1
|
Singh A, Schurman SH, Bektas A, Kaileh M, Roy R, Wilson DM, Sen R, Ferrucci L. Aging and Inflammation. Cold Spring Harb Perspect Med 2024; 14:a041197. [PMID: 38052484 PMCID: PMC11146314 DOI: 10.1101/cshperspect.a041197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Aging can be conceptualized as the progressive disequilibrium between stochastic damage accumulation and resilience mechanisms that continuously repair that damage, which eventually cause the development of chronic disease, frailty, and death. The immune system is at the forefront of these resilience mechanisms. Indeed, aging is associated with persistent activation of the immune system, witnessed by a high circulating level of inflammatory markers and activation of immune cells in the circulation and in tissue, a condition called "inflammaging." Like aging, inflammaging is associated with increased risk of many age-related pathologies and disabilities, as well as frailty and death. Herein we discuss recent advances in the understanding of the mechanisms leading to inflammaging and the intrinsic dysregulation of the immune function that occurs with aging. We focus on the underlying mechanisms of chronic inflammation, in particular the role of NF-κB and recent studies targeting proinflammatory mediators. We further explore the dysregulation of the immune response with age and immunosenescence as an important mechanistic immune response to acute stressors. We examine the role of the gastrointestinal microbiome, age-related dysbiosis, and the integrated stress response in modulating the inflammatory "response" to damage accumulation and stress. We conclude by focusing on the seminal question of whether reducing inflammation is useful and the results of related clinical trials. In summary, we propose that inflammation may be viewed both as a clinical biomarker of the failure of resilience mechanisms and as a causal factor in the rising burden of disease and disabilities with aging. The fact that inflammation can be reduced through nonpharmacological interventions such as diet and exercise suggests that a life course approach based on education may be a successful strategy to increase the health span with few adverse consequences.
Collapse
Affiliation(s)
- Amit Singh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Shepherd H Schurman
- Clinical Research Unit, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Arsun Bektas
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - David M Wilson
- Biomedical Research Institute, Hasselt University, Diepenbeek 3500, Belgium
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224, USA
| |
Collapse
|
2
|
Sumner KM, Masalovich S, O'Halloran A, Holstein R, Reingold A, Kirley PD, Alden NB, Herlihy RK, Meek J, Yousey-Hindes K, Anderson EJ, Openo KP, Monroe ML, Leegwater L, Henderson J, Lynfield R, McMahon M, McMullen C, Angeles KM, Spina NL, Engesser K, Bennett NM, Felsen CB, Lung K, Shiltz E, Thomas A, Talbot HK, Schaffner W, Swain A, George A, Rolfes MA, Reed C, Garg S. Severity of influenza-associated hospitalisations by influenza virus type and subtype in the USA, 2010-19: a repeated cross-sectional study. THE LANCET. MICROBE 2023; 4:e903-e912. [PMID: 37769676 PMCID: PMC10872935 DOI: 10.1016/s2666-5247(23)00187-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Influenza burden varies across seasons, partly due to differences in circulating influenza virus types or subtypes. Using data from the US population-based surveillance system, Influenza Hospitalization Surveillance Network (FluSurv-NET), we aimed to assess the severity of influenza-associated outcomes in individuals hospitalised with laboratory-confirmed influenza virus infections during the 2010-11 to 2018-19 influenza seasons. METHODS To evaluate the association between influenza virus type or subtype causing the infection (influenza A H3N2, A H1N1pdm09, and B viruses) and in-hospital severity outcomes (intensive care unit [ICU] admission, use of mechanical ventilation or extracorporeal membrane oxygenation [ECMO], and death), we used FluSurv-NET to capture data for laboratory-confirmed influenza-associated hospitalisations from the 2010-11 to 2018-19 influenza seasons for individuals of all ages living in select counties in 13 US states. All individuals had to have an influenza virus test within 14 days before or during their hospital stay and an admission date between Oct 1 and April 30 of an influenza season. Exclusion criteria were individuals who did not have a complete chart review; cases from sites that contributed data for three or fewer seasons; hospital-onset cases; cases with unidentified influenza type; cases of multiple influenza virus type or subtype co-infection; or individuals younger than 6 months and ineligible for the influenza vaccine. Logistic regression models adjusted for influenza season, influenza vaccination status, age, and FluSurv-NET site compared odds of in-hospital severity by virus type or subtype. When missing, influenza A subtypes were imputed using chained equations of known subtypes by season. FINDINGS Data for 122 941 individuals hospitalised with influenza were captured in FluSurv-NET from the 2010-11 to 2018-19 seasons; after exclusions were applied, 107 941 individuals remained and underwent influenza A virus imputation when missing A subtype (43·4%). After imputation, data for 104 969 remained and were included in the final analytic sample. Averaging across imputed datasets, 57·7% (weighted percentage) had influenza A H3N2, 24·6% had influenza A H1N1pdm09, and 17·7% had influenza B virus infections; 16·7% required ICU admission, 6·5% received mechanical ventilation or ECMO, and 3·0% died (95% CIs had a range of less than 0·1% and are not displayed). Individuals with A H1N1pdm09 had higher odds of in-hospital severe outcomes than those with A H3N2: adjusted odds ratios (ORs) for A H1N1pdm09 versus A H3N2 were 1·42 (95% CI 1·32-1·52) for ICU admission; 1·79 (1·60-2·00) for mechanical ventilation or ECMO use; and 1·25 (1·07-1·46) for death. The adjusted ORs for individuals infected with influenza B versus influenza A H3N2 were 1·06 (95% CI 1·01-1·12) for ICU admission, 1·14 (1·05-1·24) for mechanical ventilation or ECMO use, and 1·18 (1·07-1·31) for death. INTERPRETATION Despite a higher burden of hospitalisations with influenza A H3N2, we found an increased likelihood of in-hospital severe outcomes in individuals hospitalised with influenza A H1N1pdm09 or influenza B virus. Thus, it is important for individuals to receive an annual influenza vaccine and for health-care providers to provide early antiviral treatment for patients with suspected influenza who are at increased risk of severe outcomes, not only when there is high influenza A H3N2 virus circulation but also when influenza A H1N1pdm09 and influenza B viruses are circulating. FUNDING The US Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
- Kelsey M Sumner
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, GA, USA; Epidemic Intelligence Service, US Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Svetlana Masalovich
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Alissa O'Halloran
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rachel Holstein
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arthur Reingold
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | | | - Nisha B Alden
- Colorado Department of Public Health and Environment, Denver, CA, USA
| | - Rachel K Herlihy
- Colorado Department of Public Health and Environment, Denver, CA, USA
| | - James Meek
- Connecticut Emerging Infections Program, Yale School of Public Health, New Haven, CT, USA
| | - Kimberly Yousey-Hindes
- Connecticut Emerging Infections Program, Yale School of Public Health, New Haven, CT, USA
| | - Evan J Anderson
- Department of Medicine and Depatment of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Georgia Emerging Infections Program, Georgia Department of Public Health, Atlanta, GA, USA; Veterans Affairs Medical Center, Atlanta, GA, USA
| | - Kyle P Openo
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA; Georgia Emerging Infections Program, Georgia Department of Public Health, Atlanta, GA, USA; Veterans Affairs Medical Center, Atlanta, GA, USA
| | | | - Lauren Leegwater
- Michigan Department of Health and Human Services, Lansing, MI, USA
| | - Justin Henderson
- Michigan Department of Health and Human Services, Lansing, MI, USA
| | | | | | | | - Kathy M Angeles
- New Mexico Emerging Infections Program, University of New Mexico, Albuquerque, NM, USA
| | - Nancy L Spina
- New York State Department of Health, Albany, NY, USA
| | | | - Nancy M Bennett
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Christina B Felsen
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Krista Lung
- Ohio Department of Health, Columbus, OH, USA
| | - Eli Shiltz
- Ohio Department of Health, Columbus, OH, USA
| | | | - H Keipp Talbot
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Ashley Swain
- Salt Lake County Health Department, Salt Lake City, UT, USA
| | - Andrea George
- Salt Lake County Health Department, Salt Lake City, UT, USA
| | - Melissa A Rolfes
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Carrie Reed
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shikha Garg
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
3
|
Tawfik A, Kawaguchi T, Takahashi M, Setoh K, Yamaguchi I, Tabara Y, Van Steen K, Sakuntabhai A, Matsuda F. Trivalent inactivated influenza vaccine response and immunogenicity assessment after one week and three months in repeatedly vaccinated adults. Expert Rev Vaccines 2023; 22:826-838. [PMID: 37747798 DOI: 10.1080/14760584.2023.2262563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The influenza vaccine administrated every year is a recommended infection control procedure for individuals above the age of six months. However, the effectiveness of repeated annual vaccination is still an active research topic. Therefore, we investigated the vaccine immunogenicity in two independent groups: previously vaccinated versus non-vaccinated individuals at three time points; prior vaccination, one week and three months post vaccination. The assessment enabled us to evaluate the elicited immune responses and the durability of the induced protection in both groups. RESEARCH DESIGN AND METHODS A research study was conducted to assess the immunogenicity of a single dose of Trivalent Inactivated Influenza Vaccine (A/H1N1, A/H3N2, and B) in 278 healthy adults aged between 32 and 66 years. Almost half of the participants, 140 (50·36%), received influenza vaccination at least once precursor to past influenza seasons. One blood sample was taken prior to vaccination for complete blood analysis and baseline immunogenicity assessment. The selected study participants received a single vaccine dose on the first day, and then followed up for three months. Two blood samples were taken after one week and three months post vaccination, respectively, for vaccine immunogenicity assessment. RESULTS Before vaccination, the seroprotection, defined as a hemagglutination-inhibiting titer of =>1:40, was detected for the three vaccine virus strains in 20 previously vaccinated participants (14·29%) [8·95%, 21·2%]. We compared the overall vaccine response for the three virus strains using a normalized response score calculated from linearly transformed titer measurements; the score before vaccination was 84% higher in the previously vaccinated group and the mean difference between the two groups was statistically significant. Three months post-vaccination, we didn't find a significant difference in vaccine responses; the number of fully seroprotected individuals became 48 (34·29%) [26·48%, 42·77%] in the previously vaccinated group and 59 (42·75%) [34·37%, 51·45%] in the non-vaccinated group. The calculated response score was almost equal in both groups and the mean difference was no longer statistically significant. CONCLUSION Our findings suggest that a single dose of influenza vaccine is equally protective after three months for annually vaccinated adults and first-time vaccine receivers.
