1
|
Zamba-Campero M, Soliman D, Yu H, Lasseter AG, Chang YY, Silberman JL, Liu J, Aravind L, Jewett MW, Storz G, Adams PP. Broadly conserved FlgV controls flagellar assembly and Borrelia burgdorferi dissemination in mice. Nat Commun 2024; 15:10417. [PMID: 39614093 DOI: 10.1038/s41467-024-54806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Flagella propel pathogens through their environments, yet are expensive to synthesize and are immunogenic. Thus, complex hierarchical regulatory networks control flagellar gene expression. Spirochetes are highly motile bacteria, but peculiarly, the archetypal flagellar regulator σ28 is absent in the Lyme spirochete Borrelia burgdorferi. Here, we show that gene bb0268 (flgV) in B. burgdorferi, previously and incorrectly annotated to encode the RNA-binding protein Hfq, is instead a structural flagellar component that modulates flagellar assembly. The flgV gene is broadly conserved in the flagellar superoperon alongside σ28 in many Spirochaetae, Firmicutes and other phyla, with distant homologs in Epsilonproteobacteria. We find that B. burgdorferi FlgV is localized within flagellar basal bodies, and strains lacking flgV produce fewer and shorter flagellar filaments and are defective in cell division and motility. During the enzootic cycle, flgV-deficient B. burgdorferi survive and replicate in Ixodes ticks but are attenuated for infection and dissemination in mice. Our work defines infection timepoints when spirochete motility is most crucial and implicates FlgV as a broadly distributed structural flagellar component that modulates flagellar assembly.
Collapse
Affiliation(s)
- Maxime Zamba-Campero
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel Soliman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Huaxin Yu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Amanda G Lasseter
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Yuen-Yan Chang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia L Silberman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - L Aravind
- Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Mollie W Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA.
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA.
- Independent Research Scholar Program, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Guan X, Xu Y, Zhang D, Li H, Li R, Shi R. Microbial nitrogen transformation regulates pathogenic virulence in soil environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122280. [PMID: 39226813 DOI: 10.1016/j.jenvman.2024.122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Soil nitrogen addition induces the generation and proliferation of some bacterial virulence, yet the interactive mechanisms between the two remain unclear. Here we investigated the variation of virulence genes (VGs) abundance during soil nitrogen transformation, and explored the biological mechanism and key pathways involved in the regulation of VGs by nitrogen transformation. The results showed that the diversity and abundance of virulence genes in soil under high nitrogen input (100 mg/kg) were markedly higher than those under low nitrogen input (50 mg/kg), suggesting a trade-off between the prevalence of virulence genes and nitrogen metabolism. Nutritional/metabolic factor, regulation, immune modulation and motility were the dominant virulence types. Linear regression analysis showed that soil nitrogen mineralization and nitrification rate were closely correlated with the abundance of virulence genes, mainly involving adherence, nutritional/metabolic factors and immune modulation (p < 0.05). Structural equations indicated that microbial community succession associated with nitrogen transformation largely contributed to the changes in VGs abundance. Metagenomic analysis revealed that major virulence genes pilE, pchB, and galE were regulated by nitrogen-functional genes gdh, ureC, and amoC, implying that microbial nitrogen transformation influences immune modulation, nutritional/metabolic factors, and adherence-like virulence. The meta-transcriptome reiterated their co-regulation, and the key pathway may be glutamate/urea> α-ketoglutarate/ammonia > pyruvate/amino acid. The outcome provides strong evidence on the linkage between microbial nitrogen transformation and pathogenic virulence factors development in the soil environment, which will aid in the effective suppression of the prevalence of soil pathogenic virulence.
Collapse
Affiliation(s)
- Xiujing Guan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Ruolan Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
3
|
Davignon G, Pietrosemoli N, Benaroudj N, Soupé-Gilbert ME, Cagliero J, Turc É, Picardeau M, Guentas L, Goarant C, Thibeaux R. Leptospira interrogans biofilm transcriptome highlights adaption to starvation and general stress while maintaining virulence. NPJ Biofilms Microbiomes 2024; 10:95. [PMID: 39349472 PMCID: PMC11442865 DOI: 10.1038/s41522-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/15/2024] [Indexed: 10/02/2024] Open
Abstract
Life-threatening Leptospira interrogans navigate a dual existence: surviving in the environment and infecting mammalian hosts. Biofilm formation is presumably an important survival strategy to achieve this process. Understanding the relation between biofilm and virulence might improve our comprehension of leptospirosis epidemiology. Our study focused on elucidating Leptospira's adaptations and regulations involved in such complex microenvironments. To determine the transcriptional profile of Leptospira in biofilm, we compared the transcriptomes in late biofilms and in exponential planktonic cultures. While genes for motility, energy production, and metabolism were downregulated, those governing general stress response, defense against metal stress, and redox homeostasis showed a significant upsurge, hinting at a tailored defensive strategy against stress. Further, despite a reduced metabolic state, biofilm disruption swiftly restored metabolic activity. Crucially, bacteria in late biofilms or resulting from biofilm disruption retained virulence in an animal model. In summary, our study highlights Leptospira's adaptive equilibrium in biofilms: minimizing energy expenditure, potentially aiding in withstanding stresses while maintaining pathogenicity. These insights are important for explaining the survival strategies of Leptospira, revealing that a biofilm lifestyle may confer an advantage in maintaining virulence, an understanding essential for managing leptospirosis across both environmental and mammalian reservoirs.
