay have been conducted on exponentially growing cells. Thus, the mechanism of mRNA decay as currently outlined may not accurately reflect what happens when cells find themselves under a variety of stress conditions, such as, nutrient starvation, changes in pH and temperature, as well as a host of others. While the cellular machinery for degradation is relatively constant over a wide range of conditions, intracellular levels of specific ribonucleases can vary depending on the growth conditions. Substrate competition will also modulate ribonucleolytic activity. Post-transcriptional modifications of transcripts by polyadenylating enzymes may favor a specific ribonuclease activity. Interactions with small regulatory RNAs and RNA binding proteins add additional complexities to mRNA functionality and stability. Since many of the ribonucleases are found at the inner membrane, the physical location of a transcript may help determine its half-life. Here we discuss the properties and role of the enzymes involved in mRNA decay as well as the multiple factors that may affect mRNA decay under various in vivo conditions.
Collapse
Affiliation(s)
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens GA 30602
- Department of Microbiology, University of Georgia, Athens GA 30602
| |
Collapse
|
18
|
Falchi FA, Pizzoccheri R, Briani F. Activity and Function in Human Cells of the Evolutionary Conserved Exonuclease Polynucleotide Phosphorylase. Int J Mol Sci 2022; 23:ijms23031652. [PMID: 35163574 PMCID: PMC8836086 DOI: 10.3390/ijms23031652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Polynucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. Human PNPase (hPNPase) is located in mitochondria and is essential for mitochondrial function and homeostasis. Not surprisingly, mutations in the PNPT1 gene, encoding hPNPase, cause serious diseases. hPNPase has been implicated in a plethora of processes taking place in different cell compartments and involving other proteins, some of which physically interact with hPNPase. This paper reviews hPNPase RNA binding and catalytic activity in relation with the protein structure and in comparison, with the activity of bacterial PNPases. The functions ascribed to hPNPase in different cell compartments are discussed, highlighting the gaps that still need to be filled to understand the physiological role of this ancient protein in human cells.
Collapse
|
19
|
Abstract
Ribonucleases (RNases) are essential for almost every aspect of RNA metabolism. However, despite their important metabolic roles, RNases can also be destructive enzymes. As a consequence, cells must carefully regulate the amount, the activity, and the localization of RNases to avoid the inappropriate degradation of essential RNA molecules. In addition, bacterial cells often must adjust RNase levels as environmental situations demand, also requiring careful regulation of these critical enzymes. As the need for strict control of RNases has become more evident, multiple mechanisms for this regulation have been identified and studied, and these are described in this review. The major conclusion that emerges is that no common regulatory mechanism applies to all RNases, or even to a family of RNases; rather, a wide variety of processes have evolved that act on these enzymes, and in some cases, multiple regulatory mechanisms can even act on a single RNase. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Murray P Deutscher
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA;
| |
Collapse
|
20
|
Athapattu US, Amarasekara CA, Immel JR, Bloom S, Barany F, Nagel AC, Soper SA. Solid-phase XRN1 reactions for RNA cleavage: application in single-molecule sequencing. Nucleic Acids Res 2021; 49:e41. [PMID: 33511416 PMCID: PMC8053086 DOI: 10.1093/nar/gkab001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
Modifications in RNA are numerous (∼170) and in higher numbers compared to DNA (∼5) making the ability to sequence an RNA molecule to identify these modifications highly tenuous using next generation sequencing (NGS). The ability to immobilize an exoribonuclease enzyme, such as XRN1, to a solid support while maintaining its activity and capability to cleave both the canonical and modified ribonucleotides from an intact RNA molecule can be a viable approach for single-molecule RNA sequencing. In this study, we report an enzymatic reactor consisting of covalently attached XRN1 to a solid support as the groundwork for a novel RNA exosequencing technique. The covalent attachment of XRN1 to a plastic solid support was achieved using EDC/NHS coupling chemistry. Studies showed that the solid-phase digestion efficiency of model RNAs was 87.6 ± 2.8%, while the XRN1 solution-phase digestion for the same model was 78.3 ± 4.4%. The ability of immobilized XRN1 to digest methylated RNA containing m6A and m5C ribonucleotides was also demonstrated. The processivity and clipping rate of immobilized XRN1 secured using single-molecule fluorescence measurements of a single RNA transcript demonstrated a clipping rate of 26 ± 5 nt s-1 and a processivity of >10.5 kb at 25°C.
Collapse
Affiliation(s)
| | | | - Jacob R Immel
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | | | - Steven A Soper
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Sunflower Genomics, Inc., Lawrence, KS 66047, USA
- Department of Mechanical Engineering and Bioengineering, University of Kansas, Lawrence, KS 66045, USA
- Department of Cancer Biology and KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
21
|
Cetnar DP, Salis HM. Systematic Quantification of Sequence and Structural Determinants Controlling mRNA stability in Bacterial Operons. ACS Synth Biol 2021; 10:318-332. [PMID: 33464822 DOI: 10.1021/acssynbio.0c00471] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
mRNA degradation is a central process that affects all gene expression levels, and yet, the determinants that control mRNA decay rates remain poorly characterized. Here, we applied a synthetic biology, learn-by-design approach to elucidate the sequence and structural determinants that control mRNA stability in bacterial operons. We designed, constructed, and characterized 82 operons in Escherichia coli, systematically varying RNase binding site characteristics, translation initiation rates, and transcriptional terminator efficiencies in the 5' untranslated region (UTR), intergenic, and 3' UTR regions, followed by measuring their mRNA levels using reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays during exponential growth. We show that introducing long single-stranded RNA into 5' UTRs reduced mRNA levels by up to 9.4-fold and that lowering translation rates reduced mRNA levels by up to 11.8-fold. We also found that RNase binding sites in intergenic regions had much lower effects on mRNA levels. Surprisingly, changing the transcriptional termination efficiency or introducing long single-stranded RNA into 3' UTRs had no effect on upstream mRNA levels. From these measurements, we developed and validated biophysical models of ribosome protection and RNase activity with excellent quantitative agreement. We also formulated design rules to rationally control a mRNA's stability, facilitating the automated design of engineered genetic systems with desired functionalities.