Collapse
Affiliation(s)
- Ahmed Tawfik
- Institut Pasteur, CNRS UMR2000, Functional Genetics of Infectious Diseases Unit, Paris, France
- Pasteur International Unit at Center for Genomic Medicine, Kyoto University, Kyoto, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Meiko Takahashi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuya Setoh
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Izumi Yamaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kristel Van Steen
- BIO3 - Laboratory for Systems Genetics, GIGA-R Medical Genomics, University of Liège, Liège, Belgium
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, Leuven, Leuven, KU, Belgium
| | - Anavaj Sakuntabhai
- Pasteur International Unit at Center for Genomic Medicine, Kyoto University, Kyoto, Japan
- Institut Pasteur, CNRS UMR2000, Ecology and Emergence of Arthropod-borne Pathogens Unit, Paris, France
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Ebola-Detect: A differential serodiagnostic assay for Ebola virus infections and surveillance in the presence of vaccine-induced antibodies. EBioMedicine 2022; 82:104186. [PMID: 35901660 PMCID: PMC9326332 DOI: 10.1016/j.ebiom.2022.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/05/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Background Ebola virus (EBOV) vaccines containing glycoprotein (GP) provide protection against severe Ebola virus disease (EVD). EBO vaccinations elicit antibodies that are detectable in Ebola serodiagnostic tests, as EBOV GP is a major target antigen. This vaccine-induced seropositivity presents issues with early detection of natural EBOV infections, following vaccination and during surveillance, leading to ‘uninfected’ vaccine trial participants being falsely diagnosed as ‘EBOV infected’ potentially resulting in long-term social and economic distress. Since mass vaccinations are being employed to curtail the recurrent EBOV epidemics in multiple African countries, it is, therefore, essential to differentiate vaccine-induced from natural infection–induced antibodies by a differential serodiagnosis assay for accurate detection of Ebola virus infections. Methods To develop a serodiagnostic test that can differentiate between individuals with EBOV infection-induced antibodies and individuals with EBOV vaccine-induced antibodies, we analysed peptides of EBOV viral protein 40 (VP40), viral protein 35 (VP35) and nucleocapsid protein (NP) using an ELISA with a panel of 181 human sera collected from healthy controls, EBO vaccinees, and EBOV-infected survivors. Receiver Operating Characteristic (ROC) curve analysis was used to calculate sensitivity and specificity of the assay. A simple peptide-based serodiagnostic assay was used to evaluate detection of breakthrough EBOV infections in vaccinated non-human primates (NHP) in EBOV challenge studies. Findings We identified conserved peptide sequences in EBOV VP40, VP35 and NP, produced soon after EBOV infection that are not part of the current EBO vaccine target antigens. The new ELISA-based differential serodetection assay termed ‘EBOV-Detect’ demonstrated >94% specificity and 96% sensitivity for diagnosis of EBOV infection. Importantly, the uninfected vaccine-trial participants scored negative in ‘EBOV-Detect’ assay. The results from the NHPs EBOV challenge study established that post-EBO vaccination serum scored negative in ‘EBOV-Detect’ and all NHPs with Ebola breakthrough infections, following EBOV challenge, were serodiagnosed positively with EBOV-Detect. Interpretation The new ‘EBOV-Detect’ is a simple and sensitive serodiagnostic assay that can specifically differentiate between natural Ebola virus infected and those with vaccine-induced immunity. This could potentially be implemented as a robust diagnostic tool for epidemiology and surveillance of EBOV infections during and after outbreaks, especially in countries with mass Ebola vaccinations. Funding The antibody characterization work described in this manuscript was supported by FDA Office of Counterterrorism and Emerging Threats (OCET) - Medical Countermeasures initiative (MCMi) grant- OCET 2019-1018 and Defense Threat Reduction Agency (HDTRA1930447) funds to S.K.
Collapse
|
5
|
Alexander T, Greco R. Hematopoietic stem cell transplantation and cellular therapies for autoimmune diseases: overview and future considerations from the Autoimmune Diseases Working Party (ADWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 2022; 57:1055-1062. [PMID: 35578014 PMCID: PMC9109750 DOI: 10.1038/s41409-022-01702-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Autoimmune diseases (ADs) represent a heterogenous group of complex diseases with increasing incidence in Western countries and are a major cause of morbidity. Hematopoietic stem cell transplantation (HSCT) has evolved over the last 25 years as a specific treatment for patients with severe ADs, through eradication of the pathogenic immunologic memory and profound immune renewal. HSCT for ADs is recently facing a unique developmental phase across transplant centers. This review provides a comprehensive overview of the recent evidence and developments in the area, including fundamentals of preclinical research, clinical studies in neurologic, rheumatologic and gastroenterologic diseases, which represent major indications at present, along with evidence of HSCT for rarer indications. Moreover, we describe the interwoven challenges of delivering more advanced cellular therapies, exploiting mesenchymal stem cells, regulatory T cells and potentially CAR-T cell therapies, in patients affected by ADs. Overall, we discuss past and current indications, efficacy, associated risks and benefits, and future directions of HSCT and advanced cellular therapies in the treatment of severe/refractory ADs, integrating the available literature with European Society for Blood and Marrow Transplantation (EBMT) registry data.
Collapse
Affiliation(s)
- Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
6
|
Derqui N, Nealon J, Mira-Iglesias A, Díez-Domingo J, Mahé C, Chaves SS. Predictors of influenza severity among hospitalized adults with laboratory confirmed influenza: Analysis of nine influenza seasons from the Valencia region, Spain. Influenza Other Respir Viruses 2022; 16:862-872. [PMID: 35411561 PMCID: PMC9343335 DOI: 10.1111/irv.12985] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 01/10/2023] Open
Abstract
Purpose Influenza hospitalizations contribute substantially to healthcare disruption. We explored the impact of ageing, comorbidities and other risk factors to better understand associations with severe clinical outcomes in adults hospitalized with influenza. Methods We analysed multi‐season data from adults ≥18 years, hospitalized with laboratory‐confirmed influenza in Valencia, Spain. Severity was defined as intensive care unit (ICU) admission, assisted ventilation and/or death. Generalized estimating equations were used to estimate associations between risk factors and severity. Rate of hospital discharge was analysed with a cumulative incidence function. Results Only 26% of influenza patients had their primary discharge diagnosis coded as influenza. Comorbidities were associated with severity among adults aged 50–79 years, with the highest odds ratio (OR) in patients with ≥3 comorbidities aged 50–64 years (OR = 6.7; 95% CI: 1.0–44.6). Morbid obesity and functional dependencies were also identified risk factors (ORs varying from 3 to 5 depending on age). The presence of increasing numbers of comorbidities was associated with prolonged hospital stay. Conclusions Influenza clinical outcomes are aggravated by the presence of comorbidities and ageing. Increased awareness of influenza among hospitalized patients could prompt clinical and public health interventions to reduce associated burden.
Collapse
Affiliation(s)
- Nieves Derqui
- Sanofi Pasteur, Lyon, France.,Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Joshua Nealon
- Sanofi Pasteur, Lyon, France.,School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ainara Mira-Iglesias
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO-Public Health), Valencia, Spain
| | - Javier Díez-Domingo
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO-Public Health), Valencia, Spain
| | | | | |
Collapse
|
7
|
Lee JL, Linterman MA. Mechanisms underpinning poor antibody responses to vaccines in ageing. Immunol Lett 2022; 241:1-14. [PMID: 34767859 PMCID: PMC8765414 DOI: 10.1016/j.imlet.2021.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
Vaccines are a highly effective intervention for conferring protection against infections and reducing the associated morbidity and mortality in vaccinated individuals. However, ageing is often associated with a functional decline in the immune system that results in poor antibody production in older individuals after vaccination. A key contributing factor of this age-related decline in vaccine efficacy is the reduced size and function of the germinal centre (GC) response. GCs are specialised microstructures where B cells undergo affinity maturation and diversification of their antibody genes, before differentiating into long-lived antibody-secreting plasma cells and memory B cells. The GC response requires the coordinated interaction of many different cell types, including B cells, T follicular helper (Tfh) cells, T follicular regulatory (Tfr) cells and stromal cell subsets like follicular dendritic cells (FDCs). This review discusses how ageing affects different components of the GC reaction that contribute to its limited output and ultimately impaired antibody responses in older individuals after vaccination. An understanding of the mechanisms underpinning the age-related decline in the GC response is crucial in informing strategies to improve vaccine efficacy and extend the healthy lifespan amongst older people.
Collapse
Affiliation(s)
- Jia Le Lee
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Michelle A Linterman
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
8
|
SARS-CoV-2 immune repertoire in MIS-C and pediatric COVID-19. Nat Immunol 2021; 22:1452-1464. [PMID: 34611361 DOI: 10.1038/s41590-021-01051-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/14/2021] [Indexed: 01/22/2023]
Abstract
There is limited understanding of the viral antibody fingerprint following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children. Herein, SARS-CoV-2 proteome-wide immunoprofiling of children with mild/moderate or severe coronavirus disease 2019 (COVID-19) versus multisystem inflammatory syndrome in children versus hospitalized control patients revealed differential cytokine responses, IgM/IgG/IgA epitope diversity, antibody binding and avidity. Apart from spike and nucleocapsid, IgG/IgA recognized epitopes in nonstructural protein (NSP) 2, NSP3, NSP12-NSP14 and open reading frame (ORF) 3a-ORF9. Peptides representing epitopes in NSP12, ORF3a and ORF8 demonstrated SARS-CoV-2 serodiagnosis. Antibody-binding kinetics with 24 SARS-CoV-2 proteins revealed antibody parameters that distinguish children with mild/moderate versus severe COVID-19 or multisystem inflammatory syndrome in children. Antibody avidity to prefusion spike correlated with decreased illness severity and served as a clinical disease indicator. The fusion peptide and heptad repeat 2 region induced SARS-CoV-2-neutralizing antibodies in rabbits. Thus, we identified SARS-CoV-2 antibody signatures in children associated with disease severity and delineate promising serodiagnostic and virus neutralization targets. These findings might guide the design of serodiagnostic assays, prognostic algorithms, therapeutics and vaccines in this important but understudied population.
Collapse
|
9
|
Komadina N, Sullivan SG, Leder K, McVernon J. Likelihood of prior exposure to circulating influenza viruses resulting in cross-protection by CD8+ T cells against emergent H3N2v swine viruses infecting humans. J Med Virol 2021; 94:567-574. [PMID: 34449904 DOI: 10.1002/jmv.27299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/25/2021] [Indexed: 11/06/2022]
Abstract
Outbreaks of influenza in swine can result in potential threats to human public health. A notable occurrence was the emergence of swine-origin H1N1 influenza viruses in 2009. Since then, there have been several documented outbreaks of swine-origin influenza infecting humans in several countries. Sustained events have occurred when H1N1v, H1N2v, and H3N2v swine-origin viruses have infected humans visiting agricultural shows in the US. The predominant H3N2v viruses gained the matrix protein from the A(H1N1)pdm09 viruses, with reported human-to-human transmission raising fears of another pandemic. Current vaccines do not induce secondary cell-mediated immune responses, which may provide cross-protection against novel influenza A subtypes, however, population susceptibility to infection with seasonal influenza is likely to be influenced by cross-reactive CD8+ T-cells directed towards immunogenic peptides derived from viral proteins. This study involved a retrospective review of historical influenza viruses circulating in human populations from 1918 to 2020 to identify evidence of prior circulation of H3N3v immunogenic CD8+ T-cells peptides found in the NP and M1 proteins. We found evidence of prior circulation of H3N2v NP and M1 immunogenic peptides in historical influenza viruses. This provides insight into the population context in which influenza viruses emerge and may help inform immunogenic peptide selection for cytotoxic T-cell lymphocytes (CTL)-inducing influenza vaccines. Next-generation vaccines capable of eliciting CD8+ T-cell-mediated cross-protective immunity may offer a long-term alternative strategy for influenza vaccines.
Collapse
Affiliation(s)
- Naomi Komadina
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital and the Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Karin Leder
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Victorian Infectious Diseases Services, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jodie McVernon
- Victorian Infectious Diseases Reference Laboratory, Epidemiology Unit, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Modelling and Simulation Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Hirzel C, Chruscinski A, Ferreira VH, L'Huillier AG, Natori Y, Han SH, Cordero E, Humar A, Kumar D. Natural influenza infection produces a greater diversity of humoral responses than vaccination in immunosuppressed transplant recipients. Am J Transplant 2021; 21:2709-2718. [PMID: 33484237 DOI: 10.1111/ajt.16503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 01/25/2023]
Abstract
The humoral immune response to influenza virus infection is complex and may be different compared to the antibody response elicited by vaccination. We analyzed the breadth of IgG and IgA responses in solid organ transplant (SOT) recipients to a diverse collection of 86 influenza antigens elicited by natural influenza A virus (IAV) infection or by vaccination. Antibody levels were quantified using a custom antigen microarray. A total of 120 patients were included: 80 IAV infected (40 A/H1N1 and 40 A/H3N2) and 40 vaccinated. Based on hierarchical clustering analysis, infection with either H1N1 or H3N2 virus showed a more diverse antibody response compared to vaccination. Similarly, H1N1-infected individuals showed a significant IgG response to 27.9% of array antigens and H3N2-infected patients to 43.0% of antigens, whereas vaccination elicited a less broad immune response (7.0% of antigens). Immune responses were not exclusively targeting influenza hemagglutinin (HA) proteins but were also directed against conserved influenza antigens. Serum IgA responses followed a similar profile. This study provides novel data on the breadth of antibody responses to influenza. We also found that the diversity of response is greater in influenza-infected rather than vaccinated patients, providing a potential mechanistic rationale for suboptimal vaccine efficacy in this population.