Collapse
Affiliation(s)
- Grégoire Davignon
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
- Exact and Applied Sciences Institute (ISEA), University of New Caledonia, BP R4, 98851, Nouméa, New Caledonia
| | - Natalia Pietrosemoli
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Nadia Benaroudj
- Biology of Spirochetes, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, F-75015, Paris, France
| | - Marie-Estelle Soupé-Gilbert
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
| | - Julie Cagliero
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
| | - Élodie Turc
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, F-75015, Paris, France
| | - Mathieu Picardeau
- Biology of Spirochetes, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, F-75015, Paris, France
| | - Linda Guentas
- Exact and Applied Sciences Institute (ISEA), University of New Caledonia, BP R4, 98851, Nouméa, New Caledonia
| | - Cyrille Goarant
- Pacific Community SPC - Public Health Division - B.P. D5, Nouméa, New Caledonia
| | - Roman Thibeaux
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia.
| |
Collapse
|
4
|
Bin P, Liu W, Zhang X, Liu B, Zhu G. A novel antibacterial strategy for targeting the bacterial methionine biosynthesis pathway. Int J Antimicrob Agents 2024; 63:107057. [PMID: 38072168 DOI: 10.1016/j.ijantimicag.2023.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024]
Abstract
Bacterial pathogens reprogramme their metabolic networks to support growth and establish infection at specific sites. Bacterial central metabolism has been considered attractive for developing antimicrobial drugs; however, most metabolic enzymes are conserved between humans and bacteria. This study found that blockade of methionine biosynthesis in Citrobacter rodentium and Salmonella enteritidis inhibited bacterial growth and activity of the type III secretion system, resulting in severe defects in colonization and pathogenicity. In addition, α-methyl-methionine was found to inhibit the activity of methionine biosynthetic enzyme MetA, and consequently reduce the virulence and pathogenicity of enteric pathogens. These findings highlight the crucial role of methionine in bacterial virulence, and describe a potential new drug target.
Collapse
Affiliation(s)
- Peng Bin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Centre for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and AgriProduct Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wanyang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Centre for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and AgriProduct Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaojie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Centre for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and AgriProduct Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Baobao Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Centre for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and AgriProduct Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Centre for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and AgriProduct Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
5
|
Zeng Z, Gu J, Lin S, Li Q, Wang W, Guo Y. Molecular basis of the phenotypic variants arising from a Pseudoalteromonas lipolytica mutator. Microb Genom 2023; 9:001118. [PMID: 37850970 PMCID: PMC10634453 DOI: 10.1099/mgen.0.001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Bacterial deficiencies in the DNA repair system can produce mutator strains that promote adaptive microevolution. However, the role of mutator strains in marine Pseudoalteromonas, capable of generating various gain-of-function genetic variants within biofilms, remains largely unknown. In this study, inactivation of mutS in Pseudoalteromonas lipolytica conferred an approximately 100-fold increased resistance to various antibiotics, including ciprofloxacin, rifampicin and aminoglycoside. Furthermore, the mutator of P. lipolytica generated variants that displayed enhanced biofilm formation but reduced swimming motility, indicating a high phenotypic diversity within the ΔmutS population. Additionally, we observed a significant production rate of approximately 50 % for the translucent variants, which play important roles in biofilm formation, when the ΔmutS strain was cultured on agar plates or under shaking conditions. Using whole-genome deep-sequencing combined with genetic manipulation, we demonstrated that point mutations in AT00_17115 within the capsular biosynthesis cluster were responsible for the generation of translucent variants in the ΔmutS subpopulation, while mutations in flagellar genes fliI and flgP led to a decrease in swimming motility. Collectively, this study reveals a specific mutator-driven evolution in P. lipolytica, characterized by substantial genetic and phenotypic diversification, thereby offering a reservoir of genetic attributes associated with microbial fitness.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Jiayu Gu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yuexue Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
6
|
Diving into the complexity of the spirochetal endoflagellum. Trends Microbiol 2023; 31:294-307. [PMID: 36244923 DOI: 10.1016/j.tim.2022.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022]
Abstract
Spirochaetes, a phylum that includes medically important pathogens such as the causative agents of Lyme disease, syphilis, and leptospirosis, are in many ways highly unique bacteria. Their cell morphology, subcellular organization, and metabolism reveal atypical features. Spirochetal motility is also singular, dependent on the presence of periplasmic flagella or endoflagella, inserted subterminally at cell poles and not penetrating the outer membrane and elongating outside the cell as in enterobacteria. In this review we present a comprehensive comparative genomics analysis of endoflagellar systems in spirochetes, highlighting recent findings on the flagellar basal body and filament. Continued progress in understanding the function and architecture of spirochetal flagella is uncovering paradigm-shifting mechanisms of bacterial motility.
Collapse
|
7
|
Abstract
Helicobacter pylori plays a causative role in gastric diseases. The pathogenicity of H. pylori depends on its ability to colonize the stomach guided by motility. FliY is a unique flagellar motor switch component coexisting with the classical FliG, FliM, and FliN switch proteins in some bacteria and has been shown to be essential for flagellation. However, the functional importance of FliY in H. pylori flagellar motor assembly is not well understood. Here, we applied cryo-electron tomography and subtomogram averaging to analyze the in situ structures of flagellar motors from wild-type strain, fliY-null mutant and complementation mutants expressing the N-terminal or C-terminal domain of FliY. Loss of full-length FliY or its C-terminal domain interrupted the formation of an intact C ring and soluble export apparatus, as well as the hook and flagellar filaments. Complementation with FliY C-terminal domain restored all these missing components of flagellar motor. Taken together, these results provide structural insights into the roles of FliY, especially its C-terminal domain in flagellar motor assembly in H. pylori. IMPORTANCEHelicobacter pylori is the major risk factor related with gastric diseases. Flagellar motor is one of the most important virulence factors in H. pylori. However, the assembly mechanism of H. pylori flagellar motor is not fully understood yet. Previous report mainly described the overall structures of flagellum but had not focused on its specific components. Here, we focus on H. pylori flagellar C-ring protein FliY. We directly visualize the flagellar structures of H. pylori wild-type and FliY N-/C-terminal complementary strains by cryo-electron tomography and subtomogram averaging. Our results show that deletion of FliY or its C-terminal domain causes the loss of C ring, whereas deletion of FliY N-terminal does not affect C-ring assembly and flagellar structures. Our results provide direct evidence that C-ring protein FliY, especially its C-terminal domain, plays an indispensable role in H. pylori motor assembly and flagellar formation. This study will deepen our understanding about H. pylori pathogenesis.