Collapse
|
22
|
Ingle S, Chhabra S, Laspina D, Salvo E, Liu B, Bechhofer DH. Polynucleotide phosphorylase and RNA helicase CshA cooperate in Bacillus subtilis mRNA decay. RNA Biol 2020; 18:1692-1701. [PMID: 33323028 DOI: 10.1080/15476286.2020.1864183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Polynucleotide phosphorylase (PNPase), a 3' exoribonuclease that degrades RNA in the 3'-to-5' direction, is the major mRNA decay activity in Bacillus subtilis. PNPase is known to be inhibited in vitro by strong RNA secondary structure, and rapid mRNA turnover in vivo is thought to require an RNA helicase activity working in conjunction with PNPase. The most abundant RNA helicase in B. subtilis is CshA. We found for three small, monocistronic mRNAs that, for some RNA sequences, PNPase processivity was unimpeded even without CshA, whereas others required CshA for efficient degradation. A novel colour screen for decay of mRNA in B. subtilis was created, using mRNA encoded by the slrA gene, which is degraded from its 3' end by PNPase. A significant correlation between the predicted strength of a stem-loop structure, located in the body of the message, and PNPase processivity was observed. Northern blot analysis confirmed that PNPase processivity was greatly hindered by the internal RNA structure, and even more so in the absence of CshA. Three other B. subtilis RNA helicases did not appear to be involved in mRNA decay during vegetative growth. The results confirm the hypothesis that efficient 3' exonucleolytic decay of B. subtilis RNA depends on the combined activity of PNPase and CshA.
Collapse
Affiliation(s)
- Shakti Ingle
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, NY, USA
| | - Shivani Chhabra
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, NY, USA
| | - Denise Laspina
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, NY, USA
| | - Elizabeth Salvo
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, NY, USA
| | - Bo Liu
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, NY, USA
| | - David H Bechhofer
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, NY, USA
| |
Collapse
|
23
|
Abstract
Ro60 ribonucleoproteins (RNPs), composed of the ring-shaped Ro 60-kDa (Ro60) protein and noncoding RNAs called Y RNAs, are present in all three domains of life. Ro60 was first described as an autoantigen in patients with rheumatic disease, and Ro60 orthologs have been identified in 3% to 5% of bacterial genomes, spanning the majority of phyla. Their functions have been characterized primarily in Deinococcus radiodurans, the first sequenced bacterium with a recognizable ortholog. In D. radiodurans, the Ro60 ortholog enhances the ability of 3'-to-5' exoribonucleases to degrade structured RNA during several forms of environmental stress. Y RNAs are regulators that inhibit or allow the interactions of Ro60 with other proteins and RNAs. Studies of Ro60 RNPs in other bacteria hint at additional functions, since the most conserved Y RNA contains a domain that is a close tRNA mimic and Ro60 RNPs are often encoded adjacent to components of RNA repair systems.
Collapse
Affiliation(s)
- Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| | - Kevin Hughes
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Xinguo Chen
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| |
Collapse
|
24
|
Li J, Hou Y, Gu X, Yue L, Guo L, Li D, Dong X. A newly identified duplex RNA unwinding activity of archaeal RNase J depends on processive exoribonucleolysis coupled steric occlusion by its structural archaeal loops. RNA Biol 2020; 17:1480-1491. [PMID: 32552320 DOI: 10.1080/15476286.2020.1777379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
RNase J is a prokaryotic 5'-3' exo/endoribonuclease that functions in mRNA decay and rRNA maturation. Here, we report a novel duplex unwinding activity of mpy-RNase J, an archaeal RNase J from Methanolobus psychrophilus, which enables it to degrade duplex RNAs with hairpins up to 40 bp when linking a 5' single-stranded overhangs of ≥ 7 nt, corresponding to the RNA channel length. A 6-nt RNA-mpy-RNase J-S247A structure reveals the RNA-interacting residues and a steric barrier at the RNA channel entrance comprising two archaeal loops and two helices. Mutagenesis of the residues key to either exoribonucleolysis or RNA translocation diminished the duplex unwinding activity. Substitution of the residues in the steric barrier yielded stalled degradation intermediates at the duplex RNA regions. Thus, an exoribonucleolysis-driven and steric occlusion-based duplex unwinding mechanism was identified. The duplex unwinding activity confers mpy-RNase J the capability of degrading highly structured RNAs, including the bacterial REP RNA, and archaeal mRNAs, rRNAs, tRNAs, SRPs, RNase P and CD-box RNAs, providing an indicative of the potential key roles of mpy-RNase J in pleiotropic RNA metabolisms. Hydrolysis-coupled duplex unwinding activity was also detected in a bacterial RNase J, which may use a shared but slightly different unwinding mechanism from archaeal RNase Js, indicating that duplex unwinding is a common property of the prokaryotic RNase Js.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,Colleges of Life Sciences, University of Chinese Academy of Sciences , Beijing, China
| | - Yanjie Hou
- Institute of Biophysics, Chinese Academy of Sciences , Beijing, PR China
| | - Xien Gu
- School of Basic Medical Sciences, Hubei University of Medicine , Shiyan, China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,Colleges of Life Sciences, University of Chinese Academy of Sciences , Beijing, China
| | - Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China
| | - Defeng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,Colleges of Life Sciences, University of Chinese Academy of Sciences , Beijing, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,Colleges of Life Sciences, University of Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
25
|
Broglia L, Lécrivain AL, Renault TT, Hahnke K, Ahmed-Begrich R, Le Rhun A, Charpentier E. An RNA-seq based comparative approach reveals the transcriptome-wide interplay between 3'-to-5' exoRNases and RNase Y. Nat Commun 2020; 11:1587. [PMID: 32221293 PMCID: PMC7101322 DOI: 10.1038/s41467-020-15387-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/29/2020] [Indexed: 11/29/2022] Open
Abstract
RNA degradation is an essential process that allows bacteria to control gene expression and adapt to various environmental conditions. It is usually initiated by endoribonucleases (endoRNases), which produce intermediate fragments that are subsequently degraded by exoribonucleases (exoRNases). However, global studies of the coordinated action of these enzymes are lacking. Here, we compare the targetome of endoRNase Y with the targetomes of 3′-to-5′ exoRNases from Streptococcus pyogenes, namely, PNPase, YhaM, and RNase R. We observe that RNase Y preferentially cleaves after guanosine, generating substrate RNAs for the 3′-to-5′ exoRNases. We demonstrate that RNase Y processing is followed by trimming of the newly generated 3′ ends by PNPase and YhaM. Conversely, the RNA 5′ ends produced by RNase Y are rarely further trimmed. Our strategy enables the identification of processing events that are otherwise undetectable. Importantly, this approach allows investigation of the intricate interplay between endo- and exoRNases on a genome-wide scale. Bacterial RNA degradation is typically initiated by endoribonucleases and followed by exoribonucleases. Here the authors report the targetome of endoRNase Y in Streptococcus pyogenes, revealing the interplay between RNase Y and 3′-to-5′ exoribonuclease PNPase and YhaM.
