1
|
Deb R, Sengar GS, Sonowal J, Pegu SR, Das PJ, Singh I, Chakravarti S, Selvaradjou A, Attupurum N, Rajkhowa S, Gupta VK. Transcriptome signatures of host tissue infected with African swine fever virus reveal differential expression of associated oncogenes. Arch Virol 2024; 169:54. [PMID: 38381218 DOI: 10.1007/s00705-023-05959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/27/2023] [Indexed: 02/22/2024]
Abstract
African swine fever (ASF) has emerged as a threat to swine production worldwide. Evasion of host immunity by ASF virus (ASFV) is well understood. However, the role of ASFV in triggering oncogenesis is still unclear. In the present study, ASFV-infected kidney tissue samples were subjected to Illumina-based transcriptome analysis. A total of 2463 upregulated and 825 downregulated genes were differentially expressed (p < 0.05). A literature review revealed that the majority of the differentially expressed host genes were key molecules in signaling pathways involved in oncogenesis. Bioinformatic analysis indicated the activation of certain oncogenic KEGG pathways, including basal cell carcinoma, breast cancer, transcriptional deregulation in cancer, and hepatocellular carcinoma. Analysis of host-virus interactions revealed that the upregulated oncogenic RELA (p65 transcription factor) protein of Sus scrofa can interact with the A238L (hypothetical protein of unknown function) of ASFV. Differential expression of oncogenes was confirmed by qRT-PCR, using the H3 histone family 3A gene (H3F3A) as an internal control to confirm the RNA-Seq data. The levels of gene expression indicated by qRT-PCR matched closely to those determined through RNA-Seq. These findings open up new possibilities for investigation of the mechanisms underlying ASFV infection and offer insights into the dynamic interaction between viral infection and oncogenic processes. However, as these investigations were conducted on pigs that died from natural ASFV infection, the role of ASFV in oncogenesis still needs to be investigated in controlled experimental studies.
Collapse
Affiliation(s)
- Rajib Deb
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India.
| | | | - Joyshikh Sonowal
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, 785001, India
| | - Seema Rani Pegu
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Pranab Jyoti Das
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India.
| | | | - Soumendu Chakravarti
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
- Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
| | | | - Nitin Attupurum
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Swaraj Rajkhowa
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Vivek Kumar Gupta
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India.
| |
Collapse
|
2
|
Vlasova NN, Chernykh OY, Krivonos RA, Verkhovsky OA, Aliper TI, Anoyatbekova AM, Zhukova EV, Kucheruk OD, Yuzhakov AG, Gulyukin MI, Gulyukin AM. [Adaptation of african swine fever virus (Asfarviridae: Asfivirus)to growth in the continuous culture PPK-66b cells by the method of accelerated passaging]. Vopr Virusol 2023; 68:334-342. [PMID: 38156590 DOI: 10.36233/0507-4088-186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION African swine fever virus (ASF) is a large, enveloped virus with an icosahedral capsid morphology and a double-stranded DNA genome ranging in size from 170 to 190 kb. The replication cycle proceeds in two phases, the early phase lasting 4-6 hours and the late 8-20 hours after infection. The adaptation of the ASF virus to growth in continuous cell lines makes efficient and reliable genetic analysis and more accurate interpretation of its results. OBJECTIVE Adaptation of a new isolate of the ASF virus to growth in a continuous cell line by the method of accelerated passages and preliminary genetic analysis of the resulting strain. MATERIALS AND METHODS For virus isolation and passaging of the ASF virus, a porcine leukocyte cell culture (PL) and continuous cell cultures of porcine origin (ST, PK, PPK-66b) were used with Eagle MEM and HLA essential media with 10% porcine or fetal serum. RESULTS The article presents data on the isolation and analysis of the changes in the reproductive properties of a new African swine fever (ASF) virus isolate in the process of adaptation to growth in a continuous piglet kidney cell culture clone b (PPK-66b). The current state of the problem of cultivation of the ASF virus, the features of its reproduction, and the basis of the genetic differentiation of its isolates are described in detail. Understanding the uniqueness of the nature of the ASF virus determined the approaches to the processes of its cultivation and adaptation. In this regard, the results of studies of cultural properties, and analysis of the nucleotide sequence of 6 genes of the new isolate, as well as phylogenetic analysis of these genes with already known strains and isolates of the ASF virus are presented. CONCLUSION A new strain obtained in the process of cell adaptation of ASVF/Znaury/PPK-23 ASF virus by the accelerated passaging method reaches a high level of reproduction in 72 hours with an accumulation titer of 7.07 lg HAdE50/cm3. Primary genetic analysis allowed to establish the main phylogenetic relationships of the newly isolated strain with previously known variants of the current ASF panzootic.