Collapse
|
8
|
Phoka T, Techawiwattanaboon T, Sangjun N, Komanee P, Murray GL, Wongratanacheewin Sermswan R, Adler B, Patarakul K. Identification of in vivo expressed proteins in live attenuated lipopolysaccharide mutant that mediates heterologous protection against Leptospira spp. Vet Microbiol 2021; 262:109220. [PMID: 34509026 DOI: 10.1016/j.vetmic.2021.109220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
Leptospirosis vaccines that elicit broad protection against a range of pathogenic Leptospira spp. would overcome a major drawback of currently licensed bacterin vaccines. Live attenuated vaccine produced from a lipopolysaccharide (LPS) mutant strain of L. interrogans serovar Manilae M1352 (Live M1352) stimulated better protective efficacy than heat killed M1352 (HK M1352) against a heterologous challenge with L. interrogans serovar Pomona. To identify antigens of Live M1352 potentially responsible for cross protection, in vivo-induced antigen technology (IVIAT), a powerful tool to identify in vivo-induced (ivi) genes expressed during infection, was employed in this study. Pooled sera from hamsters immunized with Live M1352 were sequentially adsorbed with various preparations of in vitro grown M1352. The pre-adsorbed sera were used to screen a genomic expression library of M1352. Nineteen strongly reactive clones were selected for DNA sequencing. These ivi genes are conserved in most Leptospira strains. Four selected genes including LIMLP_04965 (tolB), LIMLP_01535, LIMLP_06785 (fliI), and LIMLP_14930 were confirmed for their upregulated expression in kidneys of infected hamsters by RT-qPCR, suggesting their role in leptospiral infection. These ivi proteins represent potential targets for vaccine candidates that warrant further investigation for their protective efficacy.
Collapse
Affiliation(s)
- Theerapat Phoka
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Noppadon Sangjun
- Armed Force Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Pat Komanee
- Armed Force Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Gerald L Murray
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia; The Royal Women's Hospital, Parkville, VIC, 3052, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Rasana Wongratanacheewin Sermswan
- Melioidosis Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ben Adler
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Strnad M, Rego ROM. The need to unravel the twisted nature of the Borrelia burgdorferi sensu lato complex across Europe. MICROBIOLOGY-SGM 2021; 166:428-435. [PMID: 32125267 DOI: 10.1099/mic.0.000899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lyme borreliosis is a vector-borne infection caused by bacteria under the Borrelia burgdorferi sensu lato complex, both in Europe and North America. Differential gene expression at different times throughout its infectious cycle allows the spirochete to survive very diverse environments within different mammalian hosts as well as the tick vector. To date, the vast majority of data about spirochetal proteins and their functions are from genetic studies carried out on North American strains of a single species, i.e. B. burgdorferi sensu stricto. The whole-genome sequences recently obtained for several European species/strains make it feasible to adapt and use genetic techniques to study inherent differences between them. This review highlights the crucial need to undertake independent studies of genospecies within Europe, given their varying genetic content and pathogenic potential, and differences in clinical manifestation.
Collapse
Affiliation(s)
- Martin Strnad
- Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Ryan O M Rego
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| |
Collapse
|
10
|
An organelle-tethering mechanism couples flagellation to cell division in bacteria. Dev Cell 2021; 56:657-670.e4. [PMID: 33600766 DOI: 10.1016/j.devcel.2021.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 11/21/2022]
Abstract
In some free-living and pathogenic bacteria, problems in the synthesis and assembly of early flagellar components can cause cell-division defects. However, the mechanism that couples cell division with the flagellar biogenesis has remained elusive. Herein, we discover the regulator MadA that controls transcription of flagellar and cell-division genes in Caulobacter crescentus. We demonstrate that MadA, a small soluble protein, binds the type III export component FlhA to promote activation of FliX, which in turn is required to license the conserved σ54-dependent transcriptional activator FlbD. While in the absence of MadA, FliX and FlbD activation is crippled, bypass mutations in FlhA restore flagellar biogenesis and cell division. Furthermore, we demonstrate that MadA safeguards the divisome stoichiometry to license cell division. We propose that MadA has a sentinel-type function that senses an early flagellar biogenesis event and, through cell-division control, ensures that a flagellated offspring emerges.