Collapse
Affiliation(s)
- Cedric Hirzel
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada.,Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrzej Chruscinski
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Victor H Ferreira
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Arnaud G L'Huillier
- Pediatric Infectious Diseases Unit, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Yochiro Natori
- Division of Infectious Diseases, University of Miami, Miami, Florida, USA
| | - Sang H Han
- University of South Korea, Seoul, South Korea
| | - Elisa Cordero
- Hospital Universitario Virgen del Rocío and Biomedicine Research Institute, Seville, Spain.,Spanish Network for Research in Infectious Diseases (REIPI, Seville, Spain
| | - Atul Humar
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Deepali Kumar
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
11
|
Guthmiller JJ, Utset HA, Wilson PC. B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat. Viruses 2021; 13:965. [PMID: 34067435 PMCID: PMC8224597 DOI: 10.3390/v13060965] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Antibodies are critical for providing protection against influenza virus infections. However, protective humoral immunity against influenza viruses is limited by the antigenic drift and shift of the major surface glycoproteins, hemagglutinin and neuraminidase. Importantly, people are exposed to influenza viruses throughout their life and tend to reuse memory B cells from prior exposure to generate antibodies against new variants. Despite this, people tend to recall memory B cells against constantly evolving variable epitopes or non-protective antigens, as opposed to recalling them against broadly neutralizing epitopes of hemagglutinin. In this review, we discuss the factors that impact the generation and recall of memory B cells against distinct viral antigens, as well as the immunological limitations preventing broadly neutralizing antibody responses. Lastly, we discuss how next-generation vaccine platforms can potentially overcome these obstacles to generate robust and long-lived protection against influenza A viruses.
Collapse
Affiliation(s)
- Jenna J. Guthmiller
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
| | - Henry A. Utset
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
| | - Patrick C. Wilson
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Rioux M, Francis ME, Swan CL, Ge A, Kroeker A, Kelvin AA. The Intersection of Age and Influenza Severity: Utility of Ferrets for Dissecting the Age-Dependent Immune Responses and Relevance to Age-Specific Vaccine Development. Viruses 2021; 13:678. [PMID: 33920917 PMCID: PMC8071347 DOI: 10.3390/v13040678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Many factors impact the host response to influenza virus infection and vaccination. Ferrets have been an indispensable reagent for influenza virus research for almost one hundred years. One of the most significant and well-known factors affecting human disease after infection is host age. Another significant factor is the virus, as strain-specific disease severity is well known. Studying age-related impacts on viral infection and vaccination outcomes requires an animal model that reflects both the physiological and immunological changes that occur with human aging, and sensitivity to differentially virulent influenza viruses. The ferret is uniquely susceptible to a plethora of influenza viruses impacting humans and has proven extremely useful in studying the clinical and immunological pictures of influenza virus infection. Moreover, ferrets developmentally have several of the age-related physiological changes that occur in humans throughout infancy, adulthood, old age, and pregnancy. In this review, we discuss ferret susceptibility to influenza viruses, summarize previous influenza studies using ferrets as models of age, and finally, highlight the application of ferret age models in the pursuit of prophylactic and therapeutic agents to address age-related influenza disease severity.
Collapse
Affiliation(s)
- Melissa Rioux
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
| | - Magen E. Francis
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Cynthia L. Swan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Anni Ge
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
| | - Andrea Kroeker
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Alyson A. Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine, Dalhousie University, Halifax, NS B3K6R8, Canada
- The Canadian Center for Vaccinology (IWK Health Centre, Dalhousie University and the Nova Scotia Health Authority), Halifax, NS B3K6R8, Canada
- Department of Biochemistry, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N5E5, Canada
| |
Collapse
|
13
|
Lorbach JN, Fitzgerald T, Nolan C, Nolting JM, Treanor JJ, Topham DJ, Bowman AS. Gaps in Serologic Immunity against Contemporary Swine-Origin Influenza A Viruses among Healthy Individuals in the United States. Viruses 2021; 13:v13010127. [PMID: 33477472 PMCID: PMC7830885 DOI: 10.3390/v13010127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A Viruses (IAV) in domestic swine (IAV-S) are associated with sporadic zoonotic transmission at the human–animal interface. Previous pandemic IAVs originated from animals, which emphasizes the importance of characterizing human immunity against the increasingly diverse IAV-S. We analyzed serum samples from healthy human donors (n = 153) using hemagglutination-inhibition (HAI) assay to assess existing serologic protection against a panel of contemporary IAV-S isolated from swine in the United States (n = 11). Age-specific seroprotection rates (SPR), which are the proportion of individuals with HAI ≥ 1:40, corresponded with lower or moderate pandemic risk classifications for the multiple IAV-S examined (one H1-δ1, one H1-δ2, three H3-IVA, one H3-IVB, one H3-IVF). Individuals born between 2004 and 2013 had SPRs of 0% for the five classified H3 subtype IAV-S, indicating youth may be particularly predisposed to infection with these viruses. Expansion of existing immunologic gaps over time could increase likelihood of future IAV-S spillover to humans and facilitate subsequent sustained human-to-human transmission resulting in disease outbreaks with pandemic potential.
Collapse
Affiliation(s)
- Joshua N. Lorbach
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.N.L.); (J.M.N.)
| | - Theresa Fitzgerald
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14627, USA; (T.F.); (C.N.); (D.J.T.)
| | - Carolyn Nolan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14627, USA; (T.F.); (C.N.); (D.J.T.)
| | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.N.L.); (J.M.N.)
| | - John J. Treanor
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14627, USA;
| | - David J. Topham
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14627, USA; (T.F.); (C.N.); (D.J.T.)
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.N.L.); (J.M.N.)
- Correspondence:
| |
Collapse
|
14
|
Liu R, Liu X, Yang P, Du X, He L, Chen T, Li X, Xie G, Wu S, Su J, Xia S, Jiang C, Huffman MD, MacIntyre CR, Wei Z, Wang Q, Dong J, Anderson C. Influenza-associated cardiovascular mortality in older adults in Beijing, China: a population-based time-series study. BMJ Open 2020; 10:e042487. [PMID: 33444216 PMCID: PMC7678395 DOI: 10.1136/bmjopen-2020-042487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE This study comprehensively estimated the excess cardiovascular disease (CVD) mortality attributable to influenza in an older (age ≥65 years) population. DESIGN Ecological study. SETTING Aggregated data from administrative systems on CVD mortality, influenza surveillance and meteorological data in Beijing, China. MAIN OUTCOME MEASURE Excess overall CVD, and separately for ischaemic heart disease (IHD), ischaemic stroke, haemorrhagic stroke mortality attributable to influenza, adjusting for influenza activity, time trend, seasonality and ambient temperature. RESULTS CVD (risk ratio (RR) 1.02, 95% CI 1.01, 1.02), IHD (RR 1.01, 95% CI 1.01, 1.02), ischaemic stroke (RR=1.03, 95% CI 1.02, 1.04), but not haemorrhagic stroke (RR=1.00, 95% CI 0.99, 1.01) mortality, were significantly associated with every 10% increase in influenza activity. An increase in circulating A(H1N1)09pdm, A(H3N2) and B type virus were all significantly associated with CVD and ischaemic stroke mortality, but only A(H3N2) and B type virus with IHD mortality. The strongest increase in disease mortality was in the same week as the increase in influenza activity. Annual excess CVD mortality rate attributable to influenza ranged from 54 to 96 per 100 000 population. The 3%-6% CVD mortality attributable to influenza activity was related to an annual excess of 916-1640 CVD deaths in Beijing, China. CONCLUSIONS Influenza activity has moderate to strong associations with CVD, IHD and ischaemic stroke mortality in older adults in China. Promoting influenza vaccination could have major health benefit in this population. BACKGROUND Influenza may trigger serious CVD events. An estimation of excess CVD mortality attributable to influenza has particular relevance in China where vaccination is low and CVD burden is high. METHODS This study analysed data at the population level (age ≥65 years) using linked aggregated data from administrative systems on CVD mortality, influenza surveillance and meteorological data during 2011 to 2018. Quasi-Poisson regression models were used to estimate the excess overall CVD, and separately for IHD, ischaemic stroke, haemorrhagic stroke mortality attributable to influenza, adjusting for influenza activity, time trend, seasonality and ambient temperature. Analyses were also undertaken for influenza subtypes (A(H1N1)09pdm, A(H3N2) and B viruses), and mortality risk with time lags of 1-5 weeks following influenza activity in the current week.
Collapse
Affiliation(s)
- Rong Liu
- Heart Health Research Center, Beijing, China
| | | | - Peng Yang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Xin Du
- Heart Health Research Center, Beijing, China
- Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Centre for Cardiovascular Diseases, Beijing, China
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Liu He
- Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Centre for Cardiovascular Diseases, Beijing, China
| | - Tiange Chen
- Ping An Healthcare Technology, Beijing, China
| | - Xiang Li
- Ping An Healthcare Technology, Beijing, China
| | - Guotong Xie
- Ping An Healthcare Technology, Beijing, China
- Ping An Health Cloud Company Limited, Beijing, China
- Ping An International Smart City Technology Co., Ltd, Beijing, China
| | - Shuangsheng Wu
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Jianting Su
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Shijun Xia
- Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Centre for Cardiovascular Diseases, Beijing, China
| | - Chao Jiang
- Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Centre for Cardiovascular Diseases, Beijing, China
| | - Mark D Huffman
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chandini Raina MacIntyre
- Biosecurity Research Program, Kirby Institute, The University of New South Wales, Sudney, New South Wales, Australia
| | - Zaihua Wei
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Jianzeng Dong
- Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Centre for Cardiovascular Diseases, Beijing, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Craig Anderson
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- The George Institute China at Peking University Health Science Center, Beijing, China
| |
Collapse
|
15
|
Frasca D, Blomberg BB. Aging induces B cell defects and decreased antibody responses to influenza infection and vaccination. IMMUNITY & AGEING 2020; 17:37. [PMID: 33292323 PMCID: PMC7674578 DOI: 10.1186/s12979-020-00210-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function. Results Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres. Conclusions Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, RMSB 3146A, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, RMSB 3146A, 1600 NW 10th Ave, Miami, FL, 33136, USA
| |
Collapse
|
16
|
Heiss K, Heidepriem J, Fischer N, Weber LK, Dahlke C, Jaenisch T, Loeffler FF. Rapid Response to Pandemic Threats: Immunogenic Epitope Detection of Pandemic Pathogens for Diagnostics and Vaccine Development Using Peptide Microarrays. J Proteome Res 2020; 19:4339-4354. [PMID: 32892628 PMCID: PMC7640972 DOI: 10.1021/acs.jproteome.0c00484] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Emergence and re-emergence of pathogens bearing the risk of becoming a pandemic threat are on the rise. Increased travel and trade, growing population density, changes in urbanization, and climate have a critical impact on infectious disease spread. Currently, the world is confronted with the emergence of a novel coronavirus SARS-CoV-2, responsible for yet more than 800 000 deaths globally. Outbreaks caused by viruses, such as SARS-CoV-2, HIV, Ebola, influenza, and Zika, have increased over the past decade, underlining the need for a rapid development of diagnostics and vaccines. Hence, the rational identification of biomarkers for diagnostic measures on the one hand, and antigenic targets for vaccine development on the other, are of utmost importance. Peptide microarrays can display large numbers of putative target proteins translated into overlapping linear (and cyclic) peptides for a multiplexed, high-throughput antibody analysis. This enabled for example the identification of discriminant/diagnostic epitopes in Zika or influenza and mapping epitope evolution in natural infections versus vaccinations. In this review, we highlight synthesis platforms that facilitate fast and flexible generation of high-density peptide microarrays. We further outline the multifaceted applications of these peptide array platforms for the development of serological tests and vaccines to quickly encounter pandemic threats.