Collapse
Affiliation(s)
- N N Vlasova
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - O Y Chernykh
- Department of Veterinary Medicine of the Krasnodar Territory
| | - R A Krivonos
- Department of Veterinary Medicine of the Krasnodar Territory
| | - O A Verkhovsky
- Research Institute for Diagnosis and Prevention of Human and Animal Diseases
| | - T I Aliper
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - A M Anoyatbekova
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - E V Zhukova
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - O D Kucheruk
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - A G Yuzhakov
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - M I Gulyukin
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - A M Gulyukin
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| |
Collapse
|
3
|
Wöhnke E, Klupp BG, Blome S, Mettenleiter TC, Karger A. Mass-Spectrometric Evaluation of the African Swine Fever Virus-Induced Host Shutoff Using Dynamic Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC). Viruses 2023; 15:1283. [PMID: 37376583 DOI: 10.3390/v15061283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
African swine fever is a viral disease of swine caused by the African swine fever virus (ASFV). Currently, ASFV is spreading over the Eurasian continent and threatening global pig husbandry. One viral strategy to undermine an efficient host cell response is to establish a global shutoff of host protein synthesis. This shutoff has been observed in ASFV-infected cultured cells using two-dimensional electrophoresis combined with metabolic radioactive labeling. However, it remained unclear if this shutoff was selective for certain host proteins. Here, we characterized ASFV-induced shutoff in porcine macrophages by measurement of relative protein synthesis rates using a mass spectrometric approach based on stable isotope labeling with amino acids in cell culture (SILAC). The impact of ASFV infection on the synthesis of >2000 individual host proteins showed a high degree of variability, ranging from complete shutoff to a strong induction of proteins that are absent from naïve cells. GO-term enrichment analysis revealed that the most effective shutoff was observed for proteins related to RNA metabolism, while typical representatives of the innate immune system were strongly induced after infection. This experimental setup is suitable to quantify a virion-induced host shutoff (vhs) after infection with different viruses.
Collapse
Affiliation(s)
- Elisabeth Wöhnke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
4
|
African Swine Fever Virus Manipulates the Cell Cycle of G0-Infected Cells to Access Cellular Nucleotides. Viruses 2022; 14:v14081593. [PMID: 35893659 PMCID: PMC9331790 DOI: 10.3390/v14081593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
African swine fever virus manipulates the cell cycle of infected G0 cells by inducing its progression via unblocking cells from the G0 to S phase and then arresting them in the G2 phase. DNA synthesis in infected alveolar macrophages starts at 10–12 h post infection. DNA synthesis in the nuclei of G0 cells is preceded by the activation of the viral genes K196R, A240L, E165R, F334L, F778R, and R298L involved in the synthesis of nucleotides and the regulation of the cell cycle. The activation of these genes in actively replicating cells begins later and is less pronounced. The subsequent cell cycle arrest at the G2 phase is also due to the cessation of the synthesis of cellular factors that control the progression of the cell cycle–cyclins. This data describes the manipulation of the cell cycle by the virus to gain access to the nucleotides synthesized by the cell. The genes affecting the cell cycle simply remain disabled until the beginning of cellular DNA synthesis (8–9 hpi). The genes responsible for the synthesis of nucleotides are turned on later in the presence of nucleotides and their transcriptional activity is lower than that during virus replication in an environment without nucleotides.