Collapse
|
11
|
Abstract
Spirochetes form a separate phylum of bacteria with two membranes but otherwise unusual morphologies and envelope structures. Distinctive common features of Borrelia, Leptospira, and Treponema include the sequestration of flagella to the periplasm and thin peptidoglycan cell walls that are more closely associated with the inner membrane. Outer membrane compositions differ significantly between the genera. Leptospira most closely track Gram-negative bacteria due to the incorporation of lipopolysaccharides. Treponema and Borrelia outer membranes lack lipopolysaccharide, with treponemes expressing only a few outer membrane proteins and Borrelia displaying a dizzying diversity of abundant surface lipoproteins instead. Phylogenetic and experimental evidence indicates that spirochetes have adapted various modules of bacterial export and secretion pathways to build and maintain their envelopes. Export and insertion pathways in the inner membrane appear conserved, while spirochetal experimentation with various envelope architectures over time has led to variations in secretion pathways in the periplasm and outer membrane. Classical type I to III secretion systems have been identified, with demonstrated roles in drug efflux and export of flagellar proteins only. Unique activities of periplasmic proteases, including a C-terminal protease, are involved in maturation of some periplasmic proteins. Proper lipoprotein sorting within the periplasm appears to be dependent on functional Lol pathways that lack the outer membrane lipoprotein insertase LolB. The abundance of surface lipoproteins in Borrelia and detailed protein sorting studies suggest a lipoprotein secretion pathway that either extends Lol through the outer membrane or bypasses it altogether. Proteins can be released from cells in outer membrane vesicles or, rarely, as soluble proteins.
Collapse
|
12
|
Kanaya T, Williams IR, Ohno H. Intestinal M cells: Tireless samplers of enteric microbiota. Traffic 2019; 21:34-44. [DOI: 10.1111/tra.12707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Takashi Kanaya
- Department of PathologyEmory University School of Medicine Atlanta Georgia
| | - Ifor R. Williams
- Laboratory for Intestinal EcosystemRIKEN Center for Integrative Medical Sciences Yokohama Japan
| | - Hiroshi Ohno
- Department of PathologyEmory University School of Medicine Atlanta Georgia
| |
Collapse
|
13
|
Tandem mass tag-based quantitative proteomic analysis reveal the inhibition mechanism of thyme essential oil against flagellum of Listeria monocytogenes. Food Res Int 2019; 125:108508. [DOI: 10.1016/j.foodres.2019.108508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 11/23/2022]
|
14
|
Chang Y, Moon KH, Zhao X, Norris SJ, Motaleb MA, Liu J. Structural insights into flagellar stator-rotor interactions. eLife 2019; 8:48979. [PMID: 31313986 PMCID: PMC6663468 DOI: 10.7554/elife.48979] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022] Open
Abstract
The bacterial flagellar motor is a molecular machine that can rotate the flagellar filament at high speed. The rotation is generated by the stator–rotor interaction, coupled with an ion flux through the torque-generating stator. Here we employed cryo-electron tomography to visualize the intact flagellar motor in the Lyme disease spirochete, Borrelia burgdorferi. By analyzing the motor structures of wild-type and stator-deletion mutants, we not only localized the stator complex in situ, but also revealed the stator–rotor interaction at an unprecedented detail. Importantly, the stator–rotor interaction induces a conformational change in the flagella C-ring. Given our observation that a non-motile mutant, in which proton flux is blocked, cannot generate the similar conformational change, we propose that the proton-driven torque is responsible for the conformational change required for flagellar rotation.
Collapse
Affiliation(s)
- Yunjie Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States
| | - Ki Hwan Moon
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, United States
| | - Xiaowei Zhao
- Microbial Sciences Institute, Yale University, West Haven, United States.,Department of Pathology and Laboratory Medicine, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, United States
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, United States
| | - Md A Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, United States
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States.,Department of Pathology and Laboratory Medicine, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, United States
| |
Collapse
|
15
|
Abstract
The spirochetes Borrelia (Borreliella) burgdorferi and Borrelia hermsii, the etiologic agents of Lyme disease and relapsing fever, respectively, cycle in nature between an arthropod vector and a vertebrate host. They have extraordinarily unusual genomes that are highly segmented and predominantly linear. The genetic analyses of Lyme disease spirochetes have become increasingly more sophisticated, while the age of genetic investigation in the relapsing fever spirochetes is just dawning. Molecular tools available for B. burgdorferi and related species range from simple selectable markers and gene reporters to state-of-the-art inducible gene expression systems that function in the animal model and high-throughput mutagenesis methodologies, despite nearly overwhelming experimental obstacles. This armamentarium has empowered borreliologists to build a formidable genetic understanding of the cellular physiology of the spirochete and the molecular pathogenesis of Lyme disease.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| | - D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
16
|
Cryo-electron tomography of periplasmic flagella in Borrelia burgdorferi reveals a distinct cytoplasmic ATPase complex. PLoS Biol 2018; 16:e3000050. [PMID: 30412577 PMCID: PMC6248999 DOI: 10.1371/journal.pbio.3000050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/21/2018] [Accepted: 10/23/2018] [Indexed: 12/25/2022] Open
Abstract
Periplasmic flagella are essential for the distinct morphology and motility of spirochetes. A flagella-specific type III secretion system (fT3SS) composed of a membrane-bound export apparatus and a cytosolic ATPase complex is responsible for the assembly of the periplasmic flagella. Here, we deployed cryo-electron tomography (cryo-ET) to visualize the fT3SS machine in the Lyme disease spirochete Borrelia burgdorferi. We show, for the first time, that the cytosolic ATPase complex is attached to the flagellar C-ring through multiple spokes to form the “spoke and hub” structure in B. burgdorferi. This structure not only strengthens structural rigidity of the round-shaped C-ring but also appears to rotate with the C-ring. Our studies provide structural insights into the unique mechanisms underlying assembly and rotation of the periplasmic flagella and may provide the basis for the development of novel therapeutic strategies against several pathogenic spirochetes. Cryo-electron tomography of periplasmic flagella in the Lyme disease bacterium Borrelia burgdorferi reveals it to have a distinct cytoplasmic ATPase complex and an atypical interaction with the flagellar C-ring. Type III secretion systems are widely utilized by gram-negative bacteria to assemble flagella or to transport virulence effectors into eukaryotic cells. The central component is known as a type III secretion machine, which consists of a membrane-bound export apparatus and a cytosolic ATPase complex. Powered by the proton motive force and ATP hydrolysis, the secretion machine is responsible for substrate recognition and export. Here, we use the Lyme disease spirochete B. burgdorferi as a model system to unveil unprecedented structural details of the intact flagellar secretion machine by high-throughput cryo-electron tomography (cryo-ET) and subtomogram averaging. We provide the first structural evidence that the cytosolic ATPase complex is attached to the flagellar C-ring through multiple spokes to form the “spoke and hub” structure in B. burgdorferi. The novel architecture of the ATPase complex not only strengthens the flagellar C-ring but also enables an optimal translocation of substrates through the ATPase complex and the export apparatus.
