1
|
Li Y, Zhang Y, Shah SB, Chang CY, Wang H, Wu X. MutSβ protects common fragile sites by facilitating homology-directed repair at DNA double-strand breaks with secondary structures. Nucleic Acids Res 2024; 52:1120-1135. [PMID: 38038265 PMCID: PMC10853791 DOI: 10.1093/nar/gkad1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/14/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Common fragile sites (CFSs) are regions prone to chromosomal rearrangements, thereby contributing to tumorigenesis. Under replication stress (RS), CFSs often harbor under-replicated DNA regions at the onset of mitosis, triggering homology-directed repair known as mitotic DNA synthesis (MiDAS) to complete DNA replication. In this study, we identified an important role of DNA mismatch repair protein MutSβ (MSH2/MSH3) in facilitating MiDAS and maintaining CFS stability. Specifically, we demonstrated that MutSβ is required for the increased mitotic recombination induced by RS or FANCM loss at CFS-derived AT-rich and structure-prone sequences (CFS-ATs). We also found that MSH3 exhibits synthetic lethality with FANCM. Mechanistically, MutSβ is required for homologous recombination (HR) especially when DNA double-strand break (DSB) ends contain secondary structures. We also showed that upon RS, MutSβ is recruited to Flex1, a specific CFS-AT, in a PCNA-dependent but MUS81-independent manner. Furthermore, MutSβ interacts with RAD52 and promotes RAD52 recruitment to Flex1 following MUS81-dependent fork cleavage. RAD52, in turn, recruits XPF/ERCC1 to remove DNA secondary structures at DSB ends, enabling HR/break-induced replication (BIR) at CFS-ATs. We propose that the specific requirement of MutSβ in processing DNA secondary structures at CFS-ATs underlies its crucial role in promoting MiDAS and maintaining CFS integrity.
Collapse
Affiliation(s)
- Youhang Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yunkun Zhang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Sameer Bikram Shah
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chia-Yu Chang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Al-Zain AM, Nester MR, Ahmed I, Symington LS. Double-strand breaks induce inverted duplication chromosome rearrangements by a DNA polymerase δ-dependent mechanism. Nat Commun 2023; 14:7020. [PMID: 37919272 PMCID: PMC10622511 DOI: 10.1038/s41467-023-42640-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Inverted duplications, also known as foldback inversions, are commonly observed in cancers and are the major class of chromosome rearrangement recovered from yeast cells lacking Mre11 nuclease activity. Foldback priming at DNA double-strand breaks (DSBs) is one mechanism proposed for the generation of inverted duplications. However, the other pathway steps have not been fully elucidated. Here, we show that a DSB induced near natural inverted repeats drives high frequency inverted duplication in Sae2 and Mre11-deficient cells. We find that DNA polymerase δ proof-reading activity, but not Rad1 nuclease, trims the heterologous flaps formed after foldback annealing. Additionally, Pol32 is required for the generation of inverted duplications, suggesting that Pol δ catalyzes fill-in synthesis primed from the foldback to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric inversion chromosome. Finally, we show that stabilization of the dicentric chromosome after breakage involves telomere capture by non-reciprocal translocation mediated by repeat sequences or by deletion of one centromere.
Collapse
Affiliation(s)
- Amr M Al-Zain
- Program in Biological Sciences, Columbia University, New York, NY, 10027, USA
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mattie R Nester
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Iffat Ahmed
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Shaltz S, Jinks-Robertson S. Genetic control of the error-prone repair of a chromosomal double-strand break with 5' overhangs in yeast. Genetics 2023; 225:iyad122. [PMID: 37418686 PMCID: PMC10471200 DOI: 10.1093/genetics/iyad122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
A targeted double-strand break introduced into the genome of Saccharomyces cerevisiae is repaired by the relatively error-prone nonhomologous end joining (NHEJ) pathway when homologous recombination is not an option. A zinc finger nuclease cleavage site was inserted out-of-frame into the LYS2 locus of a haploid yeast strain to study the genetic control of NHEJ when the ends contain 5' overhangs. Repair events that destroyed the cleavage site were identified either as Lys+ colonies on selective medium or as surviving colonies on rich medium. Junction sequences in Lys+ events solely reflected NHEJ and were influenced by the nuclease activity of Mre11 as well as by the presence/absence of the NHEJ-specific polymerase Pol4 and the translesion-synthesis DNA polymerases Pol ζ and Pol η. Although most NHEJ events were dependent on Pol4, a 29-bp deletion with endpoints in 3-bp repeats was an exception. The Pol4-independent deletion required translesion synthesis polymerases as well as the exonuclease activity of the replicative Pol δ DNA polymerase. Survivors were equally split between NHEJ events and 1.2 or 11.7 kb deletions that reflected microhomology-mediated end joining (MMEJ). MMEJ events required the processive resection activity of Exo1/Sgs1, but there unexpectedly was no dependence on the Rad1-Rad10 endonuclease for the removal of presumptive 3' tails. Finally, NHEJ was more efficient in nongrowing than in growing cells and was most efficient in G0 cells. These studies provide novel insights into the flexibility and complexity of error-prone DSB repair in yeast.