Collapse
|
5
|
Muñoz A, Tabarés E. Characteristics of the major structural proteins of African swine fever virus: Role as antigens in the induction of neutralizing antibodies. A review. Virology 2022; 571:46-51. [DOI: 10.1016/j.virol.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/15/2022]
|
6
|
Karki S, Moniruzzaman M, Aylward FO. Comparative Genomics and Environmental Distribution of Large dsDNA Viruses in the Family Asfarviridae. Front Microbiol 2021; 12:657471. [PMID: 33790885 PMCID: PMC8005611 DOI: 10.3389/fmicb.2021.657471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
The family Asfarviridae is a group of nucleo-cytoplasmic large DNA viruses (NCLDVs) of which African swine fever virus (ASFV) is well-characterized. Recently the discovery of several Asfarviridae members other than ASFV has suggested that this family represents a diverse and cosmopolitan group of viruses, but the genomics and distribution of this family have not been studied in detail. To this end we analyzed five complete genomes and 35 metagenome-assembled genomes (MAGs) of viruses from this family to shed light on their evolutionary relationships and environmental distribution. The Asfarvirus MAGs derive from diverse marine, freshwater, and terrestrial habitats, underscoring the broad environmental distribution of this family. We present phylogenetic analyses using conserved marker genes and whole-genome comparison of pairwise average amino acid identity (AAI) values, revealing a high level of genomic divergence across disparate Asfarviruses. Further, we found that Asfarviridae genomes encode genes with diverse predicted metabolic roles and detectable sequence homology to proteins in bacteria, archaea, and eukaryotes, highlighting the genomic chimerism that is a salient feature of NCLDV. Our read mapping from Tara oceans metagenomic data also revealed that three Asfarviridae MAGs were present in multiple marine samples, indicating that they are widespread in the ocean. In one of these MAGs we identified four marker genes with > 95% AAI to genes sequenced from a virus that infects the dinoflagellate Heterocapsa circularisquama (HcDNAV). This suggests a potential host for this MAG, which would thereby represent a reference genome of a dinoflagellate-infecting giant virus. Together, these results show that Asfarviridae are ubiquitous, comprise similar sequence divergence as other NCLDV families, and include several members that are widespread in the ocean and potentially infect ecologically important protists.
Collapse
Affiliation(s)
- Sangita Karki
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | | | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
7
|
A Proteomic Atlas of the African Swine Fever Virus Particle. J Virol 2018; 92:JVI.01293-18. [PMID: 30185597 DOI: 10.1128/jvi.01293-18] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information.IMPORTANCE African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts.
Collapse
|
8
|
|
9
|
Dixon LK, Chapman DAG, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Res 2012; 173:3-14. [PMID: 23142553 DOI: 10.1016/j.virusres.2012.10.020] [Citation(s) in RCA: 471] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 01/03/2023]
Abstract
African swine fever virus (ASFV) is a large icosahedral DNA virus which replicates predominantly in the cytoplasm of infected cells. The ASFV double-stranded DNA genome varies in length from about 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames. These are closely spaced and read from both DNA strands. The virus genome termini are covalently closed by imperfectly base-paired hairpin loops that are present in two forms that are complimentary and inverted with respect to each other. Adjacent to the termini are inverted arrays of different tandem repeats. Head to head concatemeric genome replication intermediates have been described. A similar mechanism of replication to Poxviruses has been proposed for ASFV. Virus genome transcription occurs independently of the host RNA polymerase II and virus particles contain all of the enzymes and factors required for early gene transcription. DNA replication begins in perinuclear factory areas about 6h post-infection although an earlier stage of nuclear DNA synthesis has been reported. The virus genome encodes enzymes required for transcription and replication of the virus genome and virion structural proteins. Enzymes that are involved in a base excision repair pathway may be an adaptation to enable virus replication in the oxidative environment of the macrophage cytoplasm. Other ASFV genes encode factors involved in evading host defence systems and modulating host cell function. Variation between the genomes of different ASFV isolates is most commonly due to gain or loss of members of multigene families, MGFs 100, 110, 300, 360, 505/530 and family p22. These are located within the left terminal 40kbp and right terminal 20kbp. ASFV is the only member of the Asfarviridae, which is one of the families within the nucleocytoplasmic large DNA virus superfamily.