Collapse
Affiliation(s)
- Kirsten Heiss
- PEPperPRINT
GmbH, Rischerstrasse
12, 69123 Heidelberg, Germany
| | - Jasmin Heidepriem
- Max
Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Nico Fischer
- Section
Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital, INF 324, 69120 Heidelberg, Germany
| | - Laura K. Weber
- PEPperPRINT
GmbH, Rischerstrasse
12, 69123 Heidelberg, Germany
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christine Dahlke
- Division
of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department
of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German
Center for Infection Research, Partner Site
Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
| | - Thomas Jaenisch
- Heidelberg
Institute of Global Health (HIGH), Heidelberg
University Hospital, Im Neuenheimer Feld 130, 69120 Heidelberg, Germany
- Center
for Global Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado 80045, United States
- Department
of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado 80045, United States
| | - Felix F. Loeffler
- Max
Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
17
|
Chen S, Kasper B, Zhang B, Lashua LP, Ross TM, Ghedin E, Mahal LK. Age-Dependent Glycomic Response to the 2009 Pandemic H1N1 Influenza Virus and Its Association with Disease Severity. J Proteome Res 2020; 19:4486-4495. [PMID: 32981324 PMCID: PMC7640967 DOI: 10.1021/acs.jproteome.0c00455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 01/05/2023]
Abstract
Influenza A viruses cause a spectrum of responses, from mild coldlike symptoms to severe respiratory illness and death. Intrinsic host factors, such as age, can influence disease severity. Glycosylation plays a critical role in influenza pathogenesis; however, the molecular drivers of influenza outcomes remain unknown. In this work, we characterized the host glycomic response to the H1N1 2009 pandemic influenza A virus (H1N1pdm09) as a function of age-dependent severity in a ferret model. Using our dual-color lectin microarray technology, we examined baseline glycosylation and glycomic response to infection in newly weaned and aged animals, models for young children and the elderly, respectively. Compared to adult uninfected ferrets, we observed higher levels of α-2,6-sialosides, the receptor for H1N1pdm09, in newly weaned and aged animals. We also observed age-dependent loss of O-linked α-2,3-sialosides. The loss of these highly charged groups may impact viral clearance by mucins, which corresponds to the lower clearance rates observed in aged animals. Upon infection, we observed dramatic changes in the glycomes of aged animals, a population severely impacted by the virus. In contrast, no significant alterations were observed in the newly weaned animals, which show mild to moderate responses to the H1N1pdm09. High mannose, a glycan recently identified as a marker of severity in adult animals, increased with severity in the aged population. However, the response was delayed, in line with the delayed development of pneumonia observed. Overall, our results may help explain the differential susceptibility to influenza A infection and severity observed as a function of age.
Collapse
Affiliation(s)
- Shuhui Chen
- Biomedical Research Institute, Department of Chemistry, New York University, NY, 10003, USA
| | - Brian Kasper
- Biomedical Research Institute, Department of Chemistry, New York University, NY, 10003, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Lauren P. Lashua
- Center for Genomics & Systems Biology, Department of Biology, New York University, NY, 10003, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, GA, 30602, USA
| | - Elodie Ghedin
- Center for Genomics & Systems Biology, Department of Biology, New York University, NY, 10003, USA
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID/NIH, Bethesda, MD, 20894, USA
| | - Lara K. Mahal
- Biomedical Research Institute, Department of Chemistry, New York University, NY, 10003, USA
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, CANADA
| |
Collapse
|
18
|
Yang J, Li H, Jia L, Lan X, Zhao Y, Bian H, Li Z. High expression levels of influenza virus receptors in airway of the HBV-transgenic mice. Epidemiol Infect 2019; 147:e297. [PMID: 31679542 PMCID: PMC6836577 DOI: 10.1017/s0950268819001833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/23/2019] [Accepted: 08/07/2019] [Indexed: 11/09/2022] Open
Abstract
In the human population, influenza A viruses are associated with acute respiratory illness and are responsible for millions of deaths annually. Avian and human influenza viruses typically have a different α2-3- and α2-6-linked sialic acid (SA) binding preference. Only a few amino acid changes in the haemagglutinin on the surface of avian influenza viruses (AIV) can cause a switch from avian to human receptor specificity, and the individuals with pathognostic chronic diseases might be more susceptible to AIV due to the decreased expression level of terminal α2-3-linked SA in their saliva. Here, using lectin and virus histochemical staining, we observed the higher expression levels of α2-3/6-linked SA influenza virus receptors in the airway of HBV-transgenic mice compared with that of control mice due to the significant decrease in control mice during ageing, which imply that this is also a risk factor for individuals with pathognostic chronic diseases susceptible to influenza viruses. Our findings will help understand the impact on influenza virus pathogenesis and transmission.
Collapse
Affiliation(s)
- Jiajun Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Hao Li
- Cell Engineering Research Centre and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Liyuan Jia
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xianchun Lan
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yuhui Zhao
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
- College of Medicine, Xi'an International University, Xi'an 710077, China
| | - Huijie Bian
- Cell Engineering Research Centre and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
19
|
Bissel SJ, Carter CE, Wang G, Johnson SK, Lashua LP, Kelvin AA, Wiley CA, Ghedin E, Ross TM. Age-Related Pathology Associated with H1N1 A/California/07/2009 Influenza Virus Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2389-2399. [PMID: 31585069 DOI: 10.1016/j.ajpath.2019.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/29/2022]
Abstract
Influenza virus infection causes a spectrum of diseases, ranging from mild upper respiratory tract infection to severe lower respiratory tract infection, that can lead to diffuse alveolar damage, interstitial and airspace inflammation, or acute respiratory failure. Mechanisms instructing disease severity are not completely understood, but host, viral, and bacterial factors influence disease outcome. With age being one host factor associated with a higher risk of severe influenza, we investigated regional pulmonary distribution and severity of pneumonia after 2009 H1N1 influenza virus infection in newly weaned, adult, and aged ferrets to better understand age-dependent susceptibility and pathology. Aged ferrets exhibited greater weight loss and higher rates of mortality than adult ferrets, whereas most newly weaned ferrets did not lose weight but had a lack of weight gain. Newly weaned ferrets exhibited minimal pneumonia, whereas adult and aged ferrets had a spectrum of pneumonia severity. Influenza virus-induced pneumonia peaked earliest in adult ferrets, whereas aged ferrets had delayed presentation. Bronchial severity differed among groups, but bronchial pathology was comparable among all cohorts. Alveolar infection was strikingly different among groups. Newly weaned ferrets had little alveolar cell infection. Adult and aged ferrets had alveolar infection, but aged ferrets were unable to clear infection. These different age-related pneumonia and infection patterns suggest therapeutic strategies to treat influenza should be tailored contingent on age.
Collapse
Affiliation(s)
- Stephanie J Bissel
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Chalise E Carter
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia
| | - Guoji Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott K Johnson
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia
| | - Lauren P Lashua
- Center for Genomics & Systems Biology, Department of Biology, College of Arts & Sciences, New York University, New York, New York
| | - Alyson A Kelvin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Canadian Centre for Vaccinology, Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Clayton A Wiley
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elodie Ghedin
- Center for Genomics & Systems Biology, Department of Biology, College of Arts & Sciences, New York University, New York, New York; Department of Epidemiology, College of Global Public Health, New York University, New York, New York
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia; Department of Infectious Diseases, University of Georgia, Athens, Georgia
| |
Collapse
|
20
|
Ravichandran S, Hahn M, Belaunzarán-Zamudio PF, Ramos-Castañeda J, Nájera-Cancino G, Caballero-Sosa S, Navarro-Fuentes KR, Ruiz-Palacios G, Golding H, Beigel JH, Khurana S. Differential human antibody repertoires following Zika infection and the implications for serodiagnostics and disease outcome. Nat Commun 2019; 10:1943. [PMID: 31028263 PMCID: PMC6486612 DOI: 10.1038/s41467-019-09914-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV) outbreak in Americas led to extensive efforts to develop vaccines and ZIKV-specific diagnostics. In the current study, we use whole genome phage display library spanning the entire ZIKV genome (ZIKV-GFPDL) for in-depth immune profiling of IgG and IgM antibody repertoires in serum and urine longitudinal samples from individuals acutely infected with ZIKV. We observe a very diverse IgM immune repertoire encompassing the entire ZIKV polyprotein on day 0 in both serum and urine. ZIKV-specific IgG antibodies increase 10-fold between day 0 and day 7 in serum, but not in urine; these are highly focused on prM/E, NS1 and NS2B. Differential antibody affinity maturation is observed against ZIKV structural E protein compared with nonstructural protein NS1. Serum antibody affinity to ZIKV-E protein inversely correlates with ZIKV disease symptoms. Our study provides insight into unlinked evolution of immune response to ZIKV infection and identified unique targets for ZIKV serodiagnostics.
Collapse
Affiliation(s)
- Supriya Ravichandran
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Megan Hahn
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Pablo F Belaunzarán-Zamudio
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico
| | | | | | - Sandra Caballero-Sosa
- Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Tapachula, 30740, Chiapas, Mexico
| | | | - Guillermo Ruiz-Palacios
- Comisión Coordinadora de los Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Ministry of Health, Mexico City, 14080, Mexico
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - John H Beigel
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA.
| |
Collapse
|
21
|
Chuah CXP, Lim RL, Chen MIC. Investigating the Legacy of the 1918 Influenza Pandemic in Age-Related Seroepidemiology and Immune Responses to Subsequent Influenza A(H1N1) Viruses Through a Structural Equation Model. Am J Epidemiol 2018; 187:2530-2540. [PMID: 30165573 PMCID: PMC6269251 DOI: 10.1093/aje/kwy192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/21/2018] [Indexed: 01/08/2023] Open
Abstract
A(H1N1) strains of Influenzavirus were responsible for 2 pandemics in the last 100 years. Because infections experienced early in life may have a long-lasting influence on future immune response against other influenza strains, we drew on previously collected seroincidence data from Singapore (n = 2,554; June-October 2009) to investigate whether the 1918 pandemic influenza virus and its early descendants produced an age-related signature in immune responses against the A/California/7/2009(H1N1)pdm09 virus of 2009. Hemagglutination inhibition assays revealed a J-shaped relationship; the oldest birth cohort (born in 1911-1926) had the highest titers, followed by the youngest (born in 1987-1992). Differential response by vaccination history was also observed, with seasonal influenza vaccine being associated with higher titers mainly in the oldest birth cohort. On the assumption that antibody titers are a correlate of protection, structural equation modeling predicted that a titer-mediated effect by the vaccine could, on its own, account for a negative association with seroconversion equivalent to a risk reduction of 23% (relative risk = 0.77, 95% confidence interval: 0.60, 0.99) in the oldest birth cohort. A subset of 503 samples tested against the A/Brisbane/59/2007(H1N1) and A/Puerto Rico/8/1934(H1N1) strains also revealed different age-related antibody profiles. The effectiveness of seasonal influenza vaccines against future pandemic strains could thus be age-dependent and related to early-life exposures.