Collapse
|
17
|
Moon KH, Zhao X, Xu H, Liu J, Motaleb MA. A tetratricopeptide repeat domain protein has profound effects on assembly of periplasmic flagella, morphology and motility of the lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 2018; 110:634-647. [PMID: 30303576 DOI: 10.1111/mmi.14121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
Spirochetes possess a unique periplasmic flagellar motor component called the collar. However, little is known about the composition or function of the flagellar collar proteins. To identify a collar protein, we have inactivated almost all genes annotated as motility-related in the Borrelia burgdorferi genome and identified only FlbB, which comprises the base of the collar. Since the major components of the collar complex remained unidentified, we took advantage of a protein-protein interaction map developed in another spirochete, Treponema pallidum to identify proteins of unknown function that could be collar proteins. Subsequently, using various comprehensive approaches, we identified a tetratricopeptide repeat protein BB0236 as a potential candidate for the collar. Biochemical assays indicated that FlbB interacts with BB0236. Furthermore, ∆bb0236 mutant analyses indicated that BB0236 is crucial for collar structure assembly, cellular morphology, motility, orientation of periplasmic flagella and assembly of other flagellar structures. Moreover, using comparative motor analyses, we propose how the collar structure is assembled in B. burgdorferi. Together, our studies provide new insights into the organization and the complex assembly inherent to the unique spirochetal collar structure.
Collapse
Affiliation(s)
- Ki Hwan Moon
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Xiaowei Zhao
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Hui Xu
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, 77030, USA.,Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University, New Haven, CT, 06536, USA
| | - Md A Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| |
Collapse
|
18
|
Edmondson DG, Hu B, Norris SJ. Long-Term In Vitro Culture of the Syphilis Spirochete Treponema pallidum subsp. pallidum. mBio 2018; 9:e01153-18. [PMID: 29946052 PMCID: PMC6020297 DOI: 10.1128/mbio.01153-18] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 12/26/2022] Open
Abstract
Investigation of Treponema pallidum subsp. pallidum, the spirochete that causes syphilis, has been hindered by an inability to culture the organism continuously in vitro despite more than a century of effort. In this study, long-term logarithmic multiplication of T. pallidum was attained through subculture every 6 to 7 days and periodic feeding using a modified medium (T. pallidum culture medium 2 [TpCM-2]) with a previously described microaerobic, rabbit epithelial cell coincubation system. Currently, cultures have maintained continuous growth for over 6 months with full retention of viability as measured by motility and rabbit infectivity. This system has been applied successfully to the well-studied Nichols strain of T. pallidum, as well as to two recent syphilis isolates, UW231B and UW249B. Light microscopy and cryo-electron microscopy showed that in vitro-cultured T. pallidum retains wild-type morphology. Further refinement of this long-term subculture system is expected to facilitate study of the physiological, genetic, pathological, immunologic, and antimicrobial susceptibility properties of T. pallidum subsp. pallidum and closely related pathogenic Treponema species and subspecies.IMPORTANCE Syphilis, a sexually transmitted disease with a global distribution, is caused by a spiral-shaped bacterium called Treponema pallidum subspecies pallidum Previously, T. pallidum was one of the few major bacterial pathogens that had not been cultured long-term in vitro (in a test tube), greatly hindering efforts to better understand this organism and the disease that it causes. In this article, we report the successful long-term cultivation of T. pallidum in a tissue culture system, a finding that is likely to enhance our ability to obtain new information applicable to the diagnosis, treatment, and prevention of syphilis.
Collapse
Affiliation(s)
- Diane G Edmondson
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
19
|
Dumais M, Davies DR, Lin T, Staker BL, Myler PJ, Van Voorhis WC. Structure and analysis of nucleoside diphosphate kinase from Borrelia burgdorferi prepared in a transition-state complex with ADP and vanadate moieties. Acta Crystallogr F Struct Biol Commun 2018; 74:373-384. [PMID: 29870023 PMCID: PMC5987747 DOI: 10.1107/s2053230x18007392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/16/2018] [Indexed: 01/13/2023] Open
Abstract
Nucleoside diphosphate kinases (NDKs) are implicated in a wide variety of cellular functions owing to their enzymatic conversion of NDP to NTP. NDK from Borrelia burgdorferi (BbNDK) was selected for functional and structural analysis to determine whether its activity is required for infection and to assess its potential for therapeutic inhibition. The Seattle Structural Genomics Center for Infectious Diseases (SSGCID) expressed recombinant BbNDK protein. The protein was crystallized and structures were solved of both the apoenzyme and a liganded form with ADP and vanadate ligands. This provided two structures and allowed the elucidation of changes between the apo and ligand-bound enzymes. Infectivity studies with ndk transposon mutants demonstrated that NDK function was important for establishing a robust infection in mice, and provided a rationale for therapeutic targeting of BbNDK. The protein structure was compared with other NDK structures found in the Protein Data Bank and was found to have similar primary, secondary, tertiary and quaternary structures, with conserved residues acting as the catalytic pocket, primarily using His132 as the phosphohistidine-transfer residue. Vanadate and ADP complexes model the transition state of this phosphoryl-transfer reaction, demonstrating that the pocket closes when bound to ADP, while allowing the addition or removal of a γ-phosphate. This analysis provides a framework for the design of potential therapeutics targeting BbNDK inhibition.