Collapse
Affiliation(s)
- Linda K Dixon
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom.
| | | | | | | |
Collapse
|
10
|
Rodríguez JM, Salas ML. African swine fever virus transcription. Virus Res 2012; 173:15-28. [PMID: 23041356 DOI: 10.1016/j.virusres.2012.09.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
Abstract
African swine fever virus (ASFV), a large, enveloped, icosahedral dsDNA virus, is currently the only known DNA-containing arbovirus and the only recognized member of the family Asfarviridae. Its genome encodes more than 150 open reading frames that are densely distributed, separated by short intergenic regions. ASFV gene expression follows a complex temporal programming. Four classes of mRNAs have been identified by its distinctive accumulation kinetics. Gene transcription is coordinated with DNA replication that acts as the main switch on ASFV gene expression. Immediate early and early genes are expressed before the onset of DNA replication, whereas intermediate and late genes are expressed afterwards. ASFV mRNAs have a cap 1 structure at its 5'-end and a short poly(A) tail on its 3'-end. Transcription initiation and termination occurs at very precise positions within the genome, producing transcripts of definite length throughout the expression program. ASFV devotes approximately 20% of its genome to encode the 20 genes currently considered to be involved in the transcription and modification of its mRNAs. This transcriptional machinery gives to ASFV a remarkable independence from its host and an accurate positional and temporal control of its gene expression. Here, we review the components of the ASFV transcriptional apparatus, its expression strategies and the relevant data about the transcriptional cis-acting control sequences.
Collapse
Affiliation(s)
- Javier M Rodríguez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km 2.2, Majadahonda, 28220 Madrid, Spain.
| | | |
Collapse
|
11
|
Disruption of nuclear organization during the initial phase of African swine fever virus infection. J Virol 2011; 85:8263-9. [PMID: 21680527 DOI: 10.1128/jvi.00704-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
African swine fever virus (ASFV), the causative agent of one of the most devastating swine diseases, has been considered exclusively cytoplasmic, even though some authors have shown evidence of an early stage of nuclear replication. In the present study, an increment of lamin A/C phosphorylation was observed in ASFV-infected cells as early as 4 h postinfection, followed by the disassembling of the lamina network close to the sites where the viral genome starts its replication. At later time points, this and other nuclear envelope markers were found in the cytoplasm of the infected cells. The effect of the infection on the cell nucleus was much more severe than previously expected, since a redistribution of other nuclear proteins, such as RNA polymerase II, the splicing speckle SC-35 marker, and the B-23 nucleolar marker, was observed from 4 h postinfection. All this evidence, together with the redistribution, dephosphorylation, and subsequent degradation of RNA polymerase II after ASFV infection, suggests the existence of sophisticated mechanisms to regulate the nuclear machinery during viral infection.
Collapse
|
12
|
Abstract
African swine fever virus (ASFV) is a large, intracytoplasmically-replicating DNA arbovirus and the sole member of the family Asfarviridae. It is the etiologic agent of a highly lethal hemorrhagic disease of domestic swine and therefore extensively studied to elucidate the structures, genes, and mechanisms affecting viral replication in the host, virus-host interactions, and viral virulence. Increasingly apparent is the complexity with which ASFV replicates and interacts with the host cell during infection. ASFV encodes novel genes involved in host immune response modulation, viral virulence for domestic swine, and in the ability of ASFV to replicate and spread in its tick vector. The unique nature of ASFV has contributed to a broader understanding of DNA virus/host interactions.
Collapse
Affiliation(s)
- E R Tulman
- Department of Pathobiology and Veterinary Science, Center of Excellence for Vaccine Research, University of Connecticut, Storrs 06269, USA.
| | | | | | | |
Collapse
|
13
|
Chapman DAG, Tcherepanov V, Upton C, Dixon LK. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. J Gen Virol 2008; 89:397-408. [PMID: 18198370 DOI: 10.1099/vir.0.83343-0] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The genomic coding sequences, apart from the inverted terminal repeats and cross-links, have been determined for two African swine fever virus (ASFV) isolates from the same virus genotype, a non-pathogenic isolate from Portugal, OURT88/3, and a highly pathogenic isolate from West Africa, Benin 97/1. These genome sequences were annotated and compared with that of a tissue culture-adapted isolate, BA71V. The genomes range in length between 170 and 182 kbp and encode between 151 and 157 open reading frames (ORFs). Compared to the Benin 97/1 isolate, the OURT88/3 and BA71V isolates have deletions of 8-10 kbp that encode six copies of the multigene family (MGF) 360 and either one MGF 505/530 copy in the BA71V or two copies in the OURT88/3 isolate. The BA71V isolate has a deletion, close to the right end of the genome, of 3 kbp compared with the other isolates. The five ORFs in this region include an additional copy of an ORF similar to that encoding the p22 virus structural protein. The OURT88/3 isolate has interruptions in ORFs that encode a CD2-like and a C-type lectin protein. Variation between the genomes is observed in the number of copies of five different MGFs. The 109 non-duplicated ORFs conserved in the three genomes encode proteins involved in virus replication, virus assembly and modulation of the host's defences. These results provide information concerning the genetic variability of African swine fever virus isolates that differ in pathogenicity.