Collapse
Affiliation(s)
- Cheryl X P Chuah
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Republic of Singapore
| | - Rachel L Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Republic of Singapore
| | - Mark I C Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Republic of Singapore
| |
Collapse
|
22
|
The incidence of symptomatic infection with influenza virus in the Netherlands 2011/2012 through 2016/2017, estimated using Bayesian evidence synthesis. Epidemiol Infect 2018; 147:e30. [PMID: 30348244 PMCID: PMC6518592 DOI: 10.1017/s095026881800273x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Due to differences in the circulation of influenza viruses, distribution and antigenic drift of A subtypes and B lineages, and susceptibility to infection in the population, the incidence of symptomatic influenza infection can vary widely between seasons and age-groups. Our goal was to estimate the symptomatic infection incidence in the Netherlands for the six seasons 2011/2012 through 2016/2017, using Bayesian evidence synthesis methodology to combine season-specific sentinel surveillance data on influenza-like illness (ILI), virus detections in sampled ILI cases and data on healthcare-seeking behaviour. Estimated age-aggregated incidence was 6.5 per 1000 persons (95% uncertainty interval (UI): 4.7–9.0) for season 2011/2012, 36.7 (95% UI: 31.2–42.8) for 2012/2013, 9.1 (95% UI: 6.3–12.9) for 2013/2014, 41.1 (95% UI: 35.0–47.7) for 2014/2015, 39.4 (95% UI: 33.4–46.1) for 2015/2016 and 27.8 (95% UI: 22.7–33.7) for season 2016/2017. Incidence varied substantially between age-groups (highest for the age-group <5 years: 23 to 47/1000, but relatively low for 65+ years: 2 to 34/1000 over the six seasons). Integration of all relevant data sources within an evidence synthesis framework has allowed the estimation – with appropriately quantified uncertainty – of the incidence of symptomatic influenza virus infection. These estimates provide valuable insight into the variation in influenza epidemics across seasons, by virus subtype and lineage, and between age-groups.
Collapse
|
23
|
Ana-Sosa-Batiz F, Johnston APR, Hogarth PM, Wines BD, Barr I, Wheatley AK, Kent SJ. Antibody-dependent phagocytosis (ADP) responses following trivalent inactivated influenza vaccination of younger and older adults. Vaccine 2017; 35:6451-6458. [PMID: 29029940 DOI: 10.1016/j.vaccine.2017.09.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 01/10/2023]
Abstract
Globally the most commonly utilised immunisation against influenza is the trivalent inactivated influenza vaccine (TIV) derived from an A/H1N1, an A/H3N2 and aB type influenza virus. Vaccine effectiveness of TIV varies year to year, depending on how well antigenically matched the strains in the vaccine are compared to circulating strains [1,2]. Moreover, vaccine effectiveness can vary within certain subpopulations such as HIV-positive, young children and the elderly. Decreased vaccine effectiveness in the elderly is associated with impaired Ab production, as measured by standard hemagglutination inhibition (HAI) assays. We investigated the level of Antibody Dependent Phagocytosis (ADP)-mediating Abs induced by the 2008-TIV in healthy Australian adults aged over and under 60years to determine if this immune function was also reduced in the elderly. We utilised an ADP assay that measures the uptake of IgG-opsonised HA-coated fluorescent microspheres by a monocytic cell line. We also measured HA-specific Abs that are close enough to bind to dimeric FcγRIIa ectodomains in an ELISA-based assay. Furthermore, we compared the extent of cross-reactive recognition of diverse influenza strains by ADP-mediating Abs found in pre- and post-vaccination sera in both of these groups. We found that young adults and older adults mounted similar ADP activity against HAs contained in the 2008-TIV, despite older adults have diminished HI responses. The level of cross-reactive antibodies against other HAs was limited in both groups. We conclude that seasonal influenza vaccination elicits limited cross-reactive ADP to HA in both young and older adults. New influenza vaccination strategies that elicit cross-reactive and polyfunctional antibodies are needed.
Collapse
Affiliation(s)
- Fernanda Ana-Sosa-Batiz
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - P Mark Hogarth
- Burnett Institute, 85 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Bruce D Wines
- Burnett Institute, 85 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia; Melbourne Sexual Health Centre, Central Clinical School, Monash University, 580 Swanston Street, Carlton, VIC 3053, Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
24
|
Increasing the breadth and potency of response to the seasonal influenza virus vaccine by immune complex immunization. Proc Natl Acad Sci U S A 2017; 114:10172-10177. [PMID: 28874545 DOI: 10.1073/pnas.1707950114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The main barrier to reduction of morbidity caused by influenza is the absence of a vaccine that elicits broad protection against different virus strains. Studies in preclinical models of influenza virus infections have shown that antibodies alone are sufficient to provide broad protection against divergent virus strains in vivo. Here, we address the challenge of identifying an immunogen that can elicit potent, broadly protective, antiinfluenza antibodies by demonstrating that immune complexes composed of sialylated antihemagglutinin antibodies and seasonal inactivated flu vaccine (TIV) can elicit broadly protective antihemagglutinin antibodies. Further, we found that an Fc-modified, bispecific monoclonal antibody against conserved epitopes of the hemagglutinin can be combined with TIV to elicit broad protection, thus setting the stage for a universal influenza virus vaccine.
Collapse
|
25
|
Diaz A, Romero M, Vazquez T, Lechner S, Blomberg BB, Frasca D. Metformin improves in vivo and in vitro B cell function in individuals with obesity and Type-2 Diabetes. Vaccine 2017; 35:2694-2700. [PMID: 28392139 DOI: 10.1016/j.vaccine.2017.03.078] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/18/2022]
Abstract
Metformin (MET), the first-line medication for Type-2 Diabetes (T2D), has been shown to reduce chronic inflammation indirectly through reduction of hyperglycemia, or directly acting as anti-inflammatory drug. The effects of MET on B lymphocytes is uncharacterized. In the present study, we measured in vivo and in vitro influenza vaccine responses in 2 groups of T2D patients: recently diagnosed but not taking anti-diabetic drugs, and patients taking MET. Results show that B cell function and vaccine responses, hampered by obesity and T2D, are recovered by MET. Moreover, MET used in vitro to stimulate B cells from recently diagnosed T2D patients is also able to reduce B cell-intrinsic inflammation and increase antibody responses, similar to what we have seen in B cells from patients taking MET, who show increased responses to the influenza vaccine in vivo. These results are the first to show an effect of MET on B cells.
Collapse
Affiliation(s)
- Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Thomas Vazquez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Suzanne Lechner
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA.
| |
Collapse
|
26
|
Frasca D, Diaz A, Romero M, Blomberg BB. Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways. Exp Gerontol 2017; 87:113-120. [DOI: 10.1016/j.exger.2016.12.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/07/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022]
|
27
|
Antigenic Fingerprinting of Antibody Response in Humans following Exposure to Highly Pathogenic H7N7 Avian Influenza Virus: Evidence for Anti-PA-X Antibodies. J Virol 2016; 90:9383-93. [PMID: 27512055 DOI: 10.1128/jvi.01408-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Infections with H7 highly pathogenic avian influenza (HPAI) viruses remain a major public health concern. Adaptation of low-pathogenic H7N7 to highly pathogenic H7N7 in Europe in 2015 raised further alarm for a potential pandemic. An in-depth understanding of antibody responses to HPAI H7 virus following infection in humans could provide important insight into virus gene expression as well as define key protective and serodiagnostic targets. Here we used whole-genome gene fragment phage display libraries (GFPDLs) expressing peptides of 15 to 350 amino acids across the complete genome of the HPAI H7N7 A/Netherlands/33/03 virus. The hemagglutinin (HA) antibody epitope repertoires of 15 H7N7-exposed humans identified clear differences between individuals with no hemagglutination inhibition (HI) titers (<1:10) and those with HI titers of >1:40. Several potentially protective H7N7 epitopes close to the HA receptor binding domain (RBD) and neuraminidase (NA) catalytic site were identified. Surface plasmon resonance (SPR) analysis identified a strong correlation between HA1 (but not HA2) binding antibodies and H7N7 HI titers. A proportion of HA1 binding in plasma was contributed by IgA antibodies. Antibodies against the N7 neuraminidase were less frequent but targeted sites close to the sialic acid binding site. Importantly, we identified strong antibody reactivity against PA-X, a putative virulence factor, in most H7N7-exposed individuals, providing the first evidence for in vivo expression of PA-X and its recognition by the immune system during human influenza A virus infection. This knowledge can help inform the development and selection of the most effective countermeasures for prophylactic as well as therapeutic treatments of HPAI H7N7 avian influenza virus. IMPORTANCE An outbreak of pathogenic H7N7 virus occurred in poultry farms in The Netherlands in 2003. Severe outcome included conjunctivitis, influenza-like illness, and one lethal infection. In this study, we investigated convalescent-phase sera from H7N7-exposed individuals by using a whole-genome phage display library (H7N7-GFPDL) to explore the complete repertoire of post-H7N7-exposure antibodies. PA-X is a recently identified influenza virus virulence protein generated by ribosomal frameshifting in segment 3 of influenza virus coding for PA. However, PA-X expression during influenza virus infection in humans is unknown. We identified strong antibody reactivity against PA-X in most H7N7-exposed individuals (but not in unexposed adults), providing the first evidence for in vivo expression of PA-X and its recognition by the immune system during human infection with pathogenic H7N7 avian influenza virus.
Collapse
|
28
|
The generation of memory B cells is maintained, but the antibody response is not, in the elderly after repeated influenza immunizations. Vaccine 2016; 34:2834-40. [PMID: 27108193 DOI: 10.1016/j.vaccine.2016.04.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/21/2016] [Accepted: 04/07/2016] [Indexed: 01/01/2023]
Abstract
The success of a vaccine in inducing a protective antibody response depends on the longevity of both long-lived plasma cells (PC) and memory B cells. We have previously shown that the in vivo antibody response to a new influenza vaccine, the ex vivo plasmablast response, the in vitro B cell function, measured by AID (activation-induced cytidine deaminase), and the transcription factor E47, are significantly associated and decreased in elderly individuals. We hypothesized that because AID is decreased in the elderly, the ability to generate memory B cells would also be decreased, but our findings here show that memory B cells are maintained in the elderly probably due to further amplification in response to repeated vaccination. We recruited young and elderly individuals immunized in at least two consecutive influenza vaccine seasons in which the influenza A viral strains H1N1 and H3N2 in the vaccine were the same as in the previous year. PBMC were cultured with CpG/IL2 to measure the frequency of IgG vaccine-specific memory B cells. Serum antibody response was measured by hemagglutination inhibition assay. Blood plasmablasts were measured by flow cytometry. Surprisingly, the frequencies of influenza vaccine-specific memory B cells and plasmablasts were similar in young and elderly individuals, but the fold-increase in serum titers after vaccination was lower in the elderly although most of the elderly were seroprotected. We then measured the transcription factor Blimp-1, considered the master regulator of PC differentiation, and found it significantly reduced in cultures of B cells from elderly versus young individuals, as well as E47/AID and IgG secretion. Taken together, these results suggest an impaired memory B cell to PC differentiation in the elderly.