Collapse
Affiliation(s)
- Laura Broglia
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany.,Institute for Biology, Humboldt University, D-10115, Berlin, Germany
| | - Anne-Laure Lécrivain
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, S-90187, Umeå, Sweden
| | - Thibaud T Renault
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany.,Institute for Biology, Humboldt University, D-10115, Berlin, Germany
| | - Karin Hahnke
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany
| | - Rina Ahmed-Begrich
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany
| | - Anaïs Le Rhun
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany. .,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany.
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany. .,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany. .,Institute for Biology, Humboldt University, D-10115, Berlin, Germany. .,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, S-90187, Umeå, Sweden.
| |
Collapse
|
26
|
Spoelstra W, van der Sluis EO, Dogterom M, Reese L. Nonspherical Coacervate Shapes in an Enzyme-Driven Active System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1956-1964. [PMID: 31995710 PMCID: PMC7057537 DOI: 10.1021/acs.langmuir.9b02719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/27/2020] [Indexed: 04/14/2023]
Abstract
Coacervates are polymer-rich droplets that form through liquid-liquid phase separation in polymer solutions. Liquid-liquid phase separation and coacervation have recently been shown to play an important role in the organization of biological systems. Such systems are highly dynamic and under continuous influence of enzymatic and chemical processes. However, it is still unclear how enzymatic and chemical reactions affect the coacervation process. Here, we present and characterize a system of enzymatically active coacervates containing spermine, RNA, free nucleotides, and the template independent RNA (de)polymerase PNPase. We find that these RNA coacervates display transient nonspherical shapes, and we systematically study how PNPase concentration, UDP concentration, and temperature affect coacervate morphology. Furthermore, we show that PNPase localizes predominantly into the coacervate phase and that its depolymerization activity in high-phosphate buffer causes coacervate degradation. Our observations of nonspherical coacervate shapes may have broader implications for the relationship between (bio)chemical activity and coacervate biology.
Collapse
Affiliation(s)
- Willem
Kasper Spoelstra
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Eli O. van der Sluis
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Marileen Dogterom
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Louis Reese
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2628 CJ Delft, The Netherlands
| |
Collapse
|
27
|
Viegas SC, Matos RG, Arraiano CM. The Bacterial Counterparts of the Eukaryotic Exosome: An Evolutionary Perspective. Methods Mol Biol 2020; 2062:37-46. [PMID: 31768970 DOI: 10.1007/978-1-4939-9822-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There are striking similarities between the processes of RNA degradation in bacteria and eukaryotes, which rely on the same basic set of enzymatic activities. In particular, enzymes that catalyze 3'→5' RNA decay share evolutionary relationships across the three domains of life. Over the years, a large body of biochemical and structural data has been generated that elucidated the mechanism of action of these enzymes. In this overview, to trace the evolutionary origins of the multisubunit RNA exosome complex, we compare the structural and functional characteristics of the eukaryotic and prokaryotic exoribonucleolytic activities.
Collapse
Affiliation(s)
- Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| |
Collapse
|
28
|
Defining the impact of exoribonucleases in the shift between exponential and stationary phases. Sci Rep 2019; 9:16271. [PMID: 31700028 PMCID: PMC6838162 DOI: 10.1038/s41598-019-52453-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/12/2019] [Indexed: 01/26/2023] Open
Abstract
The transition between exponential and stationary phase is a natural phenomenon for all bacteria and requires a massive readjustment of the bacterial transcriptome. Exoribonucleases are key enzymes in the transition between the two growth phases. PNPase, RNase R and RNase II are the major degradative exoribonucleases in Escherichia coli. We analysed the whole transcriptome of exponential and stationary phases from the WT and mutants lacking these exoribonucleases (Δpnp, Δrnr, Δrnb, and ΔrnbΔrnr). When comparing the cells from exponential phase with the cells from stationary phase more than 1000 transcripts were differentially expressed, but only 491 core transcripts were common to all strains. There were some differences in the number and transcripts affected depending on the strain, suggesting that exoribonucleases influence the transition between these two growth phases differently. Interestingly, we found that the double mutant RNase II/RNase R is similar to the RNase R single mutant in exponential phase while in stationary phase it seems to be closer to the RNase II single mutant. This is the first global transcriptomic work comparing the roles of exoribonucleases in the transition between exponential and stationary phase.
Collapse
|
29
|
Mohanty BK, Kushner SR. New Insights into the Relationship between tRNA Processing and Polyadenylation in Escherichia coli. Trends Genet 2019; 35:434-445. [PMID: 31036345 PMCID: PMC7368558 DOI: 10.1016/j.tig.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 11/30/2022]
Abstract
Recent studies suggest that poly(A) polymerase I (PAP I)-mediated polyadenylation in Escherichia coli is highly prevalent among mRNAs as well as tRNA precursors. Primary tRNA transcripts are initially processed endonucleolytically to generate pre-tRNA species, which undergo 5'-end maturation by the ribozyme RNase P. Subsequently, a group of 3' → 5' exonucleases mature the 3' ends of the majority of tRNAs with few exceptions. PAP I competes with the 3' → 5' exonucleases for pre-tRNA substrates adding short poly(A) tails, which not only modulate the stability of the pre-tRNAs, but also regulate the availability of functional tRNAs. In this review, we discuss the recent discoveries of new tRNA processing pathways and the implications of polyadenylation in tRNA metabolism in E. coli.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, GA 30605, USA
| | - Sidney R Kushner
- Department of Genetics, University of Georgia, Athens, GA 30605, USA; Department of Microbiology, University of Georgia, Athens, GA 30605, USA.