Collapse
Affiliation(s)
- Samantha Shaltz
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
4
|
Cerqueira PG, Meyer D, Zhang L, Mallory B, Liu J, Hua Fu BX, Zhang X, Heyer WD. Saccharomyces cerevisiae DNA polymerase IV overcomes Rad51 inhibition of DNA polymerase δ in Rad52-mediated direct-repeat recombination. Nucleic Acids Res 2023; 51:5547-5564. [PMID: 37070185 PMCID: PMC10287921 DOI: 10.1093/nar/gkad281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
Saccharomyces cerevisiae DNA polymerase IV (Pol4) like its homolog, human DNA polymerase lambda (Polλ), is involved in Non-Homologous End-Joining and Microhomology-Mediated Repair. Using genetic analysis, we identified an additional role of Pol4 also in homology-directed DNA repair, specifically in Rad52-dependent/Rad51-independent direct-repeat recombination. Our results reveal that the requirement for Pol4 in repeat recombination was suppressed by the absence of Rad51, suggesting that Pol4 counteracts the Rad51 inhibition of Rad52-mediated repeat recombination events. Using purified proteins and model substrates, we reconstituted in vitro reactions emulating DNA synthesis during direct-repeat recombination and show that Rad51 directly inhibits Polδ DNA synthesis. Interestingly, although Pol4 was not capable of performing extensive DNA synthesis by itself, it aided Polδ in overcoming the DNA synthesis inhibition by Rad51. In addition, Pol4 dependency and stimulation of Polδ DNA synthesis in the presence of Rad51 occurred in reactions containing Rad52 and RPA where DNA strand-annealing was necessary. Mechanistically, yeast Pol4 displaces Rad51 from ssDNA independent of DNA synthesis. Together our in vitro and in vivo data suggest that Rad51 suppresses Rad52-dependent/Rad51-independent direct-repeat recombination by binding to the primer-template and that Rad51 removal by Pol4 is critical for strand-annealing dependent DNA synthesis.
Collapse
Affiliation(s)
- Paula G Cerqueira
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Damon Meyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Lilin Zhang
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Benjamin Mallory
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Becky Xu Hua Fu
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Xiaoping Zhang
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| |
Collapse
|
5
|
Shaltz S, Jinks-Robertson S. Genetic control of the error-prone repair of a chromosomal double-strand break with 5' overhangs in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539391. [PMID: 37205473 PMCID: PMC10187297 DOI: 10.1101/2023.05.04.539391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A targeted double-strand break introduced into the genome of Saccharomyces cerevisiae is repaired by the relatively error-prone nonhomologous-end joining (NHEJ) pathway when homologous recombination is not an option. A ZFN cleavage site was inserted out-of-frame into the LYS2 locus of a haploid yeast strain to study the genetic control of NHEJ when the ends contain 5' overhangs. Repair events that destroyed the cleavage site were identified either as Lys + colonies on selective medium or as surviving colonies on rich medium. Junction sequences in Lys + events solely reflected NHEJ and were influenced by the nuclease activity of Mre11 as well as by the presence/absence of the NHEJ-specific polymerase Pol4 and the translesion-synthesis DNA polymerases Pol σ and Pol 11. Although most NHEJ events were dependent on Pol4, a 29-bp deletion with endpoints in 3-bp repeats was an exception. The Pol4-independent deletion required TLS polymerases as well as the exonuclease activity of the replicative Pol DNA polymerase. Survivors were equally split between NHEJ events and 1 kb or 11 kb deletions that reflected microhomology-mediated end joining (MMEJ). MMEJ events required the processive resection activity of Exo1/Sgs1, but there unexpectedly was no dependence on the Rad1-Rad10 endonuclease for the removal of presumptive 3' tails. Finally, NHEJ was more efficient in non-growing than in growing cells and was most efficient in G0 cells. These studies provide novel insight into the flexibility and complexity of error-prone DSB repair in yeast.