Collapse
Affiliation(s)
- David A G Chapman
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Vasily Tcherepanov
- Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Chris Upton
- Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Linda K Dixon
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| |
Collapse
|
14
|
Liu WJ, Yu HT, Peng SE, Chang YS, Pien HW, Lin CJ, Huang CJ, Tsai MF, Huang CJ, Wang CH, Lin JY, Lo CF, Kou GH. Cloning, characterization, and phylogenetic analysis of a shrimp white spot syndrome virus gene that encodes a protein kinase. Virology 2001; 289:362-77. [PMID: 11689058 DOI: 10.1006/viro.2001.1091] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An open reading frame (ORF) that encodes a 715-amino-acid polypeptide was found in an 8421-bp EcoRI fragment of the shrimp white spot syndrome virus (WSSV) genome. The polypeptide shows significant homology to eukaryotic serine/threonine protein kinase (PK) and contains the major conserved subdomains for eukaryotic protein kinases. Coupled in vitro transcription and translation generated a protein having an apparent molecular mass of about 87 kDa according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. For transcriptional analysis of the pk gene, total RNA was isolated from WSSV-infected shrimp at different times after infection. Northern blot analysis with pk-specific riboprobe found a major and a minor transcript of 2.7 and 5.7 kb, respectively. Rapid amplification of the 5' cDNA ends of the major 2.7-kb pk transcript showed that there were two transcriptional initiation sites located at nucleotide residues -38(G) and -39(G) relative to the ATG translational start codon. Temporal expression analysis by RT-PCR indicated that the transcription of the pk gene started 2 h after infection and continued for at least 60 h. Phylogenetic analysis showed that WSSV protein kinase does not have any close relatives and does not fall into any of the major protein kinase groups.
Collapse
Affiliation(s)
- W J Liu
- Department of Zoology, National Taiwan University, Taipei, 106, ROC
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wormleaton SL, Winstanley D. Phylogenetic analysis of conserved genes within the ecdysteroid UDP-glucosyltransferase gene region of the slow-killing Adoxophyes orana granulovirus. J Gen Virol 2001; 82:2295-2305. [PMID: 11514742 DOI: 10.1099/0022-1317-82-9-2295] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A physical map of the genome of Adoxophyes orana granulovirus (AoGV) was constructed for the restriction enzymes BamHI, BglII, EcoRI, PstI and SacI using restriction endonuclease analysis and DNA hybridization techniques. This enabled the size of the AoGV genome to be estimated at 100.9 kbp. A plasmid library covering 99.9% of the AoGV genome was constructed using five restriction enzymes. The ecdysteroid UDP-glucosyltransferase gene (egt) was located by hybridization with the egt gene of Cydia pomonella granulovirus. The sequence of 6000 bp of the egt region is presented and compared to the equivalent area in other GVs. Database searches showed that this region contained eight open reading frames (ORFs) similar to the baculovirus genes egt, granulin, pk-1, me53 and four ORFs of Xestia c-nigrum granulovirus (ORF 178, ORF 2, ORF 7 and ORF 8). The egt gene was shown to encode an active EGT using an EGT assay. Phylogenetic trees of the granulovirus genes egt, granulin, pk-1 and me53 were constructed using maximum parsimony and distance analyses. These analyses indicated that AoGV genes may be more closely related to other tortricid-infecting GVs than to GVs that infect other lepidopteran families.