| |
Collapse
|
30
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
31
|
Dressaire C, Pobre V, Laguerre S, Girbal L, Arraiano CM, Cocaign-Bousquet M. PNPase is involved in the coordination of mRNA degradation and expression in stationary phase cells of Escherichia coli. BMC Genomics 2018; 19:848. [PMID: 30486791 PMCID: PMC6264599 DOI: 10.1186/s12864-018-5259-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/16/2018] [Indexed: 12/02/2022] Open
Abstract
Background Exoribonucleases are crucial for RNA degradation in Escherichia coli but the roles of RNase R and PNPase and their potential overlap in stationary phase are not well characterized. Here, we used a genome-wide approach to determine how RNase R and PNPase affect the mRNA half-lives in the stationary phase. The genome-wide mRNA half-lives were determined by a dynamic analysis of transcriptomes after transcription arrest. We have combined the analysis of mRNA half-lives with the steady-state concentrations (transcriptome) to provide an integrated overview of the in vivo activity of these exoribonucleases at the genome-scale. Results The values of mRNA half-lives demonstrated that the mRNAs are very stable in the stationary phase and that the deletion of RNase R or PNPase caused only a limited mRNA stabilization. Intriguingly the absence of PNPase provoked also the destabilization of many mRNAs. These changes in mRNA half-lives in the PNPase deletion strain were associated with a massive reorganization of mRNA levels and also variation in several ncRNA concentrations. Finally, the in vivo activity of the degradation machinery was found frequently saturated by mRNAs in the PNPase mutant unlike in the RNase R mutant, suggesting that the degradation activity is limited by the deletion of PNPase but not by the deletion of RNase R. Conclusions This work had identified PNPase as a central player associated with mRNA degradation in stationary phase. Electronic supplementary material The online version of this article (10.1186/s12864-018-5259-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clémentine Dressaire
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | | | - Laurence Girbal
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - Cecilia Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | | |
Collapse
|
32
|
Abstract
To cope with harsh environments and cause infection, bacteria need to constantly adjust gene expression. Ribonucleases (RNases) control the abundance of regulatory and protein-coding RNA through degradation and maturation. The current characterization of 3′-to-5′ exoribonucleases (exoRNases), processing RNAs from their 3′ end, is solely based on the description of a limited number of targets processed by these RNases. Here, we characterized bacterial 3′-to-5′ exoRNase targetomes. We show that YhaM, polynucleotide phosphorylase (PNPase), and RNase R have exoribonucleolytic activities in the human pathogen Streptococcus pyogenes. We demonstrate that PNPase is the main 3′-to-5′ exoRNase participating in RNA decay, we show that RNase R has a limited processing activity, and we describe an intriguing RNA processing behavior for YhaM. mRNA decay plays an essential role in the control of gene expression in bacteria. Exoribonucleases (exoRNases), which trim transcripts starting from the 5′ or 3′ end, are particularly important to fully degrade unwanted transcripts and renew the pool of nucleotides available in the cell. While recent techniques have allowed genome-wide identification of ribonuclease (RNase) targets in bacteria in vivo, none of the 3′-to-5′ exoRNase targetomes (i.e., global processing sites) have been studied so far. Here, we report the targetomes of YhaM, polynucleotide phosphorylase (PNPase), and RNase R of the human pathogen Streptococcus pyogenes. We determined that YhaM is an unspecific enzyme that trims a few nucleotides and targets the majority of transcript ends, generated either by transcription termination or by endonucleolytic activity. The molecular determinants for YhaM-limited processivity are yet to be deciphered. We showed that PNPase clears the cell from mRNA decay fragments produced by endoribonucleases (endoRNases) and is the major 3′-to-5′ exoRNase for RNA turnover in S. pyogenes. In particular, PNPase is responsible for the degradation of regulatory elements from 5′ untranslated regions. However, we observed little RNase R activity in standard culture conditions. Overall, our study sheds light on the very distinct features of S. pyogenes 3′-to-5′ exoRNases.
Collapse
|
33
|
Cameron TA, Matz LM, De Lay NR. Polynucleotide phosphorylase: Not merely an RNase but a pivotal post-transcriptional regulator. PLoS Genet 2018; 14:e1007654. [PMID: 30307990 PMCID: PMC6181284 DOI: 10.1371/journal.pgen.1007654] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Almost 60 years ago, Severo Ochoa was awarded the Nobel Prize in Physiology or Medicine for his discovery of the enzymatic synthesis of RNA by polynucleotide phosphorylase (PNPase). Although this discovery provided an important tool for deciphering the genetic code, subsequent work revealed that the predominant function of PNPase in bacteria and eukaryotes is catalyzing the reverse reaction, i.e., the release of ribonucleotides from RNA. PNPase has a crucial role in RNA metabolism in bacteria and eukaryotes mainly through its roles in processing and degrading RNAs, but additional functions in RNA metabolism have recently been reported for this enzyme. Here, we discuss these established and noncanonical functions for PNPase and the possibility that the major impact of PNPase on cell physiology is through its unorthodox roles.
Collapse
Affiliation(s)
- Todd A. Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Lisa M. Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Nicholas R. De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Pobre V, Arraiano CM. Characterizing the Role of Exoribonucleases in the Control of Microbial Gene Expression: Differential RNA-Seq. Methods Enzymol 2018; 612:1-24. [PMID: 30502937 DOI: 10.1016/bs.mie.2018.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Differential RNA-Seq is a next-generation technology method to determine the significant transcriptomic differences between two and more samples. With this method it is possible to analyze the total RNA content of different samples making it the best global analysis method currently available to study the roles of exoribonucleases in the cell. These enzymes are responsible for the RNA processing and degradation in the cells and therefore affect the total RNA pool in ways not yet fully understood. In Escherichia coli there are three main degradative exoribonucleases RNase II, RNase R, and PNPase that degrade the RNA from the 3' to the 5'-end. These enzymes have several roles in the cell and even though they are degradative enzymes RNase II and PNPase can also protect some RNAs from degradation and PNPase can also act as an RNA polymerase under some conditions. The multiplicity of roles of these exoribonucleases leads to a very high number of transcripts that are affected by their absence in the cell. With the differential RNA-Seq it is possible to obtain a much deeper understanding of how these enzymes work and regulate the bacterial gene expression. In this chapter we have described a differential RNA-Seq data analysis protocol applied to the study of exoribonucleases. We also included the protocol for experimental validation of the RNA-Seq data using qPCR and motility assays. Although the methods described in this chapter were applied to the study of the exoribonucleases, they can also be used for other differential RNA-Seq studies.