Collapse
Affiliation(s)
- Samantha Shaltz
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| |
Collapse
|
6
|
Al-Zain A, Nester MR, Symington LS. Double-strand breaks induce inverted duplication chromosome rearrangements by a DNA polymerase δ and Rad51-dependent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525421. [PMID: 36747747 PMCID: PMC9900772 DOI: 10.1101/2023.01.24.525421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inverted duplications, also known as foldback inversions, are commonly observed in cancers and are the major class of chromosome rearrangement recovered from yeast cells lacking Mre11 nuclease. Foldback priming at naturally occurring inverted repeats is one mechanism proposed for the generation of inverted duplications. However, the initiating lesion for these events and the mechanism by which they form has not been fully elucidated. Here, we show that a DNA double-strand break (DSB) induced near natural short, inverted repeats drives high frequency inverted duplication in Sae2 and Mre11-deficient cells. We find that DNA polymerase δ proof-reading activity acts non-redundantly with Rad1 nuclease to remove heterologous tails formed during foldback annealing. Additionally, Pol32 is required for the generation of inverted duplications, suggesting that Pol δ catalyzes fill-in synthesis primed from the foldback to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric isochromosome. Stabilization of the dicentric chromosome after breakage involves telomere capture by non-reciprocal translocation mediated by repeat sequences and requires Rad51.
Collapse
|
7
|
Bai W, Zhao B, Gu M, Dong J. Alternative end-joining in BCR gene rearrangements and translocations. Acta Biochim Biophys Sin (Shanghai) 2022; 54:782-795. [PMID: 35593472 PMCID: PMC9828324 DOI: 10.3724/abbs.2022051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) occur during antigen receptor gene recombination, namely V(D)J recombination in developing B lymphocytes and class switch recombination (CSR) in mature B cells. Repair of these DSBs by classical end-joining (c-NHEJ) enables the generation of diverse BCR repertoires for efficient humoral immunity. Deletion of or mutation in c-NHEJ genes in mice and humans confer various degrees of primary immune deficiency and predisposition to lymphoid malignancies that often harbor oncogenic chromosomal translocations. In the absence of c-NHEJ, alternative end-joining (A-EJ) catalyzes robust CSR and to a much lesser extent, V(D)J recombination, but the mechanisms of A-EJ are only poorly defined. In this review, we introduce recent advances in the understanding of A-EJ in the context of V(D)J recombination and CSR with emphases on DSB end processing, DNA polymerases and ligases, and discuss the implications of A-EJ to lymphoid development and chromosomal translocations.
Collapse
Affiliation(s)
- Wanyu Bai
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Bo Zhao
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Mingyu Gu
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Junchao Dong
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China,Correspondence address. Tel: +86-20-87330571; E-mail:
| |
Collapse
|
8
|
Ou T, He W, Quinlan BD, Guo Y, Tran MH, Karunadharma P, Park H, Davis-Gardner ME, Yin Y, Zhang X, Wang H, Zhong G, Farzan M. Reprogramming of the heavy-chain CDR3 regions of a human antibody repertoire. Mol Ther 2022; 30:184-197. [PMID: 34740791 PMCID: PMC8753427 DOI: 10.1016/j.ymthe.2021.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/09/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023] Open
Abstract
B cells have been engineered ex vivo to express an HIV-1 broadly neutralizing antibody (bNAb). B cell reprograming may be scientifically and therapeutically useful, but current approaches limit B cell repertoire diversity and disrupt the organization of the heavy-chain locus. A more diverse and physiologic B cell repertoire targeting a key HIV-1 epitope could facilitate evaluation of vaccines designed to elicit bNAbs, help identify more potent and bioavailable bNAb variants, or directly enhance viral control in vivo. Here we address the challenges of generating such a repertoire by replacing the heavy-chain CDR3 (HCDR3) regions of primary human B cells. To do so, we identified and utilized an uncharacterized Cas12a ortholog that recognizes PAM motifs present in human JH genes. We also optimized the design of 200 nucleotide homology-directed repair templates (HDRT) by minimizing the required 3'-5' deletion of the HDRT-complementary strand. Using these techniques, we edited primary human B cells to express a hemagglutinin epitope tag and the HCDR3 regions of the bNAbs PG9 and PG16. Those edited with bNAb HCDR3 efficiently bound trimeric HIV-1 antigens, implying they could affinity mature in vivo in response to the same antigens. This approach generates diverse B cell repertoires recognizing a key HIV-1 neutralizing epitope.
Collapse
Affiliation(s)
- Tianling Ou
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Wenhui He
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Brian D Quinlan
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yan Guo
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mai H Tran
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Hajeung Park
- X-ray Crystallography Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Yiming Yin
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xia Zhang
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Haimin Wang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Guocai Zhong
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China; School of Biology and Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Michael Farzan
- Department of Microbiology and Immunology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
9
|
De Falco M, De Felice M. Take a Break to Repair: A Dip in the World of Double-Strand Break Repair Mechanisms Pointing the Gaze on Archaea. Int J Mol Sci 2021; 22:ijms222413296. [PMID: 34948099 PMCID: PMC8708640 DOI: 10.3390/ijms222413296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.