Collapse
Affiliation(s)
- Mitchell Dumais
- Department of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
| | | | - Tao Lin
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Bart L. Staker
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle, Washington, USA
| | - Peter J. Myler
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle, Washington, USA
- Department of Biomedical Informatics and Health Education, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Wesley C. Van Voorhis
- Department of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Kumar B, Miller K, Charon NW, Legleiter J. Periplasmic flagella in Borrelia burgdoferi function to maintain cellular integrity upon external stress. PLoS One 2017; 12:e0184648. [PMID: 28898274 PMCID: PMC5595309 DOI: 10.1371/journal.pone.0184648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022] Open
Abstract
Tapping mode atomic force microscopy (AFM) in solution was used to analyze the role of the internally located periplasmic flagella (PFs) of the Lyme disease spirochete Borrelia burgdorferi in withstanding externally applied cellular stresses. By systematically imaging immobilized spirochetes with increasing tapping forces, we found that mutants that lack PFs are more readily compressed and damaged by the imaging process compared to wild-type cells. This finding suggest that the PFs, aside from being essential for motility and involved in cell shape, play a cytoskeletal role in dissipating energy and maintaining cellular integrity in the presence of external stress.
Collapse
Affiliation(s)
- Bharath Kumar
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, United States of America
| | - Kelly Miller
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Nyles W. Charon
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
- WVU nanoSAFE, West Virginia University, Morgantown, West Virginia, United States of America
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, United States of America
- WVU nanoSAFE, West Virginia University, Morgantown, West Virginia, United States of America
- Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Three-Dimensional Structure of the Ultraoligotrophic Marine Bacterium "Candidatus Pelagibacter ubique". Appl Environ Microbiol 2017; 83:AEM.02807-16. [PMID: 27836840 DOI: 10.1128/aem.02807-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022] Open
Abstract
SAR11 bacteria are small, heterotrophic, marine alphaproteobacteria found throughout the oceans. They thrive at the low nutrient concentrations typical of open ocean conditions, although the adaptations required for life under those conditions are not well understood. To illuminate this issue, we used cryo-electron tomography to study "Candidatus Pelagibacter ubique" strain HTCC1062, a member of the SAR11 clade. Our results revealed its cellular dimensions and details of its intracellular organization. Frozen-hydrated cells, which were preserved in a life-like state, had an average cell volume (enclosed by the outer membrane) of 0.037 ± 0.011 μm3 Strikingly, the periplasmic space occupied ∼20% to 50% of the total cell volume in log-phase cells and ∼50% to 70% in stationary-phase cells. The nucleoid occupied the convex side of the crescent-shaped cells and the ribosomes predominantly occupied the concave side, at a relatively high concentration of 10,000 to 12,000 ribosomes/μm3 Outer membrane pore complexes, likely composed of PilQ, were frequently observed in both log-phase and stationary-phase cells. Long filaments, most likely type IV pili, were found on dividing cells. The physical dimensions, intracellular organization, and morphological changes throughout the life cycle of "Ca. Pelagibacter ubique" provide structural insights into the functional adaptions of these oligotrophic ultramicrobacteria to their habitat. IMPORTANCE Bacterioplankton of the SAR11 clade (Pelagibacterales) are of interest because of their global biogeochemical significance and because they appear to have been molded by unusual evolutionary circumstances that favor simplicity and efficiency. They have adapted to an ecosystem in which nutrient concentrations are near the extreme limits at which transport systems can function adequately, and they have evolved streamlined genomes to execute only functions essential for life. However, little is known about the actual size limitations and cellular features of living oligotrophic ultramicrobacteria. In this study, we have used cryo-electron tomography to obtain accurate physical information about the cellular architecture of "Candidatus Pelagibacter ubique," the first cultivated member of the SAR11 clade. These results provide foundational information for answering questions about the cell architecture and functions of these ultrasmall oligotrophic bacteria.