Collapse
Affiliation(s)
- Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
35
|
Dos Santos RF, Quendera AP, Boavida S, Seixas AF, Arraiano CM, Andrade JM. Major 3'-5' Exoribonucleases in the Metabolism of Coding and Non-coding RNA. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:101-155. [PMID: 30340785 DOI: 10.1016/bs.pmbts.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
3'-5' exoribonucleases are key enzymes in the degradation of superfluous or aberrant RNAs and in the maturation of precursor RNAs into their functional forms. The major bacterial 3'-5' exoribonucleases responsible for both these activities are PNPase, RNase II and RNase R. These enzymes are of ancient nature with widespread distribution. In eukaryotes, PNPase and RNase II/RNase R enzymes can be found in the cytosol and in mitochondria and chloroplasts; RNase II/RNase R-like enzymes are also found in the nucleus. Humans express one PNPase (PNPT1) and three RNase II/RNase R family members (Dis3, Dis3L and Dis3L2). These enzymes take part in a multitude of RNA surveillance mechanisms that are critical for translation accuracy. Although active against a wide range of both coding and non-coding RNAs, the different 3'-5' exoribonucleases exhibit distinct substrate affinities. The latest studies on these RNA degradative enzymes have contributed to the identification of additional homologue proteins, the uncovering of novel RNA degradation pathways, and to a better comprehension of several disease-related processes and response to stress, amongst many other exciting findings. Here, we provide a comprehensive and up-to-date overview on the function, structure, regulation and substrate preference of the key 3'-5' exoribonucleases involved in RNA metabolism.
Collapse
Affiliation(s)
- Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia Boavida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
36
|
Endo S, Maeda T, Kawame T, Iwai N, Wachi M. RNase E/G-dependent degradation of metE mRNA, encoding methionine synthase, in Corynebacterium glutamicum. J GEN APPL MICROBIOL 2018; 65:47-52. [PMID: 29984738 DOI: 10.2323/jgam.2018.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Corynebacterium glutamicum is used for the industrial production of various metabolites, including L-glutamic acid and L-lysine. With the aim of understanding the post-transcriptional regulation of amino acid biosynthesis in this bacterium, we investigated the role of RNase E/G in the degradation of mRNAs encoding metabolic enzymes. In this study, we found that the cobalamin-independent methionine synthase MetE was overexpressed in ΔrneG mutant cells grown on various carbon sources. The level of metE mRNA was also approximately 6- to 10-fold higher in the ΔrneG mutant strain than in the wild-type strain. A rifampicin chase experiment showed that the half-life of metE mRNA was approximately 4.2 times longer in the ΔrneG mutant than in the wild-type strain. These results showed that RNase E/G is involved in the degradation of metE mRNA in C. glutamicum.
Collapse
Affiliation(s)
- Satoshi Endo
- Department of Life Science and Technology, Tokyo Institute of Technology
| | - Tomoya Maeda
- Department of Life Science and Technology, Tokyo Institute of Technology
| | - Takahiro Kawame
- Department of Life Science and Technology, Tokyo Institute of Technology
| | - Noritaka Iwai
- Department of Life Science and Technology, Tokyo Institute of Technology
| | - Masaaki Wachi
- Department of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
37
|
Holmqvist E, Li L, Bischler T, Barquist L, Vogel J. Global Maps of ProQ Binding In Vivo Reveal Target Recognition via RNA Structure and Stability Control at mRNA 3′ Ends. Mol Cell 2018; 70:971-982.e6. [DOI: 10.1016/j.molcel.2018.04.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022]
|
38
|
Mohanty BK, Kushner SR. Enzymes Involved in Posttranscriptional RNA Metabolism in Gram-Negative Bacteria. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0011-2017. [PMID: 29676246 PMCID: PMC5912700 DOI: 10.1128/microbiolspec.rwr-0011-2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 02/08/2023] Open
Abstract
Gene expression in Gram-negative bacteria is regulated at many levels, including transcription initiation, RNA processing, RNA/RNA interactions, mRNA decay, and translational controls involving enzymes that alter translational efficiency. In this review, we discuss the various enzymes that control transcription, translation, and RNA stability through RNA processing and degradation. RNA processing is essential to generate functional RNAs, while degradation helps control the steady-state level of each individual transcript. For example, all the pre-tRNAs are transcribed with extra nucleotides at both their 5' and 3' termini, which are subsequently processed to produce mature tRNAs that can be aminoacylated. Similarly, rRNAs that are transcribed as part of a 30S polycistronic transcript are matured to individual 16S, 23S, and 5S rRNAs. Decay of mRNAs plays a key role in gene regulation through controlling the steady-state level of each transcript, which is essential for maintaining appropriate protein levels. In addition, degradation of both translated and nontranslated RNAs recycles nucleotides to facilitate new RNA synthesis. To carry out all these reactions, Gram-negative bacteria employ a large number of endonucleases, exonucleases, RNA helicases, and poly(A) polymerase, as well as proteins that regulate the catalytic activity of particular RNases. Under certain stress conditions, an additional group of specialized endonucleases facilitate the cell's ability to adapt and survive. Many of the enzymes, such as RNase E, RNase III, polynucleotide phosphorylase, RNase R, and poly(A) polymerase I, participate in multiple RNA processing and decay pathways.