Collapse
|
29
|
Wang TT, Maamary J, Tan GS, Bournazos S, Davis CW, Krammer F, Schlesinger SJ, Palese P, Ahmed R, Ravetch JV. Anti-HA Glycoforms Drive B Cell Affinity Selection and Determine Influenza Vaccine Efficacy. Cell 2015; 162:160-9. [PMID: 26140596 DOI: 10.1016/j.cell.2015.06.026] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/13/2015] [Accepted: 05/11/2015] [Indexed: 01/05/2023]
Abstract
Protective vaccines elicit high-affinity, neutralizing antibodies by selection of somatically hypermutated B cell antigen receptors (BCR) on immune complexes (ICs). This implicates Fc-Fc receptor (FcR) interactions in affinity maturation, which, in turn, are determined by IgG subclass and Fc glycan composition within ICs. Trivalent influenza virus vaccination elicited regulation of anti-hemagglutinin (HA) IgG subclass and Fc glycans, with abundance of sialylated Fc glycans (sFc) predicting quality of vaccine response. We show that sFcs drive BCR affinity selection by binding the Type-II FcR CD23, thus upregulating the inhibitory FcγRIIB on activated B cells. This elevates the threshold requirement for BCR signaling, resulting in B cell selection for higher affinity BCR. Immunization with sFc HA ICs elicited protective, high-affinity IgGs against the conserved stalk of the HA. These results reveal a novel, endogenous pathway for affinity maturation that can be exploited for eliciting high-affinity, broadly neutralizing antibodies through immunization with sialylated immune complexes.
Collapse
Affiliation(s)
- Taia T Wang
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jad Maamary
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Gene S Tan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stylianos Bournazos
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Carl W Davis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah J Schlesinger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeffrey V Ravetch
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
30
|
Fonville JM, Fraaij PLA, de Mutsert G, Wilks SH, van Beek R, Fouchier RAM, Rimmelzwaan GF. Antigenic Maps of Influenza A(H3N2) Produced With Human Antisera Obtained After Primary Infection. J Infect Dis 2015; 213:31-8. [PMID: 26142433 PMCID: PMC4676547 DOI: 10.1093/infdis/jiv367] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/25/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Antigenic characterization of influenza viruses is typically based on hemagglutination inhibition (HI) assay data for viral isolates tested against strain-specific postinfection ferret antisera. Here, similar virus characterizations were performed using serological data from humans with primary influenza A(H3N2) infection. METHODS We screened sera collected between 1995 and 2011 from children between 9 and 24 months of age for influenza virus antibodies, performed HI tests for the positive sera against 23 influenza viruses isolated between 1989 and 2011, and measured HI titers of antisera against influenza A(H3N2) from 24 ferrets against the same panel of viruses. RESULTS Of the 17 positive human sera, 6 had a high response, showing HI patterns that would be expected from primary infection antisera, while 11 sera had lower, more dispersed patterns of reactivity that are not easily explained. The antigenic map based on the high-response human HI data was similar to the map created using ferret data. CONCLUSIONS Although the overall structure of the ferret and human antigenic maps is similar, local differences in virus positions indicate that the human and ferret immune system might see antigenic properties of viruses differently. Further studies are needed to establish the degree of similarity between serological patterns in ferret and human data.
Collapse
Affiliation(s)
- Judith M Fonville
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge WHO Collaborating Centre for Modelling, Evolution, and Control of Emerging Infectious Diseases, Cambridge, United Kingdom Department of Viroscience, Erasmus MC
| | - Pieter L A Fraaij
- Department of Viroscience, Erasmus MC Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | | | - Samuel H Wilks
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge WHO Collaborating Centre for Modelling, Evolution, and Control of Emerging Infectious Diseases, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
31
|
Persistence and avidity maturation of antibodies to A(H1N1)pdm09 in healthcare workers following repeated annual vaccinations. Vaccine 2015; 33:4146-54. [PMID: 26057137 DOI: 10.1016/j.vaccine.2015.05.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 12/24/2022]
Abstract
Healthcare workers are at increased risk of influenza infection through direct patient care, particularly during the early stages of a pandemic. Although influenza vaccination is widely recommended in Healthcare workers, data on long-term immunogenicity of vaccination in healthcare workers are lacking. The present study was designed to assess the persistence of the humoral response after pandemic vaccination as well as the impact of repeated annual vaccination in healthcare workers (n=24). Pandemic influenza vaccination resulted in a significant increase in haemagglutination inhibition (HI) antibody titers with 93-100% of subjects achieving protective titers 21-days post each of the three annual vaccinations. Seroprotective antibodies measured by HI, microneutralization and single radial hemolysis assays were present in 77-94% of healthcare workers 6 months post-vaccination. Repeated vaccination resulted in an increased duration of seroprotective antibodies with seroprotective titers increasing from 35-62% 12 months after 2009 pandemic vaccination to 50-75% 12 months after 2010 vaccination. Furthermore, repeated annual vaccination augmented the avidity of influenza-specific IgG antibodies. In conclusion, we have shown that A(H1N1)pdm09 vaccination induces high seroprotective titers that persist for at least 6 months. We demonstrate that repeated vaccination is beneficial to healthcare workers and results in further avidity maturation of vaccine-induced antibodies.
Collapse
|
32
|
Viral Etiology of Chronic Obstructive Pulmonary Disease Exacerbations during the A/H1N1pdm09 Pandemic and Postpandemic Period. Adv Virol 2015; 2015:560679. [PMID: 26064118 PMCID: PMC4439490 DOI: 10.1155/2015/560679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/14/2015] [Accepted: 04/23/2015] [Indexed: 12/25/2022] Open
Abstract
Viral infections are one of the main causes of acute exacerbations of chronic obstructive pulmonary disease (AE-COPD). Emergence of A/H1N1pdm influenza virus in the 2009 pandemic changed the viral etiology of exacerbations that were reported before the pandemic. The aim of this study was to describe the etiology of respiratory viruses in 195 Spanish patients affected by AE-COPD from the pandemic until the 2011-12 influenza epidemic. During the study period (2009–2012), respiratory viruses were identified in 48.7% of samples, and the proportion of viral detections in AE-COPD was higher in patients aged 30–64 years than ≥65 years. Influenza A viruses were the pathogens most often detected during the pandemic and the following two influenza epidemics in contradistinction to human rhino/enteroviruses that were the main viruses causing AE-COPD before the pandemic. The probability of influenza virus detection was 2.78-fold higher in patients who are 30–64 years old than those ≥65. Most respiratory samples were obtained during the pandemic, but the influenza detection rate was higher during the 2011-12 epidemic. There is a need for more accurate AE-COPD diagnosis, emphasizing the role of respiratory viruses. Furthermore, diagnosis requires increased attention to patient age and the characteristics of each influenza epidemic.
Collapse
|
33
|
van der Most RG, Roman FP, Innis B, Hanon E, Vaughn DW, Gillard P, Walravens K, Wettendorff M. Seeking help: B cells adapting to flu variability. Sci Transl Med 2015; 6:246ps8. [PMID: 25101885 DOI: 10.1126/scitranslmed.3008409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The study of influenza vaccines has revealed potential interactions between preexisting immunological memory and antigenic context and/or adjuvantation. In the face of antigenic diversity, the process of generating B cell adaptability is driven by cross-reactive CD4 memory cells, such as T follicular helper cells from previous infections or vaccinations. Although such "helped" B cells are capable of adapting to variant antigens, lack of CD4 help could lead to a suboptimal antibody response. Collectively, this indicates an interplay between CD4 T cells, adjuvant, and B cell adaptability.
Collapse
Affiliation(s)
| | - François P Roman
- GlaxoSmithKline Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Bruce Innis
- GlaxoSmithKline Vaccines, King of Prussia, PA 19406-2772, USA
| | - Emmanuel Hanon
- GlaxoSmithKline Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - David W Vaughn
- GlaxoSmithKline Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Paul Gillard
- GlaxoSmithKline Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Karl Walravens
- GlaxoSmithKline Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | | |
Collapse
|
34
|
Characterization of functional antibody and memory B-cell responses to pH1N1 monovalent vaccine in HIV-infected children and youth. PLoS One 2015; 10:e0118567. [PMID: 25785995 PMCID: PMC4364897 DOI: 10.1371/journal.pone.0118567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES We investigated immune determinants of antibody responses and B-cell memory to pH1N1 vaccine in HIV-infected children. METHODS Ninety subjects 4 to <25 years of age received two double doses of pH1N1 vaccine. Serum and cells were frozen at baseline, after each vaccination, and at 28 weeks post-immunization. Hemagglutination inhibition (HAI) titers, avidity indices (AI), B-cell subsets, and pH1N1 IgG and IgA antigen secreting cells (ASC) were measured at baseline and after each vaccination. Neutralizing antibodies and pH1N1-specific Th1, Th2 and Tfh cytokines were measured at baseline and post-dose 1. RESULTS At entry, 26 (29%) subjects had pH1N1 protective HAI titers (≥1:40). pH1N1-specific HAI, neutralizing titers, AI, IgG ASC, IL-2 and IL-4 increased in response to vaccination (p<0.05), but IgA ASC, IL-5, IL-13, IL-21, IFNγ and B-cell subsets did not change. Subjects with baseline HAI ≥1:40 had significantly greater increases in IgG ASC and AI after immunization compared with those with HAI <1:40. Neutralizing titers and AI after vaccination increased with older age. High pH1N1 HAI responses were associated with increased IgG ASC, IFNγ, IL-2, microneutralizion titers, and AI. Microneutralization titers after vaccination increased with high IgG ASC and IL-2 responses. IgG ASC also increased with high IFNγ responses. CD4% and viral load did not predict the immune responses post-vaccination, but the B-cell distribution did. Notably, vaccine immunogenicity increased with high CD19+CD21+CD27+% resting memory, high CD19+CD10+CD27+% immature activated, low CD19+CD21-CD27-CD20-% tissue-like, low CD19+CD21-CD27-CD20-% transitional and low CD19+CD38+HLADR+% activated B-cell subsets. CONCLUSIONS HIV-infected children on HAART mount a broad B-cell memory response to pH1N1 vaccine, which was higher for subjects with baseline HAI≥1:40 and increased with age, presumably due to prior exposure to pH1N1 or to other influenza vaccination/infection. The response to the vaccine was dependent on B-cell subset distribution, but not on CD4 counts or viral load. TRIAL REGISTRATION ClinicalTrials.gov NCT00992836.
Collapse
|
35
|
Zhong Y, Qin Y, Yu H, Yu J, Wu H, Chen L, Zhang P, Wang X, Jia Z, Guo Y, Zhang H, Shan J, Wang Y, Xie H, Li X, Li Z. Avian influenza virus infection risk in humans with chronic diseases. Sci Rep 2015; 5:8971. [PMID: 25754427 PMCID: PMC4354171 DOI: 10.1038/srep08971] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/11/2015] [Indexed: 11/09/2022] Open
Abstract
Saliva proteins may protect older people from influenza, however, it is often noted that hospitalizations and deaths after an influenza infection mainly occur in the elderly population living with chronic diseases, such as diabetes and cancer. Our objective was to investigate the expression level of the terminal α2-3- and α2-6-linked sialic acids in human saliva from type 2 diabetes mellitus (T2DM), liver disease and gastric cancer (GC) patients and assess the binding activity of these linked sialic acids against influenza A viruses (IAV). We observed that the expression level of the terminal α2-3-linked sialic acids of elderly individuals with T2DM and liver disease were down-regulated significantly, and the terminal α2-6 linked sialic acids were up-regulated slightly or had no significant alteration. However, in the saliva of patients with GC, neither sialic acid was significantly altered. These findings may reveal that elderly individuals with chronic diseases, such as diabetes and liver disease, might be more susceptible to the avian influenza virus due to the decreased expression of terminal α2-3-linked sialic acids in their saliva.