Collapse
|
10
|
Odango RJ, Camberos J, Fregoso FE, Fischhaber PL. SAW1 is increasingly required to recruit Rad10 as SSA flap-length increases from 20 to 50 bases in single-strand annealing in S. cerevisiae. Biochem Biophys Rep 2021; 28:101125. [PMID: 34622036 PMCID: PMC8481969 DOI: 10.1016/j.bbrep.2021.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
SAW1 is required by the Rad1-Rad10 nuclease for efficient removal of 3′ non-homologous DNA ends (flaps) formed as intermediates during two modes of double-strand break repair in S. cerevisiae, single-strand annealing (SSA) and synthesis-dependent strand annealing (SDSA). Saw1 was shown in vitro to exhibit increasing affinity for flap DNAs as flap lengths varied from 0 to 40 deoxynucleotides (nt) with almost no binding observed when flaps were shorter than 10 nt. Accordingly, our prior in vivo fluorescence microscopy investigation showed that SAW1 was not required for recruitment of Rad10-YFP to DNA double-strand breaks (DSBs) when flaps were ∼10 nt, but it was required when flaps were ∼500 nt in G1 phase of the cell cycle. We were curious whether we would also observe an increased requirement of SAW1 for Rad10 recruitment in vivo as flaps varied from ∼20 to 50 nt, as was shown in vitro. In this investigation, we utilized SSA substrates that generate 20, 30, and 50 nt flaps in vivo in fluorescence microscopy assays and determined that SAW1 becomes increasingly necessary for SSA starting at about ∼20 nt and is completely required at ∼50 nt. Quantitative PCR experiments corroborate these results by demonstrating that repair product formation decreases in the absence of SAW1 as flap length increases. Experiments with strains containing fluorescently labeled Saw1 (Saw1-CFP) show that Saw1 localizes with Rad10 at SSA foci and that about half of the foci containing Rad10 at DSBs do not contain Saw1. Colocalization patterns of Saw1-CFP are consistent regardless of the flap length of the substrate and are roughly similar in all phases of the cell cycle. Together, these data show that Saw1 becomes increasingly important for Rad1-Rad10 recruitment and SSA repair in the ∼20–50 nt flap range, and Saw1 is present at repair sites even when not required and may depart the repair site ahead of Rad1-Rad10. There is an increasing dependence on Saw1 to recruit Rad1-Rad10 as DNA flaps increase The flap length range causing the increasing dependence is 20–50 deoxynucleotides Saw1 is found at single-strand annealing foci even when not required to recruit Rad1-Rad10 Saw1 is found in only about half of the single-strand annealing foci containing Rad1-Rad10
Collapse
Affiliation(s)
- Rowen Jane Odango
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St, Northridge, CA, 91330-8262, United States
| | - Juan Camberos
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St, Northridge, CA, 91330-8262, United States
| | - Fred Erick Fregoso
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St, Northridge, CA, 91330-8262, United States
| | - Paula L Fischhaber
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St, Northridge, CA, 91330-8262, United States
| |
Collapse
|
11
|
Bai W, Zhu G, Xu J, Chen P, Meng F, Xue H, Chen C, Dong J. The 3'-flap endonuclease XPF-ERCC1 promotes alternative end joining and chromosomal translocation during B cell class switching. Cell Rep 2021; 36:109756. [PMID: 34592150 DOI: 10.1016/j.celrep.2021.109756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Robust alternative end joining (A-EJ) in classical non-homologous end joining (c-NHEJ)-deficient murine cells features double-strand break (DSB) end resection and microhomology (MH) usage and promotes chromosomal translocation. The activities responsible for removing 3' single-strand overhangs following resection and MH annealing in A-EJ remain unclear. We show that, during class switch recombination (CSR) in mature mouse B cells, the structure-specific endonuclease complex XPF-ERCC1SLX4, although not required for normal CSR, represents a nucleotide-excision-repair-independent 3' flap removal activity for A-EJ-mediated CSR. B cells deficient in DNA ligase 4 and XPF-ERCC1 exhibit further impaired class switching, reducing joining to the resected S region DSBs without altering the MH pattern in S-S junctions. In ERCC1-deficient A-EJ cells, 3' single-stranded DNA (ssDNA) flaps that are generated predominantly in S/G2 phase of the cell cycle are susceptible to nuclease resolution. Moreover, ERCC1 promotes c-myc-IgH translocation in Lig4-/- cells. Our study reveals an important role of the flap endonuclease XPF-ERCC1 in A-EJ and oncogenic translocation in mouse B cells.