Collapse
Affiliation(s)
| | - Sidney R Kushner
- Department of Genetics
- Department of Microbiology, University of Georgia, Athens, GA 30602
| |
Collapse
|
39
|
Jones GH. Novel Aspects of Polynucleotide Phosphorylase Function in Streptomyces. Antibiotics (Basel) 2018; 7:antibiotics7010025. [PMID: 29562650 PMCID: PMC5872136 DOI: 10.3390/antibiotics7010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Polynucleotide phosphorylase (PNPase) is a 3′–5′-exoribnuclease that is found in most bacteria and in some eukaryotic organelles. The enzyme plays a key role in RNA decay in these systems. PNPase structure and function have been studied extensively in Escherichiacoli, but there are several important aspects of PNPase function in Streptomyces that differ from what is observed in E. coli and other bacterial genera. This review highlights several of those differences: (1) the organization and expression of the PNPase gene in Streptomyces; (2) the possible function of PNPase as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (3) the function of PNPase as both an exoribonuclease and as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (4) the function of (p)ppGpp as a PNPase effector in Streptomyces. The review concludes with a consideration of a number of unanswered questions regarding the function of Streptomyces PNPase, which can be examined experimentally.
Collapse
Affiliation(s)
- George H Jones
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
40
|
Casinhas J, Matos RG, Haddad N, Arraiano CM. Biochemical characterization of Campylobacter jejuni PNPase, an exoribonuclease important for bacterial pathogenicity. Biochimie 2018; 147:70-79. [PMID: 29339148 DOI: 10.1016/j.biochi.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Bacteria need to promptly respond to environmental changes. Ribonucleases (RNases) are key factors in the adaptation to new environments by enabling a rapid adjustment in RNA levels. The exoribonuclease polynucleotide phosphorylase (PNPase) is essential for low-temperature cell survival, affects the synthesis of proteins involved in virulence and has an important role in swimming, cell adhesion/invasion ability, and chick colonization in C. jejuni. However, the mechanism of action of this ribonuclease is not yet known. In this work we have characterized the biochemical activity of C. jejuni PNPase. Our results demonstrate that Cj-PNP is a processive 3' to 5' exoribonuclease that degrades single-stranded RNAs. Its activity is regulated according to the temperature and divalent ions. We have also shown that the KH and S1 domains are important for trimerization, RNA binding, and, consequently, for the activity of Cj-PNP. These findings will be helpful to develop new strategies for fighting against C. jejuni and may be extrapolated to other foodborne pathogens.
Collapse
Affiliation(s)
- Jorge Casinhas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Ava da República, 2780-157, Oeiras, Portugal.
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Ava da República, 2780-157, Oeiras, Portugal.
| | - Nabila Haddad
- SECALIM, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Ava da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
41
|
Zheng X, Feng N, Li D, Dong X, Li J. New molecular insights into an archaeal RNase J reveal a conserved processive exoribonucleolysis mechanism of the RNase J family. Mol Microbiol 2017; 106:351-366. [PMID: 28795788 DOI: 10.1111/mmi.13769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/26/2022]
Abstract
RNase J, a prokaryotic 5'-3' exo/endoribonuclease, contributes to mRNA decay, rRNA maturation and post-transcriptional regulation. Yet the processive-exoribonucleolysis mechanism remains obscure. Here, we solved the first RNA-free and RNA-bound structures of an archaeal RNase J, and through intensive biochemical studies provided detailed mechanistic insights into the catalysis and processivity. Distinct dimerization/tetramerization patterns were observed for archaeal and bacterial RNase Js, and unique archaeal Loops I and II were found involved in RNA interaction. A hydrogen-bond-network was identified for the first time that assists catalysis by facilitating efficient proton transfer in the catalytic center. A conserved 5'-monophosphate-binding pocket that coordinates the RNA 5'-end ensures the 5'-monophosphate preferential exoribonucleolysis. To achieve exoribonucleolytic processivity, the 5'-monophosphate-binding pocket and nucleotide +4 binding site anchor RNA within the catalytic track; the 5'-capping residue Leu37 of the sandwich pocket coupled with the 5'-monophosphate-binding pocket are dedicated to translocating and controlling the RNA orientation for each exoribonucleolytic cycle. The processive-exoribonucleolysis mechanism was verified as conserved in bacterial RNase J and also exposes striking parallels with the non-homologous eukaryotic 5'-3' exoribonuclease, Xrn1. The findings in this work shed light on not only the molecular mechanism of the RNase J family, but also the evolutionary convergence of divergent exoribonucleases.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China.,Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing 100049, China
| | - Na Feng
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Defeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
42
|
Mohanty BK, Petree JR, Kushner SR. Endonucleolytic cleavages by RNase E generate the mature 3' termini of the three proline tRNAs in Escherichia coli. Nucleic Acids Res 2016; 44:6350-62. [PMID: 27288443 PMCID: PMC5291269 DOI: 10.1093/nar/gkw517] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/30/2016] [Indexed: 11/12/2022] Open
Abstract
We demonstrate here for the first time that proline tRNA 3' end maturation in Escherichia coli employs a one-step endonucleolytic pathway that does not involve any of the six 3' → 5' exonucleases (RNase T, RNase PH, RNase D, RNase BN, RNase II and polynucleotide phosphorylase [PNPase]) to generate the mature CCA terminus. Rather, RNase E is primarily responsible for the endonucleolytic removal of the entire Rho-independent transcription terminator associated with the proK, proL and proM primary transcripts by cleaving immediately downstream of the CCA determinant. In the absence of RNase E, RNase G and RNase Z are weakly able to process the proK and proM transcripts, while PNPase and RNase P are utilized in the processing of proL The terminator fragment derived from the endonucleolytic cleavage of proL transcript is degraded through a PNPase-dependent pathway. It is not clear which enzymes degrade the proK and proM terminator fragments. Our data also suggest that the mature 5' nucleotide of the proline tRNAs may be responsible for the cleavage specificity of RNase E at the 3' terminus.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Jessica R Petree