Collapse
Affiliation(s)
- Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, PR China
| | - Yannan Qin
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, PR China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, PR China
| | - Jingmin Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, PR China
| | - Haoxiang Wu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, PR China
| | - Lin Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, PR China
| | - Peixin Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, PR China
| | - Xiurong Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, PR China
| | - Zhansheng Jia
- Center of infectious diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yonghong Guo
- Center of infectious diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Hua Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, PR China
| | - Junjie Shan
- Institute of Pharmacology and Toxicology, Academy of Military Medical Science, Beijing, PR China
| | - Yuxia Wang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Science, Beijing, PR China
| | - Hailong Xie
- Cancer Research Institute, University of South China, Hengyang, PR China
| | - Xiaojie Li
- Cancer Research Institute, University of South China, Hengyang, PR China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, PR China
| |
Collapse
|
36
|
Diversifying Selection Analysis Predicts Antigenic Evolution of 2009 Pandemic H1N1 Influenza A Virus in Humans. J Virol 2015; 89:5427-40. [PMID: 25741011 DOI: 10.1128/jvi.03636-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Although a large number of immune epitopes have been identified in the influenza A virus (IAV) hemagglutinin (HA) protein using various experimental systems, it is unclear which are involved in protective immunity to natural infection in humans. We developed a data mining approach analyzing natural H1N1 human isolates to identify HA protein regions that may be targeted by the human immune system and can predict the evolution of IAV. We identified 16 amino acid sites experiencing diversifying selection during the evolution of prepandemic seasonal H1N1 strains and found that 11 sites were located in experimentally determined B-cell/antibody (Ab) epitopes, including three distinct neutralizing Caton epitopes: Sa, Sb, and Ca2 [A. J. Caton, G. G. Brownlee, J. W. Yewdell, and W. Gerhard, Cell 31:417-427, 1982, http://dx.doi.org/10.1016/0092-8674(82)90135-0]. We predicted that these diversified epitope regions would be the targets of mutation as the 2009 H1N1 pandemic (pH1N1) lineage evolves in response to the development of population-level protective immunity in humans. Using a chi-squared goodness-of-fit test, we identified 10 amino acid sites that significantly differed between the pH1N1 isolates and isolates from the recent 2012-2013 and 2013-2014 influenza seasons. Three of these sites were located in the same diversified B-cell/Ab epitope regions as identified in the analysis of prepandemic sequences, including Sa and Sb. As predicted, hemagglutination inhibition (HI) assays using human sera from subjects vaccinated with the initial pH1N1 isolate demonstrated reduced reactivity against 2013-2014 isolates. Taken together, these results suggest that diversifying selection analysis can identify key immune epitopes responsible for protective immunity to influenza virus in humans and thereby predict virus evolution. IMPORTANCE The WHO estimates that approximately 5 to 10% of adults and 20 to 30% of children in the world are infected by influenza virus each year. While an adaptive immune response helps eliminate the virus following acute infection, the virus rapidly evolves to evade the established protective memory immune response, thus allowing for the regular seasonal cycles of influenza virus infection. The analytical approach described here, which combines an analysis of diversifying selection with an integration of immune epitope data, has allowed us to identify antigenic regions that contribute to protective immunity and are therefore the key targets of immune evasion by the virus. This information can be used to determine when sequence variations in seasonal influenza virus strains have affected regions responsible for protective immunity in order to decide when new vaccine formulations are warranted.
Collapse
|
37
|
Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB. Cytomegalovirus (CMV) seropositivity decreases B cell responses to the influenza vaccine. Vaccine 2015; 33:1433-9. [PMID: 25659271 DOI: 10.1016/j.vaccine.2015.01.071] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/06/2015] [Accepted: 01/27/2015] [Indexed: 01/10/2023]
Abstract
Cytomegalovirus (CMV)-seropositivity has been shown to have a negative effect on influenza vaccine-specific antibody responses. In this paper, we confirm and extend these results showing for the first time, a negative association between CMV-seropositivity and B cell predictive biomarkers of optimal vaccine responses. These biomarkers are switched memory B cells and AID in CpG-stimulated B cell cultures measured before vaccination which positively correlate with the serum response to the influenza vaccine. We also found that CMV-seropositivity is associated with increased levels of B cell-intrinsic inflammation and these both correlate with lower B cell function. Finally, CMV-seropositivity is associated with decreased percentages of individuals responding to the vaccine in both young and elderly individuals.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA.
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Ana Marie Landin
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| |
Collapse
|
38
|
Lytras T, Kossyvakis A, Melidou A, Exindari M, Gioula G, Pogka V, Malisiovas N, Mentis A. Influenza vaccine effectiveness against laboratory confirmed influenza in Greece during the 2013–2014 season: A test-negative study. Vaccine 2015; 33:367-73. [DOI: 10.1016/j.vaccine.2014.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/24/2014] [Accepted: 11/06/2014] [Indexed: 11/25/2022]
|
39
|
Suguitan AL, Zengel JR, Jacobson S, Gee S, Cetz J, Cha P, Chen Z, Broome R, Jin H. Influenza H1N1pdm-specific maternal antibodies offer limited protection against wild-type virus replication and influence influenza vaccination in ferrets. Influenza Other Respir Viruses 2014; 8:169-76. [PMID: 24734293 PMCID: PMC4186464 DOI: 10.1111/irv.12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The objective was to study passively acquired influenza H1N1 pandemic (H1N1pdm) maternal antibody kinetics and its impact on subsequent influenza infection and vaccination in ferrets during an outbreak of the H1N1pdm. DESIGN AND MAIN OUTCOME MEASURES Infectivity of the H1N1pdm in the respiratory tract of ferrets was compared with the previous seasonal A/South Dakota/6/2007 (SD07, H1N1). Influenza-specific antibodies were quantitated and antibody-mediated protection against the homologous and heterologous H1N1 virus challenge infection was determined. RESULTS H1N1pdm virus was approximately 10 times more infectious than SD07 in ferrets, replicated to higher viral titers in the upper respiratory tract and shed for a longer duration. Influenza-specific antibodies after natural infection persisted much longer in the circulation than passively acquired maternal antibodies. The protection conferred by the maternal antibodies was limited to the homologous virus strain and was ineffective against SD07 and H3N2 virus. Serum antibodies from maternal transmission or passive transfer interfered with homologous vaccine strain-mediated antibody responses in the ferret. A booster immunization was required to elicit a high level of antibody. CONCLUSIONS The findings support the rationale for a prime and boost immunization strategy in young children in whom maternal antibodies are present.
Collapse
|
40
|
Pedersen GK, Höschler K, Øie Solbak SM, Bredholt G, Pathirana RD, Afsar A, Breakwell L, Nøstbakken JK, Raae AJ, Brokstad KA, Sjursen H, Zambon M, Cox RJ. Serum IgG titres, but not avidity, correlates with neutralizing antibody response after H5N1 vaccination. Vaccine 2014; 32:4550-4557. [DOI: 10.1016/j.vaccine.2014.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/25/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
41
|
Khurana S, Loving CL, Manischewitz J, King LR, Gauger PC, Henningson J, Vincent AL, Golding H. Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease. Sci Transl Med 2014; 5:200ra114. [PMID: 23986398 DOI: 10.1126/scitranslmed.3006366] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Vaccine-induced disease enhancement has been described in connection with several viral vaccines in animal models and in humans. We investigated a swine model to evaluate mismatched influenza vaccine-associated enhanced respiratory disease (VAERD) after pH1N1 infection. Vaccinating pigs with whole inactivated H1N2 (human-like) virus vaccine (WIV-H1N2) resulted in enhanced pneumonia and disease after pH1N1 infection. WIV-H1N2 immune sera contained high titers of cross-reactive anti-pH1N1 hemagglutinin (HA) antibodies that bound exclusively to the HA2 domain but not to the HA1 globular head. No hemagglutination inhibition titers against pH1N1 (challenge virus) were measured. Epitope mapping using phage display library identified the immunodominant epitope recognized by WIV-H1N2 immune sera as amino acids 32 to 77 of pH1N1-HA2 domain, close to the fusion peptide. These cross-reactive anti-HA2 antibodies enhanced pH1N1 infection of Madin-Darby canine kidney cells by promoting virus membrane fusion activity. The enhanced fusion activity correlated with lung pathology in pigs. This study suggests a role for fusion-enhancing anti-HA2 antibodies in VAERD, in the absence of receptor-blocking virus-neutralizing antibodies. These findings should be considered during the evaluation of universal influenza vaccines designed to elicit HA2 stem-targeting antibodies.
Collapse
Affiliation(s)
- Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Faragher R, Frasca D, Remarque E, Pawelec G. Better immunity in later life: a position paper. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9619. [PMID: 24532368 PMCID: PMC4082593 DOI: 10.1007/s11357-014-9619-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/12/2014] [Indexed: 06/03/2023]
Abstract
Ageing is the greatest challenge that health-care systems will have to deal with this century. This is because a wide spectrum of pathological impairments emerge in the later part of the human life course which sharply increase mortality and reduce quality of life. Dysfunction of the immune system with advancing age is of crucial importance to the development of disability in later life and finally death. Understanding immune ageing, immunosenescence, has long been recognised as an essential prerequisite for the delivery of effective interventions which will improve late life health. Ten years ago, the ImAginE consortium undertook a broad ranging series of projects which added significantly to our understanding of how fundamental ageing mechanisms drove immune decline. In the decade which followed, abundant evidence has accumulated from nonhuman model systems that ageing results from the progressive operation of a relatively few common processes which act across the major organ systems. These advances in fundamental understanding both allow better clarification of the potential cross-system dysregulation that occurs in ageing and open new avenues for intervention. Over the course of a 2-day workshop, the original ImAginE participants have considered these issues and present some suggestions for current priority areas in immunosenescence.
Collapse
Affiliation(s)
- Richard Faragher
- />School of Pharmacy & Biomolecular Science, University of Brighton, Huxley Building, Brighton, UK
| | - Daniela Frasca
- />Department of Microbiology and Immunology, University of Miami, Room 3146A, Rosenstiel Medical Science Building, Miami, FL USA
| | - Edmond Remarque
- />Department of Parasitology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Graham Pawelec
- />Tübingen Ageing and Tumour Immunology Group (TATI) Section for Transplantation Immunology and Immunohaematology ZMF, University of Tübingen, Waldhörnlestr. 22, 72072 Tübingen, Germany
| | | |
Collapse
|
43
|
Zhou Z, Gao X, Wang Y, Zhou H, Wu C, Paranhos-Baccalà G, Vernet G, Guo L, Wang J. Conserved B-cell epitopes among human bocavirus species indicate potential diagnostic targets. PLoS One 2014; 9:e86960. [PMID: 24475201 PMCID: PMC3903785 DOI: 10.1371/journal.pone.0086960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 12/18/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Human bocavirus species 1-4 (HBoV1-4) have been associated with respiratory and enteric infections in children. However, the immunological mechanisms in response to HBoV infections are not fully understood. Though previous studies have shown cross-reactivities between HBoV species, the epitopes responsible for this phenomenon remain unknown. In this study, we used genomic and immunologic approaches to identify the reactive epitopes conserved across multiple HBoV species and explored their potential as the basis of a novel diagnostic test for HBoVs. METHODOLOGY/PRINCIPAL FINDINGS We generated HBoV1-3 VP2 gene fragment phage display libraries (GFPDLs) and used these libraries to analyze mouse antisera against VP2 protein of HBoV1, 2, and 3, and human sera positive for HBoVs. Using this approach, we mapped four epitope clusters of HBoVs and identified two immunodominant peptides--P1 (¹MSDTDIQDQQPDTVDAPQNT²⁰), and P2 (¹⁶²EHAYPNASHPWDEDVMPDL¹⁸⁰)--that are conserved among HBoV1-4. To confirm epitope immunogenicity, we immunized mice with the immunodominant P1 and P2 peptides identified in our screen and found that they elicited high titer antibodies in mice. These two antibodies could only recognize the VP2 of HBoV 1-4 in Western blot assays, rather than those of the two other parvoviruses human parvovirus B19 and human parvovirus 4 (PARV4). Based on our findings, we evaluated epitope-based peptide-IgM ELISAs as potential diagnostic tools for HBoVs IgM antibodies. We found that the P1+P2-IgM ELISA showed a higher sensitivity and specificity in HBoVs IgM detection than the assays using a single peptide. CONCLUSIONS/SIGNIFICANCE The identification of the conserved B-cell epitopes among human bocavirus species contributes to our understanding of immunological cross-reactivities of HBoVs, and provides important insights for the development of HBoV diagnostic tools.