Collapse
Affiliation(s)
- Wanyu Bai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Guangchao Zhu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiejie Xu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Pingyue Chen
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Feilong Meng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongman Xue
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Chun Chen
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
12
|
Young SJ, West SC. Coordinated roles of SLX4 and MutSβ in DNA repair and the maintenance of genome stability. Crit Rev Biochem Mol Biol 2021; 56:157-177. [PMID: 33596761 PMCID: PMC7610648 DOI: 10.1080/10409238.2021.1881433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
SLX4 provides a molecular scaffold for the assembly of multiple protein complexes required for the maintenance of genome stability. It is involved in the repair of DNA crosslinks, the resolution of recombination intermediates, the response to replication stress and the maintenance of telomere length. To carry out these diverse functions, SLX4 interacts with three structure-selective endonucleases, MUS81-EME1, SLX1 and XPF-ERCC1, as well as the telomere binding proteins TRF2, RTEL1 and SLX4IP. Recently, SLX4 was shown to interact with MutSβ, a heterodimeric protein involved in DNA mismatch repair, trinucleotide repeat instability, crosslink repair and recombination. Importantly, MutSβ promotes the pathogenic expansion of CAG/CTG trinucleotide repeats, which is causative of myotonic dystrophy and Huntington's disease. The colocalization and specific interaction of MutSβ with SLX4, together with their apparently overlapping functions, are suggestive of a common role in reactions that promote DNA maintenance and genome stability. This review will focus on the role of SLX4 in DNA repair, the interplay between MutSβ and SLX4, and detail how they cooperate to promote recombinational repair and DNA crosslink repair. Furthermore, we speculate that MutSβ and SLX4 may provide an alternative cellular mechanism that modulates trinucleotide instability.
Collapse
Affiliation(s)
- Sarah J Young
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
13
|
Piazza A, Rajput P, Heyer WD. Physical and Genetic Assays for the Study of DNA Joint Molecules Metabolism and Multi-invasion-Induced Rearrangements in S. cerevisiae. Methods Mol Biol 2021; 2153:535-554. [PMID: 32840803 DOI: 10.1007/978-1-0716-0644-5_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DNA double-strand breaks (DSBs) are genotoxic lesions that can be repaired in a templated fashion by homologous recombination (HR). HR is a complex pathway that involves the formation of DNA joint molecules (JMs) containing heteroduplex DNA. Various types of JMs are formed throughout the pathway, including displacement loops (D-loops), multi-invasions (MI), and double Holliday junction intermediates. Dysregulation of JM metabolism in various mutant contexts revealed the propensity of HR to generate repeat-mediated chromosomal rearrangements. Specifically, we recently identified MI-induced rearrangements (MIR), a tripartite recombination mechanism initiated by one end of a DSB that exploits repeated regions to generate rearrangements between intact chromosomal regions. MIR occurs upon MI-JM processing by endonucleases and is suppressed by JM disruption activities. Here, we detail two assays: a physical assay for JM detection in Saccharomyces cerevisiae cells and genetic assays to determine the frequency of MIR in various chromosomal contexts. These assays enable studying the regulation of the HR pathway and the consequences of their defects for genomic instability by MIR.
Collapse
Affiliation(s)
- Aurèle Piazza
- Spatial Regulation of Genomes, Institut Pasteur, UMR3525 CNRS, Paris, France.,Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA.,Univ Lyon, ENS, UCBL, CNRS, INSERM, Laboratory of Biology and Modelling of the Cell, UMR5239, Lyon, France
| | - Pallavi Rajput
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA. .,Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
| |
Collapse
|
14
|
Koussa NC, Smith DJ. Limiting DNA polymerase delta alters replication dynamics and leads to a dependence on checkpoint activation and recombination-mediated DNA repair. PLoS Genet 2021; 17:e1009322. [PMID: 33493195 PMCID: PMC7861531 DOI: 10.1371/journal.pgen.1009322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 02/04/2021] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
DNA polymerase delta (Pol δ) plays several essential roles in eukaryotic DNA replication and repair. At the replication fork, Pol δ is responsible for the synthesis and processing of the lagging-strand. At replication origins, Pol δ has been proposed to initiate leading-strand synthesis by extending the first Okazaki fragment. Destabilizing mutations in human Pol δ subunits cause replication stress and syndromic immunodeficiency. Analogously, reduced levels of Pol δ in Saccharomyces cerevisiae lead to pervasive genome instability. Here, we analyze how the depletion of Pol δ impacts replication origin firing and lagging-strand synthesis during replication elongation in vivo in S. cerevisiae. By analyzing nascent lagging-strand products, we observe a genome-wide change in both the establishment and progression of replication. S-phase progression is slowed in Pol δ depletion, with both globally reduced origin firing and slower replication progression. We find that no polymerase other than Pol δ is capable of synthesizing a substantial amount of lagging-strand DNA, even when Pol δ is severely limiting. We also characterize the impact of impaired lagging-strand synthesis on genome integrity and find increased ssDNA and DNA damage when Pol δ is limiting; these defects lead to a strict dependence on checkpoint signaling and resection-mediated repair pathways for cellular viability.