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Sidney R Kushner
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
43
|
Abstract
Gram-negative and gram-positive bacteria use a variety of enzymatic pathways to degrade mRNAs. Although several recent reviews have outlined these pathways, much less attention has been paid to the regulation of mRNA decay. The functional half-life of a particular mRNA, which affects how much protein is synthesized from it, is determined by a combination of multiple factors. These include, but are not necessarily limited to, (a) stability elements at either the 5' or the 3' terminus, (b) posttranscriptional modifications, (c) ribosome density on individual mRNAs, (d) small regulatory RNA (sRNA) interactions with mRNAs, (e) regulatory proteins that alter ribonuclease binding affinities, (f) the presence or absence of endonucleolytic cleavage sites, (g) control of intracellular ribonuclease levels, and (h) physical location within the cell. Changes in physiological conditions associated with environmental alterations can significantly alter the impact of these factors in the decay of a particular mRNA.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, Georgia 30602;
| | - Sidney R Kushner
- Department of Genetics, University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
44
|
Maeda T, Tanaka Y, Takemoto N, Hamamoto N, Inui M. RNase III mediated cleavage of the coding region of mraZ mRNA is required for efficient cell division in Corynebacterium glutamicum. Mol Microbiol 2016; 99:1149-66. [PMID: 26713407 DOI: 10.1111/mmi.13295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/02/2015] [Indexed: 12/30/2022]
Abstract
The Corynebacterium glutamicum R cgR_1959 gene encodes an endoribonuclease of the RNase III family. Deletion mutant of cgR_1959 (Δrnc mutant) showed an elongated cell shape, and presence of several lines on the cell surface, indicating a required of RNase III for maintaining normal cell morphology in C. glutamicum. The level of mraZ mRNA was increased, whereas cgR_1596 mRNA encoding a putative cell wall hydrolase and ftsEX mRNA were decreased in the Δrnc mutant. The half-life of mraZ mRNA was significantly prolonged in the Δrnc and the Δpnp mutant strains. This indicated that the degradation of mraZ mRNA was performed by RNase III and the 3'-to-5' exoribonuclease, PNPase. Northern hybridization and primer extension analysis revealed that the cleavage site for mraZ mRNA by RNase III is in the coding region. Overproduction of MraZ resulted in an elongated cell shape. The expression of ftsEX decreased while that of cgR_1596 unchanged in an MraZ-overexpressing strain. An electrophoretic mobility shift assay and a transcriptional reporter assay indicate that MraZ is a transcriptional repressor of ftsEX in C. glutamicum. These results indicate that RNase III is required for efficient expression of MraZ-dependent ftsEX and MraZ-independent cgR_1596.
Collapse
Affiliation(s)
- Tomoya Maeda
- Research Institute of Innovative Technology for the Earth, Kyoto, Japan
| | - Yuya Tanaka
- Research Institute of Innovative Technology for the Earth, Kyoto, Japan
| | - Norihiko Takemoto
- Research Institute of Innovative Technology for the Earth, Kyoto, Japan
| | - Nagisa Hamamoto
- Research Institute of Innovative Technology for the Earth, Kyoto, Japan.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, Kyoto, Japan.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
45
|
Direct observation of processive exoribonuclease motion using optical tweezers. Proc Natl Acad Sci U S A 2015; 112:15101-6. [PMID: 26598710 DOI: 10.1073/pnas.1514028112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bacterial RNases catalyze the turnover of RNA and are essential for gene expression and quality surveillance of transcripts. In Escherichia coli, the exoribonucleases RNase R and polynucleotide phosphorylase (PNPase) play critical roles in degrading RNA. Here, we developed an optical-trapping assay to monitor the translocation of individual enzymes along RNA-based substrates. Single-molecule records of motion reveal RNase R to be highly processive: one molecule can unwind over 500 bp of a structured substrate. However, enzyme progress is interrupted by pausing and stalling events that can slow degradation in a sequence-dependent fashion. We found that the distance traveled by PNPase through structured RNA is dependent on the A+U content of the substrate and that removal of its KH and S1 RNA-binding domains can reduce enzyme processivity without affecting the velocity. By a periodogram analysis of single-molecule records, we establish that PNPase takes discrete steps of six or seven nucleotides. These findings, in combination with previous structural and biochemical data, support an asymmetric inchworm mechanism for PNPase motion. The assay developed here for RNase R and PNPase is well suited to studies of other exonucleases and helicases.
Collapse
|
46
|
Tseng YT, Chiou NT, Gogiraju R, Lin-Chao S. The Protein Interaction of RNA Helicase B (RhlB) and Polynucleotide Phosphorylase (PNPase) Contributes to the Homeostatic Control of Cysteine in Escherichia coli. J Biol Chem 2015; 290:29953-63. [PMID: 26494621 PMCID: PMC4705995 DOI: 10.1074/jbc.m115.691881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 11/12/2022] Open
Abstract
PNPase, one of the major enzymes with 3′ to 5′ single-stranded RNA degradation and processing activities, can interact with the RNA helicase RhlB independently of RNA degradosome formation in Escherichia coli. Here, we report that loss of interaction between RhlB and PNPase impacts cysteine homeostasis in E. coli. By random mutagenesis, we identified a mutant RhlBP238L that loses 75% of its ability to interact with PNPase but retains normal interaction with RNase E and RNA, in addition to exhibiting normal helicase activity. Applying microarray analyses to an E. coli strain with impaired RNA degradosome formation, we investigated the biological consequences of a weakened interaction between RhlB and PNPase. We found significant increases in 11 of 14 genes involved in cysteine biosynthesis. Subsequent Northern blot analyses showed that the up-regulated transcripts were the result of stabilization of the cysB transcript encoding a transcriptional activator for the cys operons. Furthermore, Northern blots of PNPase or RhlB mutants showed that RhlB-PNPase plays both a catalytic and structural role in regulating cysB degradation. Cells expressing the RhlBP238L mutant exhibited an increase in intracellular cysteine and an enhanced anti-oxidative response. Collectively, this study suggests a mechanism by which bacteria use the PNPase-RhlB exosome-like complex to combat oxidative stress by modulating cysB mRNA degradation.