Collapse
Affiliation(s)
- S L Wormleaton
- Horticulture Research International (HRI), Wellesbourne, Warwickshire CV35 9EF, UK1
| | - D Winstanley
- Horticulture Research International (HRI), Wellesbourne, Warwickshire CV35 9EF, UK1
| |
Collapse
|
16
|
Inouye S, Jain R, Ueki T, Nariya H, Xu CY, Hsu MY, Fernandez-Luque BA, Munoz-Dorado J, Farez-Vidal E, Inouye M. A large family of eukaryotic-like protein Ser/Thr kinases of Myxococcus xanthus, a developmental bacterium. MICROBIAL & COMPARATIVE GENOMICS 2001; 5:103-20. [PMID: 11087177 DOI: 10.1089/10906590050179783] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myxococcus xanthus is a gram-negative bacterium that forms multicellular fruiting bodies upon starvation. Here, we demonstrate that it contains at least 13 eukaryotic-like protein Ser/Thr kinases (Pkn1 to Pkn13) individually having unique features. All contain the kinase domain of approximately 280 residues near the N-terminal end, which share highly conserved features in eukaryotic Ser/Thr kinases. The kinase domain is followed by a putative regulatory domain consisting of 185 to 692 residues. These regulatory domains share no significant sequence similarities. The C-terminal regions of 11 kinases contain at least 1 transmembrane domain, suggesting that they function as transmembrane sensor kinases. From the recent genomic analysis, protein Ser/Thr kinases were found in various pathogenic bacteria and coexist with protein His kinases. Phylogenetic analysis of these Ser/Thr kinases reveals that all bacterial Ser/Thr kinases were evolved from a common ancestral kinase together with eukaryotic Tyr and Ser/Thr kinases. Coexistence of both Ser/Thr and His kinases in some organisms may be significant in terms of functional differences between the two kinases. We argue that both kinases are essential for some bacteria to adapt optimally to severe environmental changes.
Collapse
Affiliation(s)
- S Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Van Hulten MC, Vlak JM. Identification and phylogeny of a protein kinase gene of white spot syndrome virus. Virus Genes 2001; 22:201-7. [PMID: 11324757 DOI: 10.1023/a:1008127709325] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
White spot syndrome virus (WSSV) is a virus infecting shrimp and other crustaceans, which is unclassified taxonomically. A 2193 bp long open reading frame, encoding a putative protein kinase (PK), was found on a 8.4 kb EcoRI fragment of WSSV proximal to the gene for the major envelope protein (VP28). The identified PK shows a high degree of homology to other viral and eukaryotic PK genes. Homology in the catalytic domains suggests that this PK is a serine/threonine protein kinase. All of the conserved PK domains are present in the WSSV PK gene product and this allowed the alignment with PK proteins from other large DNA viruses, which encode one or more PK proteins. An unrooted parsonimous phylogenetic tree was constructed and indicated that the PK gene is well conserved in all DNA virus families and hence can be used as a phylogenetic marker. Baculoviruses to date contain only a single PK gene, which is present in a separate well bootstrap-supported branch in the tree. The WSSV PK is not present in the baculovirus clade and therefore is clearly separated phylogenetically from the baculovirus PK genes. Furthermore, the WSSV PK gene does not share a most recent common ancestor with any known PK gene from other viruses. This provides further and independent evidence for the unique position of WSSV in a newly proposed genus named Whispovirus.
Collapse
Affiliation(s)
- M C Van Hulten
- Laboratory of Virology, Wageningen University, The Netherlands
| | | |
Collapse
|
18
|
Palaty CK, Kalmar G, Tai G, Oh S, Amankawa L, Affolter M, Aebersold R, Pelech SL. Identification of the autophosphorylation sites of the Xenopus laevis Pim-1 proto-oncogene-encoded protein kinase. J Biol Chem 1997; 272:10514-21. [PMID: 9099695 DOI: 10.1074/jbc.272.16.10514] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pim-1 is an oncogene-encoded serine/threonine kinase expressed primarily in cells of the hematopoietic and germ line lineages. Previously identified only in mammals, pim-1 cDNA was cloned and sequenced from the African clawed frog Xenopus laevis. The coding region of Xenopus pim-1 encoded a protein of 324 residues, which exhibited 64% amino acid identity with the full-length human cognate. Xenopus Pim-1 was expressed in bacteria as a glutathione S-transferase (GST) fusion protein and in COS cells. Phosphoamino acid analysis revealed that recombinant Pim-1 autophosphorylated on serine and threonine and to a more limited extent on tyrosine. Electrospray ionization mass spectroscopy was undertaken to locate these phosphorylation sites, and the primary autophosphorylation site of GST-Pim-1 was identified as Ser-190 with Thr-205 and Ser-4 being minor sites. Ser-190, which immediately follows the high conserved Asp-Phe-Gly motif in catalytic subdomain VII, is also featured in more than 20 other protein kinases. To evaluate the importance of the Ser-190 site on the phosphotransferase activity of Pim-1, Ser-190 was mutated to either alanine or glutamic acid, and the constructs were expressed in bacteria as GST fusion proteins and in COS cells. These mutants confirmed that Ser-190 is a major autophosphorylation site of Pim-1 and indicated that phosphorylation of Pim-1 on the Ser-190 residue may serve to activate this kinase.