Collapse
Affiliation(s)
- Natasha C. Koussa
- Department of Biology, New York University, New York City, New York, United State of America
| | - Duncan J. Smith
- Department of Biology, New York University, New York City, New York, United State of America
- * E-mail:
| |
Collapse
|
15
|
Stivison EA, Young KJ, Symington LS. Interstitial telomere sequences disrupt break-induced replication and drive formation of ectopic telomeres. Nucleic Acids Res 2021; 48:12697-12710. [PMID: 33264397 PMCID: PMC7736798 DOI: 10.1093/nar/gkaa1081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023] Open
Abstract
Break-induced replication (BIR) is a mechanism used to heal one-ended DNA double-strand breaks, such as those formed at collapsed replication forks or eroded telomeres. Instead of utilizing a canonical replication fork, BIR is driven by a migrating D-loop and is associated with a high frequency of mutagenesis. Here we show that when BIR encounters an interstitial telomere sequence (ITS), the machinery frequently terminates, resulting in the formation of an ectopic telomere. The primary mechanism to convert the ITS to a functional telomere is by telomerase-catalyzed addition of telomeric repeats with homology-directed repair serving as a back-up mechanism. Termination of BIR and creation of an ectopic telomere is promoted by Mph1/FANCM helicase, which has the capacity to disassemble D-loops. Other sequences that have the potential to seed new telomeres but lack the unique features of a natural telomere sequence, do not terminate BIR at a significant frequency in wild-type cells. However, these sequences can form ectopic telomeres if BIR is made less processive. Our results support a model in which features of the ITS itself, such as the propensity to form secondary structures and telomeric protein binding, pose a challenge to BIR and increase the vulnerability of the D-loop to dissociation by helicases, thereby promoting ectopic telomere formation.
Collapse
Affiliation(s)
- Elizabeth A Stivison
- Program in Nutritional and Metabolic Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kati J Young
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
16
|
Meers C, Keskin H, Banyai G, Mazina O, Yang T, Gombolay AL, Mukherjee K, Kaparos EI, Newnam G, Mazin A, Storici F. Genetic Characterization of Three Distinct Mechanisms Supporting RNA-Driven DNA Repair and Modification Reveals Major Role of DNA Polymerase ζ. Mol Cell 2020; 79:1037-1050.e5. [PMID: 32882183 DOI: 10.1016/j.molcel.2020.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023]
Abstract
DNA double-stranded breaks (DSBs) are dangerous lesions threatening genomic stability. Fidelity of DSB repair is best achieved by recombination with a homologous template sequence. In yeast, transcript RNA was shown to template DSB repair of DNA. However, molecular pathways of RNA-driven repair processes remain obscure. Utilizing assays of RNA-DNA recombination with and without an induced DSB in yeast DNA, we characterize three forms of RNA-mediated genomic modifications: RNA- and cDNA-templated DSB repair (R-TDR and c-TDR) using an RNA transcript or a DNA copy of the RNA transcript for DSB repair, respectively, and a new mechanism of RNA-templated DNA modification (R-TDM) induced by spontaneous or mutagen-induced breaks. While c-TDR requires reverse transcriptase, translesion DNA polymerase ζ (Pol ζ) plays a major role in R-TDR, and it is essential for R-TDM. This study characterizes mechanisms of RNA-DNA recombination, uncovering a role of Pol ζ in transferring genetic information from transcript RNA to DNA.