Collapse
Affiliation(s)
- Yi-Ting Tseng
- From the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, the Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Ni-Ting Chiou
- From the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, the Institute of Biochemistry & Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | | | - Sue Lin-Chao
- From the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan,
| |
Collapse
|
47
|
Abstract
This review provides a description of the known Escherichia coli ribonucleases (RNases), focusing on their structures, catalytic properties, genes, physiological roles, and possible regulation. Currently, eight E. coli exoribonucleases are known. These are RNases II, R, D, T, PH, BN, polynucleotide phosphorylase (PNPase), and oligoribonuclease (ORNase). Based on sequence analysis and catalytic properties, the eight exoribonucleases have been grouped into four families. These are the RNR family, including RNase II and RNase R; the DEDD family, including RNase D, RNase T, and ORNase; the RBN family, consisting of RNase BN; and the PDX family, including PNPase and RNase PH. Seven well-characterized endoribonucleases are known in E. coli. These are RNases I, III, P, E, G, HI, and HII. Homologues to most of these enzymes are also present in Salmonella. Most of the endoribonucleases cleave RNA in the presence of divalent cations, producing fragments with 3'-hydroxyl and 5'-phosphate termini. RNase H selectively hydrolyzes the RNA strand of RNA?DNA hybrids. Members of the RNase H family are widely distributed among prokaryotic and eukaryotic organisms in three distinct lineages, RNases HI, HII, and HIII. It is likely that E. coli contains additional endoribonucleases that have not yet been characterized. First of all, endonucleolytic activities are needed for certain known processes that cannot be attributed to any of the known enzymes. Second, homologues of known endoribonucleases are present in E. coli. Third, endonucleolytic activities have been observed in cell extracts that have different properties from known enzymes.
Collapse
|
48
|
Ghodge SV, Raushel FM. Discovery of a Previously Unrecognized Ribonuclease from Escherichia coli That Hydrolyzes 5'-Phosphorylated Fragments of RNA. Biochemistry 2015; 54:2911-8. [PMID: 25871919 DOI: 10.1021/acs.biochem.5b00192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TrpH or YciV (locus tag b1266) from Escherichia coli is annotated as a protein of unknown function that belongs to the polymerase and histidinol phosphatase (PHP) family of proteins in the UniProt and NCBI databases. Enzymes from the PHP family have been shown to hydrolyze organophosphoesters using divalent metal ion cofactors at the active site. We found that TrpH is capable of hydrolyzing the 3'-phosphate from 3',5'-bis-phosphonucleotides. The enzyme will also sequentially hydrolyze 5'-phosphomononucleotides from 5'-phosphorylated RNA and DNA oligonucleotides, with no specificity toward the identity of the nucleotide base. The enzyme will not hydrolyze RNA or DNA oligonucleotides that are unphosphorylated at the 5'-end of the substrate, but it makes no difference whether the 3'-end of the oligonucleotide is phosphorylated. These results are consistent with the sequential hydrolysis of 5'-phosphorylated mononucleotides from oligonucleotides in the 5' → 3' direction. The catalytic efficiencies for hydrolysis of 3',5'-pAp, p(Ap)A, p(Ap)4A, and p(dAp)4dA were determined to be 1.8 × 10(5), 9.0 × 10(4), 4.6 × 10(4), and 2.9 × 10(3) M(-1) s(-1), respectively. TrpH was found to be more efficient at hydrolyzing RNA oligonucleotides than DNA oligonucleotides. This enzyme can also hydrolyze annealed DNA duplexes, albeit at a catalytic efficiency approximately 10-fold lower than that of the corresponding single-stranded oligonucleotides. TrpH is the first enzyme from E. coli that has been found to possess 5' → 3' exoribonuclease activity. We propose to name this enzyme RNase AM.
Collapse
|
49
|
Next generation sequencing analysis reveals that the ribonucleases RNase II, RNase R and PNPase affect bacterial motility and biofilm formation in E. coli. BMC Genomics 2015; 16:72. [PMID: 25757888 PMCID: PMC4335698 DOI: 10.1186/s12864-015-1237-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background The RNA steady-state levels in the cell are a balance between synthesis and degradation rates. Although transcription is important, RNA processing and turnover are also key factors in the regulation of gene expression. In Escherichia coli there are three main exoribonucleases (RNase II, RNase R and PNPase) involved in RNA degradation. Although there are many studies about these exoribonucleases not much is known about their global effect in the transcriptome. Results In order to study the effects of the exoribonucleases on the transcriptome, we sequenced the total RNA (RNA-Seq) from wild-type cells and from mutants for each of the exoribonucleases (∆rnb, ∆rnr and ∆pnp). We compared each of the mutant transcriptome with the wild-type to determine the global effects of the deletion of each exoribonucleases in exponential phase. We determined that the deletion of RNase II significantly affected 187 transcripts, while deletion of RNase R affects 202 transcripts and deletion of PNPase affected 226 transcripts. Surprisingly, many of the transcripts are actually down-regulated in the exoribonuclease mutants when compared to the wild-type control. The results obtained from the transcriptomic analysis pointed to the fact that these enzymes were changing the expression of genes related with flagellum assembly, motility and biofilm formation. The three exoribonucleases affected some stable RNAs, but PNPase was the main exoribonuclease affecting this class of RNAs. We confirmed by qPCR some fold-change values obtained from the RNA-Seq data, we also observed that all the exoribonuclease mutants were significantly less motile than the wild-type cells. Additionally, RNase II and RNase R mutants were shown to produce more biofilm than the wild-type control while the PNPase mutant did not form biofilms. Conclusions In this work we demonstrate how deep sequencing can be used to discover new and relevant functions of the exoribonucleases. We were able to obtain valuable information about the transcripts affected by each of the exoribonucleases and compare the roles of the three enzymes. Our results show that the three exoribonucleases affect cell motility and biofilm formation that are two very important factors for cell survival, especially for pathogenic cells. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1237-6) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Abstract
mRNA degradation is an important mechanism for controlling gene expression in bacterial cells. This process involves the orderly action of a battery of cellular endonucleases and exonucleases, some universal and others present only in certain species. These ribonucleases function with the assistance of ancillary enzymes that covalently modify the 5' or 3' end of RNA or unwind base-paired regions. Triggered by initiating events at either the 5' terminus or an internal site, mRNA decay occurs at diverse rates that are transcript specific and governed by RNA sequence and structure, translating ribosomes, and bound sRNAs or proteins. In response to environmental cues, bacteria are able to orchestrate widespread changes in mRNA lifetimes by modulating the concentration or specific activity of cellular ribonucleases or by unmasking the mRNA-degrading activity of cellular toxins.
Collapse
Affiliation(s)
- Monica P Hui
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| | | | | |
Collapse
|