Collapse
|
22
|
Kurniyati K, Kelly JF, Vinogradov E, Robotham A, Tu Y, Wang J, Liu J, Logan SM, Li C. A novel glycan modifies the flagellar filament proteins of the oral bacterium Treponema denticola. Mol Microbiol 2017; 103:67-85. [PMID: 27696564 PMCID: PMC5182079 DOI: 10.1111/mmi.13544] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 01/12/2023]
Abstract
While protein glycosylation has been reported in several spirochetes including the syphilis bacterium Treponema pallidum and Lyme disease pathogen Borrelia burgdorferi, the pertinent glycan structures and their roles remain uncharacterized. Herein, a novel glycan with an unusual chemical composition and structure in the oral spirochete Treponema denticola, a keystone pathogen of periodontitis was reported. The identified glycan of mass 450.2 Da is composed of a monoacetylated nonulosonic acid (Non) with a novel extended N7 acyl modification, a 2-methoxy-4,5,6-trihydroxy-hexanoyl residue in which the Non has a pseudaminic acid configuration (L-glycero-L-manno) and is β-linked to serine or threonine residues. This novel glycan modifies the flagellin proteins (FlaBs) of T. denticola by O-linkage at multiple sites near the D1 domain, a highly conserved region of bacterial flagellins that interact with Toll-like receptor 5. Furthermore, mutagenesis studies demonstrate that the glycosylation plays an essential role in the flagellar assembly and motility of T. denticola. To our knowledge, this novel glycan and its unique modification sites have not been reported previously in any bacteria.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Department of Oral Biology, The State University of New York at Buffalo, New York 14214, USA
| | - John F. Kelly
- Vaccine Program, Human Health Therapeutics, National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | - Evgeny Vinogradov
- Vaccine Program, Human Health Therapeutics, National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | - Anna Robotham
- Vaccine Program, Human Health Therapeutics, National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | - Youbing Tu
- Department of Oral Biology, The State University of New York at Buffalo, New York 14214, USA
| | - Juyu Wang
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UT Health Science Center, Houston, Texas 77030, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UT Health Science Center, Houston, Texas 77030, USA
| | - Susan M. Logan
- Vaccine Program, Human Health Therapeutics, National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | - Chunhao Li
- Department of Oral Biology, The State University of New York at Buffalo, New York 14214, USA
- Department of Microbiology and Immunology, The State University of New York at Buffalo, New York 14214, USA
| |
Collapse
|
23
|
Zhang H, Zhu Y, Xie X, Wang M, Du H, Xu S, Zhang Y, Gong M, Ni B, Xu H, Huang X. Identification and Characterization of a Gene stp17 Located on the Linear Plasmid pBSSB1 as an Enhanced Gene of Growth and Motility in Salmonella enterica Serovar Typhi. Front Cell Infect Microbiol 2016; 6:110. [PMID: 27761429 PMCID: PMC5050219 DOI: 10.3389/fcimb.2016.00110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/08/2016] [Indexed: 11/13/2022] Open
Abstract
The linear plasmid pBSSB1 mediates the flagellar phase variation in H:z66 positive Salmonella enterica serovar Typhi (S. Typhi). The gene named stp17 (S. Typhi plasmid number 17 gene) is located on pBSSB1 and encodes the protein STP17. The expression pattern at the protein-level and function of STP17 remains unknown. In this study, the recombinant protein STP17His6 was expressed, purified and used to prepare the polyclonal anti-STP17 antibody. We detected protein-level expression of stp17 in S. Typhi and further investigated the protein expression characteristics of stp17 in different growth phases by western blot analysis. The effects of STP17 on bacterial growth and motility were analyzed. In addition, the structure of STP17 was predicted and the active site of STP17 was identified by site-directed mutagenesis. The results showed that STP17 was expressed stably in the wild type strain of S. Typhi. STP17 expression at the protein level peaks when cultures reach an OD600 value of 1.2. The growth rate and motility of the Δstp17 strain were significantly decreased compared with the wild type strain (P < 0.05) and this phenotype was restored in the stp17 complementary strain. Moreover, the growth rate and motility of the stp17 over-expression strain was greater than the wild type strain. STP17 contains nine Helix segments, six Stand segments and some Coil segments in the secondary structural level. The top-ranked 3-D structure of STP17 predicted by I-TASSER contains a putative ATPase domain and the amino acid residues of GLY16, GLY19, LYS20, ASN133, LYS157, and LYS158 may be the active site residues of STP17. Finally, STP17 was able to catalyze the ATP to ADP reaction, suggesting that STP17 may be an ATPase. To our knowledge, this is the first report describing the protein expression characteristics of STP17 in S. Typhi, showing that STP17 promotes bacterial growth and motility, which may be associated with its potential ATPase activity.
Collapse
Affiliation(s)
- Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow UniversitySuzhou, China
- School of Medicine, Jiangsu UniversityZhenjiang, China
| | - Yunxia Zhu
- School of Medicine, Jiangsu UniversityZhenjiang, China
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai, China
| | - Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Shungao Xu
- School of Medicine, Jiangsu UniversityZhenjiang, China
| | - Ying Zhang
- School of Medicine, Jiangsu UniversityZhenjiang, China
| | - Mingyu Gong
- School of Medicine, Jiangsu UniversityZhenjiang, China
| | - Bin Ni
- School of Medicine, Jiangsu UniversityZhenjiang, China
| | - Huaxi Xu
- School of Medicine, Jiangsu UniversityZhenjiang, China
| | | |
Collapse
|
24
|
Borrelia burgdorferi CheD Promotes Various Functions in Chemotaxis and the Pathogenic Life Cycle of the Spirochete. Infect Immun 2016; 84:1743-1752. [PMID: 27021244 DOI: 10.1128/iai.01347-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Borrelia burgdorferi possesses a sophisticated chemotaxis signaling system; however, the roles of the majority of the chemotaxis proteins in the infectious life cycle have not yet been demonstrated. Specifically, the role of CheD during host colonization has not been demonstrated in any bacterium. Here, we systematically characterized the B. burgdorferi CheD homolog using genetics and biochemical and mouse-tick-mouse infection cycle studies. Bacillus subtilis CheD plays an important role in chemotaxis by deamidation of methyl-accepting chemotaxis protein receptors (MCPs) and by increasing the receptor kinase activity or enhancing CheC phosphatase activity, thereby regulating the levels of the CheY response regulator. Our biochemical analysis indicates that B. burgdorferi CheD significantly enhances CheX phosphatase activity by specifically interacting with the phosphatase. Moreover, CheD specifically binds two of the six MCPs, indicating that CheD may also modulate the receptor proteins. Although the motility of the cheD mutant cells was indistinguishable from that of the wild-type cells, the mutant did exhibit reduced chemotaxis. Importantly, the mutant showed significantly reduced infectivity in C3H/HeN mice via needle inoculation. Mouse-tick-mouse infection assays indicated that CheD is dispensable for acquisition or transmission of spirochetes; however, the viability of cheD mutants in ticks is marginally reduced compared to that of the wild-type or complemented cheD spirochetes. These data suggest that CheD plays an important role in the chemotaxis and pathogenesis of B. burgdorferi We propose potential connections between CheD, CheX, and MCPs and discuss how these interactions play critical roles during the infectious life cycle of the spirochete.