Collapse
Affiliation(s)
- C K Palaty
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1A1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
An open reading frame (ORF) with strong homology to eukaryotic serine/threonine protein kinases was found in the two Chlorella viruses SC-1A and PBCV-1. The deduced molecular weights of each putative protein kinase were 35 kDa and the predicted amino acid sequences of the two proteins were 95% identical. The ORF encoding the SC-1A protein kinase was over-expressed as a fusion protein in Escherichia coli. The recombinant fusion protein had autophosphorylation activity and could phosphorylate certain exogenous proteins. Antiserum against the recombinant fusion protein reacted with a 35 kDa protein plus three larger proteins from virus infected cells. The 35 kDa protein was a late protein; however, the 35 kDa protein was not packaged in the virion, even though virions contain protein kinase activity.
Collapse
Affiliation(s)
- Q Que
- Department of Plant Pathology, University of Nebraska, Lincoln 68583-0722, USA
| | | |
Collapse
|
20
|
Metzger C, Michel D, Schneider K, Lüske A, Schlicht HJ, Mertens T. Human cytomegalovirus UL97 kinase confers ganciclovir susceptibility to recombinant vaccinia virus. J Virol 1994; 68:8423-7. [PMID: 7966639 PMCID: PMC237316 DOI: 10.1128/jvi.68.12.8423-8427.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We analyzed whether the phosphotransferase encoded by the UL97 open reading frame of human cytomegalovirus (HCMV) alone is sufficient to confer ganciclovir (GCV) susceptibility to a foreign virus. Two vaccinia virus recombinants (T1 and A5) containing the UL97 open reading frames from a GCV-sensitive HCMV and from a GCV-resistant strain were constructed. T1 exhibited a GCV-sensitive phenotype in plaque reduction assays, whereas A5 did not. Moreover, T1-infected cell cultures showed a strongly increased incorporation of [14C]GCV triphosphate into macromolecular DNA, compared with recombinant A5 or vaccinia virus controls, which could be inhibited by the addition of guanosine. This shows that UL97 kinase is the only additional gene product required to make vaccinia virus susceptible to GCV, and guanosine seems to be one natural substrate for the enzyme. The system described here should be very helpful for fast and detailed functional analyses of UL97 mutations found in GCV-resistant HCMV isolates.
Collapse
Affiliation(s)
- C Metzger
- Department of Virology, University of Ulm, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Lin S, Broyles SS. Vaccinia protein kinase 2: a second essential serine/threonine protein kinase encoded by vaccinia virus. Proc Natl Acad Sci U S A 1994; 91:7653-7. [PMID: 8052637 PMCID: PMC44460 DOI: 10.1073/pnas.91.16.7653] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The major protein kinase activity from vaccinia virus core particles was purified to near homogeneity. The protein kinase is a 50-kDa polypeptide that is shown here to phosphorylate primarily seryl residues in alpha-casein, a casein kinase I-specific peptide substrate, and itself through autophosphorylation. The sequence of four peptides derived from the protein kinase demonstrated that it is encoded by the vaccinia virus F10L gene. Expression of the F10L gene product in bacteria as a fusion with glutathione S-transferase confirmed that the vaccinia F10L gene encodes the protein kinase. We have termed this enzyme vaccinia protein kinase 2 (VPK2) to distinguish it from the protein kinase encoded by the vaccinia B1R gene. Targeted disruption of the VPK2 gene with a positive selectable marker demonstrated that all viruses with a disrupted gene also possessed a wild-type gene, suggesting that VPK2 is essential for viability. The discovery of a second essential protein kinase encoded by vaccinia virus, in addition to a protein phosphatase, underscores the importance of protein phosphorylation in poxvirus biogenesis.