Collapse
Affiliation(s)
- Zhuo Zhou
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - Xin Gao
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - Yaying Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - Hongli Zhou
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - Chao Wu
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | | | | | - Li Guo
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, People's Republic of China
- * E-mail: (JW); (LG)
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, People's Republic of China
- * E-mail: (JW); (LG)
| |
Collapse
|
44
|
Kurupati RK, Kannan S, Xiang ZQ, Doyle S, Ratcliffe S, Schmader KE, Ertl HCJ. B cell responses to the 2011/12-influenza vaccine in the aged. Aging (Albany NY) 2013; 5:209-26. [PMID: 23674565 PMCID: PMC3629292 DOI: 10.18632/aging.100541] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antibody and B cell responses to influenza A viruses were measured over a period of 2 months in 30 aged and 15 middle-aged individuals following vaccination with the 2011/12 trivalent inactivated influenza vaccine by micro-neutralization assays, ELISAs, ELISpot assays and cell surface staining with lineage-defining antibodies followed by multicolor flow cytometry. Both cohorts developed comparable antibody responses to the H3N2 virus of the vaccine while responses to the H1N1 virus were compromised in the aged. ELISpot assays of peripheral blood mononuclear cells (PBMCs) gave comparable results for the two cohorts. Analysis by flow cytometry upon staining of CD19+IgD-CD20- PBMCs with antibodies to CD27 and CD38 showed markedly reduced increases of such cells following vaccination in the aged. Additional analysis of cells from a subset of 10 younger and 10 aged individuals indicated that in the aged a portion of IgG producing cells lose expression of CD27 and reduce expression of CD38.
Collapse
|
45
|
Jegaskanda S, Laurie KL, Amarasena TH, Winnall WR, Kramski M, De Rose R, Barr IG, Brooks AG, Reading PC, Kent SJ. Age-associated cross-reactive antibody-dependent cellular cytotoxicity toward 2009 pandemic influenza A virus subtype H1N1. J Infect Dis 2013; 208:1051-61. [PMID: 23812238 DOI: 10.1093/infdis/jit294] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND During the 2009 pandemic of influenza A virus subtype H1N1 (A[H1N1]pdm09) infection, older individuals were partially protected from severe disease. It is not known whether preexisting antibodies with effector functions such as antibody-dependent cellular cytotoxicity (ADCC) contributed to the immunity observed. METHODS We tested serum specimens obtained from 182 individuals aged 1-72 years that were collected either immediately before or after the A(H1N1)pdm09 pandemic for ADCC antibodies to the A(H1N1)pdm09 hemagglutinin (HA) protein. RESULTS A(H1N1)pdm09 HA-specific ADCC antibodies were detected in almost all individuals aged >45 years (28/31 subjects) before the 2009 A(H1N1) pandemic. Conversely, only approximately half of the individuals aged 1-14 years (11/31) and 15-45 years (17/31) had cross-reactive ADCC antibodies before the 2009 A(H1N1) pandemic. The A(H1N1)pdm09-specific ADCC antibodies were able to efficiently mediate the killing of influenza virus-infected respiratory epithelial cells. Further, subjects >45 years of age had higher ADCC titers to a range of seasonal H1N1 HA proteins, including from the 1918 virus, compared with younger individuals. CONCLUSIONS ADCC antibodies may have contributed to the protection exhibited in older individuals during the 2009 A(H1N1) pandemic. This work has significant implications for improved vaccination strategies for future influenza pandemics.
Collapse
Affiliation(s)
- Sinthujan Jegaskanda
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Qin Y, Zhong Y, Zhu M, Dang L, Yu H, Chen Z, Chen W, Wang X, Zhang H, Li Z. Age- and sex-associated differences in the glycopatterns of human salivary glycoproteins and their roles against influenza A virus. J Proteome Res 2013; 12:2742-54. [PMID: 23590532 DOI: 10.1021/pr400096w] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies have elucidated that expression of certain glycoproteins in human saliva is increased or decreased according to age; meanwhile, human saliva may inhibit viral infection and prevent viral transmission. However, little is known about the age- and sex-associated differences in the glycopatterns of human salivary glycoproteins and their significant roles against influenza A virus (IVA). Here, we investigate the glycopatterns of human salivary glycoproteins with 180 healthy saliva samples divided into six age/sex groups using lectin microarrays and fabricate saliva microarrays to validate the terminal carbohydrate moieties of glycoproteins in individual saliva samples. Furthermore, we assess the inhibiting and neutralizing activity of saliva against two strains of influenza A (H9N2) virus. We find that seven lectins (e.g., MAL-II and SNA) show significant age differences in both females and males, and seven lectins (e.g., WFA and STL) show significant sex differences in children, adults and elderly people. Interestingly, we observe that elderly individuals have strongest resistance to IVA partly by presenting more terminal α2-3/6-linked sialic acid residues in their saliva, which bind with the influenza viral hemagglutinations. We conclude that age- and sex-associated differences in the glycopatterns of human salivary glycoproteins may provide pivotal information to help understand some age related diseases and physiological phenomena.
Collapse
Affiliation(s)
- Yannan Qin
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Khurana S, Wu J, Dimitrova M, King LR, Manischewitz J, Graham BS, Ledgerwood JE, Golding H. DNA priming prior to inactivated influenza A(H5N1) vaccination expands the antibody epitope repertoire and increases affinity maturation in a boost-interval-dependent manner in adults. J Infect Dis 2013; 208:413-7. [PMID: 23633404 DOI: 10.1093/infdis/jit178] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DNA priming improves the response to inactivated influenza A(H5N1) vaccination. We compared the immunogenicity of an H5 DNA prime (using strain A/Indonesia/5/2005) followed by an H5N1 monovalent inactivated vaccine boost at 4, 8, 12, 16, or 24 weeks to that of 2 doses of H5N1 monovalent inactivated vaccine in adults. Antibody epitope repertoires were elucidated by genome-fragment phage-display library analysis, and antibody avidities for HA1 and HA2 domains were measured by surface plasmon resonance. H5 DNA priming expanded the H5-specific antibody epitope repertoire and enhanced antibody avidity to the HA1 (but not the HA2) domain in an interval-dependent manner. Enhanced HA1 binding and avidity after an interval of ≥12 weeks between prime and boost correlated with improved neutralization of homologous and heterologous H5N1 strains. Clinical trials registration NCT01086657.
Collapse
Affiliation(s)
- Surender Khurana
- Division of Viral Products,National Institute of Allergyand Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Van Kerkhove MD, Hirve S, Koukounari A, Mounts AW. Estimating age-specific cumulative incidence for the 2009 influenza pandemic: a meta-analysis of A(H1N1)pdm09 serological studies from 19 countries. Influenza Other Respir Viruses 2013; 7:872-86. [PMID: 23331969 PMCID: PMC5781221 DOI: 10.1111/irv.12074] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 11/30/2022] Open
Abstract
Background The global impact of the 2009 influenza A(H1N1) pandemic (H1N1pdm) is not well understood. Objectives We estimate overall and age‐specific prevalence of cross‐reactive antibodies to H1N1pdm virus and rates of H1N1pdm infection during the first year of the pandemic using data from published and unpublished H1N1pdm seroepidemiological studies. Methods Primary aggregate H1N1pdm serologic data from each study were stratified in standardized age groups and evaluated based on when sera were collected in relation to national or subnational peak H1N1pdm activity. Seropositivity was assessed using well‐described and standardized hemagglutination inhibition (HI titers ≥32 or ≥40) and microneutralization (MN ≥ 40) laboratory assays. The prevalence of cross‐reactive antibodies to the H1N1pdm virus was estimated for studies using sera collected prior to the start of the pandemic (between 2004 and April 2009); H1N1pdm cumulative incidence was estimated for studies in which collected both pre‐ and post‐pandemic sera; and H1N1pdm seropositivity was calculated from studies with post‐pandemic sera only (collected between December 2009–June 2010). Results Data from 27 published/unpublished studies from 19 countries/administrative regions – Australia, Canada, China, Finland, France, Germany, Hong Kong SAR, India, Iran, Italy, Japan, Netherlands, New Zealand, Norway, Reunion Island, Singapore, United Kingdom, United States, and Vietnam – were eligible for inclusion. The overall age‐standardized pre‐pandemic prevalence of cross‐reactive antibodies was 5% (95%CI 3–7%) and varied significantly by age with the highest rates among persons ≥65 years old (14% 95%CI 8–24%). Overall age‐standardized H1N1pdm cumulative incidence was 24% (95%CI 20–27%) and varied significantly by age with the highest in children 5–19 (47% 95%CI 39–55%) and 0–4 years old (36% 95%CI 30–43%). Conclusions Our results offer unique insight into the global impact of the H1N1 pandemic and highlight the need for standardization of seroepidemiological studies and for their inclusion in pre‐pandemic preparedness plans. Our results taken together with recent global pandemic respiratory‐associated mortality estimates suggest that the case fatality ratio of the pandemic virus was approximately 0·02%.
Collapse
|
49
|
Mörner A, Bråve A, Kling AM, Kühlmann-Berenzon S, Krook K, Hedenskog M, Silhammar I, Ljungman M, Ortqvist A, Andersson S, Brytting M, Thorstensson R, Linde A. Pandemic influenza A(H1N1)pdm09 seroprevalence in Sweden before and after the pandemic and the vaccination campaign in 2009. PLoS One 2012; 7:e53511. [PMID: 23285299 PMCID: PMC3532299 DOI: 10.1371/journal.pone.0053511] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022] Open
Abstract
The immunity to pandemic influenza A(H1N1)pdm09 in Sweden before and after the outbreaks in 2009 and 2010 was investigated in a seroepidemiological study. Serum samples were collected at four time points: during 2007 (n = 1968), in October 2009 (n = 2218), in May 2010 (n = 2638) and in May 2011 (n = 2513) and were tested for hemagglutination inhibition (HI) antibodies. In 2007, 4.9% of the population had pre-existing HI titres ≥40, with the highest prevalence (20.0%) in 15-24 year-olds, followed by ≥80 year-olds (9.3%). The overall prevalence of HI titres ≥40 had not changed significantly in October 2009. In May 2010 the prevalence had increased to 48.6% with the highest percentages in 5-14 year-olds (76.2%) andlowest in 75-79 year-olds (18.3%). One year later the prevalence of HI titres ≥40 had increased further to 52.2%. Children 5-14 years had the highest incidence of infection and vaccine uptake as well as the highest post-pandemic protective antibody levels. In contrast, the elderly had high vaccine uptake and low attack rate but low levels of protective antibodies, underlining that factors other than HI antibodies are involved in protection against influenza A(H1N1)pdm09. However, for all age-groups the seroprevalence was stable or increasing between 2010 and 2011, indicating that both vaccine- and infection-induced antibodies were long-lived.
Collapse
Affiliation(s)
- Andreas Mörner
- Department of Diagnostics and Vaccinology, Swedish Institute for Communicable Disease Control, Solna, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Current world literature. Curr Opin Infect Dis 2012; 25:718-28. [PMID: 23147811 DOI: 10.1097/qco.0b013e32835af239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|