Collapse
Affiliation(s)
- Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Havva Keskin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gabor Banyai
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Olga Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alli L Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Efiyenia I Kaparos
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alexander Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
17
|
Peterson SE, Keeney S, Jasin M. Mechanistic Insight into Crossing over during Mouse Meiosis. Mol Cell 2020; 78:1252-1263.e3. [PMID: 32362315 DOI: 10.1016/j.molcel.2020.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/10/2020] [Accepted: 04/07/2020] [Indexed: 01/06/2023]
Abstract
Crossover recombination is critical for meiotic chromosome segregation, but how mammalian crossing over is accomplished is poorly understood. Here, we illuminate how strands exchange during meiotic recombination in male mice by analyzing patterns of heteroduplex DNA in recombinant molecules preserved by the mismatch correction deficiency of Msh2-/- mutants. Surprisingly, MSH2-dependent recombination suppression was not evident. However, a substantial fraction of crossover products retained heteroduplex DNA, and some provided evidence of MSH2-independent correction. Biased crossover resolution was observed, consistent with asymmetry between DNA ends in earlier intermediates. Many crossover products yielded no heteroduplex DNA, suggesting dismantling by D-loop migration. Unlike the complexity of crossovers in yeast, these simple modifications of the original double-strand break repair model-asymmetry in recombination intermediates and D-loop migration-may be sufficient to explain most meiotic crossing over in mice while also addressing long-standing questions related to Holliday junction resolution.
Collapse
Affiliation(s)
- Shaun E Peterson
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Guyon-Debast A, Rossetti P, Charlot F, Epert A, Neuhaus JM, Schaefer DG, Nogué F. The XPF-ERCC1 Complex Is Essential for Genome Stability and Is Involved in the Mechanism of Gene Targeting in Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2019; 10:588. [PMID: 31143199 PMCID: PMC6521618 DOI: 10.3389/fpls.2019.00588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The XPF-ERCC1 complex, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair, and homologous recombination. XPF-ERCC1 incises double-stranded DNA at double-strand/single-strand junctions, making it an ideal enzyme for processing DNA structures that contain partially unwound strands. Here, we have examined the role of the XPF-ERCC1 complex in the model bryophyte Physcomitrella patens which exhibits uniquely high gene targeting frequencies. We undertook targeted knockout of the Physcomitrella ERCC1 and XPF genes. Mutant analysis shows that the endonuclease complex is essential for resistance to UV-B and to the alkylating agent MMS, and contributes to the maintenance of genome integrity but is also involved in gene targeting in this model plant. Using different constructs we determine whether the function of the XPF-ERCC1 endonuclease complex in gene targeting was removal of 3' non-homologous termini, similar to SSA, or processing of looped-out heteroduplex intermediates. Interestingly, our data suggest a role of the endonuclease in both pathways and have implications for the mechanism of targeted gene replacement in plants and its specificities compared to yeast and mammalian cells.
Collapse
Affiliation(s)
- Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Patricia Rossetti
- Laboratoire de Biologie Moléculaire et Cellulaire, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Aline Epert
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jean-Marc Neuhaus
- Laboratoire de Biologie Moléculaire et Cellulaire, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Didier G. Schaefer
- Laboratoire de Biologie Moléculaire et Cellulaire, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
19
|
Stepwise 5' DNA end-specific resection of DNA breaks by the Mre11-Rad50-Xrs2 and Sae2 nuclease ensemble. Proc Natl Acad Sci U S A 2019; 116:5505-5513. [PMID: 30819891 DOI: 10.1073/pnas.1820157116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To repair DNA double-strand breaks by homologous recombination, the 5'-terminated DNA strands must first be resected to produce 3' overhangs. Mre11 from Saccharomyces cerevisiae is a 3' → 5' exonuclease that is responsible for 5' end degradation in vivo. Using plasmid-length DNA substrates and purified recombinant proteins, we show that the combined exonuclease and endonuclease activities of recombinant MRX-Sae2 preferentially degrade the 5'-terminated DNA strand, which extends beyond the vicinity of the DNA end. Mechanistically, Rad50 restricts the Mre11 exonuclease in an ATP binding-dependent manner, preventing 3' end degradation. Phosphorylated Sae2, along with stimulating the MRX endonuclease as shown previously, also overcomes this inhibition to promote the 3' → 5' exonuclease of MRX, which requires ATP hydrolysis by Rad50. Our results support a model in which MRX-Sae2 catalyzes 5'-DNA end degradation by stepwise endonucleolytic DNA incisions, followed by exonucleolytic 3' → 5' degradation of the individual DNA fragments. This model explains how both exonuclease and endonuclease activities of Mre11 functionally integrate within the MRX-Sae2 ensemble to resect 5'-terminated DNA.