Collapse
Affiliation(s)
- S Lin
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153
| | | |
Collapse
|
22
|
Lurain NS, Spafford LE, Thompson KD. Mutation in the UL97 open reading frame of human cytomegalovirus strains resistant to ganciclovir. J Virol 1994; 68:4427-31. [PMID: 8207815 PMCID: PMC236367 DOI: 10.1128/jvi.68.7.4427-4431.1994] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The same point mutation in the human cytomegalovirus UL97 open reading frame was found in three independently isolated ganciclovir-resistant mutants of strain AD169. Point mutations in the DNA polymerase genes of these strains have been previously identified (N.S. Lurain, K.D. Thompson, E.W. Holmes, and G.S. Read, J. Virol. 66:7146-7152, 1992). All three strains are, therefore, double mutants. To determine the contribution of the UL97 mutation to the high ganciclovir resistance of these mutants, the mutation from the ganciclovir-resistant strain D6/3/1 was transferred to the wild-type strain AD169 to produce the recombinant R6HS. The ganciclovir resistance of R6HS is 4-fold lower than that of D6/3/1 but 10-fold higher than that of AD169. R6HS, like AD169, is sensitive to the nucleotide analogs (S)-1-[(3-hydroxy-2-phosphonylmethoxy) propyl]adenine and (S)-1-[(3-hydroxy-2-phosphonylmethoxy)propyl]cytosine. Ganciclovir phosphorylation in R6HS-infected cells was at the same reduced level as that found in cells infected with the parental mutant D6/3/1. The same G-to-T transversion at nucleotide 1380 in the UL97 coding sequence is present in both R6HS and D6/3/1. This mutation results in the substitution of isoleucine for methionine at amino acid residue 460. In an alignment of the R6HS UL97 amino acid sequence with the amino acid sequences of a wide range of protein kinase family members, methionine 460 lies within a highly conserved region which may function in nucleotide binding and phosphate transfer.
Collapse
Affiliation(s)
- N S Lurain
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois 60153
| | | | | |
Collapse
|
23
|
Bischoff DS, Slavicek JM. Identification and characterization of a protein kinase gene in the Lymantria dispar multinucleocapsid nuclear polyhedrosis virus. J Virol 1994; 68:1728-36. [PMID: 8107234 PMCID: PMC236633 DOI: 10.1128/jvi.68.3.1728-1736.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Lymantria dispar multinucleocapsid nuclear polyhedrosis virus (LdMNPV) gene encoding vPK has been cloned and sequenced. LdMNPV vPK shows a 24% amino acid identity to the catalytic domains of the eucaryotic protein kinases nPKC from rabbits, HSPKCE from humans, APLPKCB from Aplysia californica, and dPKC98F from Drosophila melanogaster, and homology to several other protein kinases from yeasts, mice, and bovines. The homology suggests that vPK is a serine/threonine protein kinase as defined by Hanks et al. (S.K. Hanks, A.M. Quinn, and T. Hunter, Science 241:42-52, 1988). Temporal expression studies indicate that vPK is expressed throughout the infection cycle beginning at 4 h postinfection, first as a delayed-early gene and subsequently as a late gene. Sequence analysis and primer extension reactions confirm the presence of distinct early and late transcription initiation regions. Expression of vPK with a rabbit reticulocyte system generated a 31-kDa protein, which is in close agreement with the predicted size of 32 kDa from the amino acid sequence. Phosphorylation activity of in vitro-expressed vPK was demonstrated by using calf thymus histones.
Collapse
Affiliation(s)
- D S Bischoff
- Forestry Sciences Laboratory, Northeastern Forest Experimental Station, USDA Forest Service, Delaware, Ohio 43015
| | | |
Collapse
|
24
|
Abstract
Certain large DNA viruses (e.g. herpesviruses and poxviruses) encode proteins related to cellular protein-serine/threonine kinases, and Hepatitis B virus and vesicular stomatitis virus may encode structurally different protein kinases. Other viruses activate cellular protein kinases, e.g. interferon-induced eukaryotic initiation factor-2 kinase, growth factor-induced kinases and protein kinases that regulate mitosis. Protein phosphatases are encoded by vaccinia virus and bacteriophage lambda and must also play a role in viral infection--as do cellular protein phosphatases. The functions of many of these viral enzymes remain to be determined, but they represent possible new targets for anti-viral therapy.
Collapse
Affiliation(s)
- D P Leader
- Department of Biochemistry, University of Glasgow, U.K
| |
Collapse
|