Collapse
|
25
|
Analysis of a Spontaneous Non-Motile and Avirulent Mutant Shows That FliM Is Required for Full Endoflagella Assembly in Leptospira interrogans. PLoS One 2016; 11:e0152916. [PMID: 27044038 PMCID: PMC4820103 DOI: 10.1371/journal.pone.0152916] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
Pathogenic Leptospira strains are responsible for leptospirosis, a worldwide emerging zoonotic disease. These spirochetes are unique amongst bacteria because of their corkscrew-like cell morphology and their periplasmic flagella. Motility is reported as an important virulence determinant, probably favoring entry and dissemination of pathogenic Leptospira in the host. However, proteins constituting the periplasmic flagella and their role in cell shape, motility and virulence remain poorly described. In this study, we characterized a spontaneous L. interrogans mutant strain lacking motility, correlated with the loss of the characteristic hook-shaped ends, and virulence in the animal model. Whole genome sequencing allowed the identification of one nucleotide deletion in the fliM gene resulting in a premature stop codon, thereby preventing the production of flagellar motor switch protein FliM. Genetic complementation restored cell morphology, motility and virulence comparable to those of wild type cells. Analyses of purified periplasmic flagella revealed a defect in flagella assembly, resulting in shortened flagella compared to the wild type strain. This also correlated with a lower amount of major filament proteins FlaA and FlaB. Altogether, these findings demonstrate that FliM is required for full and correct assembly of the flagella which is essential for motility and virulence.
Collapse
|
26
|
Insight into the flagella type III export revealed by the complex structure of the type III ATPase and its regulator. Proc Natl Acad Sci U S A 2016; 113:3633-8. [PMID: 26984495 DOI: 10.1073/pnas.1524025113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FliI and FliJ form the FliI6FliJ ATPase complex of the bacterial flagellar export apparatus, a member of the type III secretion system. The FliI6FliJ complex is structurally similar to the α3β3γ complex of F1-ATPase. The FliH homodimer binds to FliI to connect the ATPase complex to the flagellar base, but the details are unknown. Here we report the structure of the homodimer of a C-terminal fragment of FliH (FliHC2) in complex with FliI. FliHC2 shows an unusually asymmetric homodimeric structure that markedly resembles the peripheral stalk of the A/V-type ATPases. The FliHC2-FliI hexamer model reveals that the C-terminal domains of the FliI ATPase face the cell membrane in a way similar to the F/A/V-type ATPases. We discuss the mechanism of flagellar ATPase complex formation and a common origin shared by the type III secretion system and the F/A/V-type ATPases.
Collapse
|
27
|
Ohno H. Intestinal M cells. J Biochem 2015; 159:151-60. [PMID: 26634447 DOI: 10.1093/jb/mvv121] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/27/2015] [Indexed: 11/13/2022] Open
Abstract
We have an enormous number of commensal bacteria in our intestine, moreover, the foods that we ingest and the water we drink is sometimes contaminated with pathogenic microorganisms. The intestinal epithelium is always exposed to such microbes, friend or foe, so to contain them our gut is equipped with specialized gut-associated lymphoid tissue (GALT), literally the largest peripheral lymphoid tissue in the body. GALT is the intestinal immune inductive site composed of lymphoid follicles such as Peyer's patches. M cells are a subset of intestinal epithelial cells (IECs) residing in the region of the epithelium covering GALT lymphoid follicles. Although the vast majority of IEC function to absorb nutrients from the intestine, M cells are highly specialized to take up intestinal microbial antigens and deliver them to GALT for efficient mucosal as well as systemic immune responses. I will discuss recent advances in our understanding of the molecular mechanisms of M-cell differentiation and functions.
Collapse
Affiliation(s)
- Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
28
|
Lessons in Fundamental Mechanisms and Diverse Adaptations from the 2015 Bacterial Locomotion and Signal Transduction Meeting. J Bacteriol 2015. [PMID: 26195592 DOI: 10.1128/jb.00384-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In response to rapid changes in their environment, bacteria control a number of processes, including motility, cell division, biofilm formation, and virulence. Research presented in January 2015 at the biennial Bacterial Locomotion and Signal Transduction (BLAST) meeting in Tucson, AZ, illustrates the elegant complexity of the nanoarrays, nanomachines, and networks of interacting proteins that mediate such processes. Studies employing an array of biophysical, genetic, cell biology, and mathematical methods are providing an increasingly detailed understanding of the mechanisms of these systems within well-studied bacteria. Furthermore, comparisons of these processes in diverse bacterial species are providing insight into novel regulatory and functional mechanisms. This review summarizes research presented at the BLAST meeting on these fundamental mechanisms and diverse adaptations, including findings of importance for applications involving bacteria of medical or agricultural relevance.
Collapse
|