Collapse
|
20
|
Wang C, Huang J, Zhang J, Wang H, Han Y, Copenhaver GP, Ma H, Wang Y. The Largest Subunit of DNA Polymerase Delta Is Required for Normal Formation of Meiotic Type I Crossovers. PLANT PHYSIOLOGY 2019; 179:446-459. [PMID: 30459265 PMCID: PMC6426404 DOI: 10.1104/pp.18.00861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/15/2018] [Indexed: 05/12/2023]
Abstract
Meiotic recombination contributes to the maintenance of the association between homologous chromosomes (homologs) and ensures the accurate segregation of homologs during anaphase I, thus facilitating the redistribution of alleles among progeny. Meiotic recombination is initiated by the programmed formation of DNA double strand breaks, the repair of which requires DNA synthesis, but the role of DNA synthesis proteins during meiosis is largely unknown. Here, we hypothesized that the lagging strand-specific DNA Polymerase δ (POL δ) might be required for meiotic recombination, based on a previous analysis of DNA Replication Factor1 that suggested a role for lagging strand synthesis in meiotic recombination. In Arabidopsis (Arabidopsis thaliana), complete mutation of the catalytic subunit of POL δ, encoded by AtPOLD1, leads to embryo lethality. Therefore, we used a meiocyte-specific knockdown strategy to test this hypothesis. Reduced expression of AtPOLD1 in meiocytes caused decreased fertility and meiotic defects, including incomplete synapsis, the formation of multivalents, chromosome fragmentation, and improper segregation. Analysis of meiotic crossover (CO) frequencies showed that AtPOLD1RNAi plants had significantly fewer interference-sensitive COs than the wild type, indicating that AtPOL δ participates in type I CO formation. AtPOLD1RNAi atpol2a double mutant meiocytes displayed more severe meiotic phenotypes than those of either single mutant, suggesting that the function of AtPOLD1 and AtPOL2A is not identical in meiotic recombination. Given that POL δ is highly conserved among eukaryotes, we hypothesize that the described role of POL δ here in meiotic recombination likely exists widely in eukaryotes.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Jun Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yapeng Han
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Gregory P Copenhaver
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-3280
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
21
|
Sieverman KJ, Rine J. Impact of Homologous Recombination on Silent Chromatin in Saccharomyces cerevisiae. Genetics 2018; 208:1099-1113. [PMID: 29339409 PMCID: PMC5844325 DOI: 10.1534/genetics.118.300704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Specialized chromatin domains repress transcription of genes within them and present a barrier to many DNA-protein interactions. Silent chromatin in the budding yeast Saccharomyces cerevisiae, akin to heterochromatin of metazoans and plants, inhibits transcription of PolII- and PolIII-transcribed genes, yet somehow grants access to proteins necessary for DNA transactions like replication and homologous recombination. In this study, we adapted a novel assay to detect even transient changes in the dynamics of transcriptional silencing at HML after it served as a template for homologous recombination. Homologous recombination specifically targeted to HML via double-strand-break formation at a homologous locus often led to transient loss of transcriptional silencing at HML Interestingly, many cells could template homology-directed repair at HML without an obligate loss of silencing, even in recombination events with extensive gene conversion tracts. In a population of cells that experienced silencing loss following recombination, transcription persisted for 2-3 hr after all double-strand breaks were repaired. mRNA levels from cells that experienced recombination-induced silencing loss did not approach the amount of mRNA seen in cells lacking transcriptional silencing. Thus, silencing loss at HML after homologous recombination was short-lived and limited.
Collapse
Affiliation(s)
- Kathryn J Sieverman
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, California 94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, California 94720
| |
Collapse
|
22
|
León-Ortiz AM, Panier S, Sarek G, Vannier JB, Patel H, Campbell PJ, Boulton SJ. A Distinct Class of Genome Rearrangements Driven by Heterologous Recombination. Mol Cell 2018; 69:292-305.e6. [PMID: 29351848 PMCID: PMC5783719 DOI: 10.1016/j.molcel.2017.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/02/2017] [Accepted: 12/18/2017] [Indexed: 11/25/2022]
Abstract
Erroneous DNA repair by heterologous recombination (Ht-REC) is a potential threat to genome stability, but evidence supporting its prevalence is lacking. Here we demonstrate that recombination is possible between heterologous sequences and that it is a source of chromosomal alterations in mitotic and meiotic cells. Mechanistically, we find that the RTEL1 and HIM-6/BLM helicases and the BRCA1 homolog BRC-1 counteract Ht-REC in Caenorhabditis elegans, whereas mismatch repair does not. Instead, MSH-2/6 drives Ht-REC events in rtel-1 and brc-1 mutants and excessive crossovers in rtel-1 mutant meioses. Loss of vertebrate Rtel1 also causes a variety of unusually large and complex structural variations, including chromothripsis, breakage-fusion-bridge events, and tandem duplications with distant intra-chromosomal insertions, whose structure are consistent with a role for RTEL1 in preventing Ht-REC during break-induced replication. Our data establish Ht-REC as an unappreciated source of genome instability that underpins a novel class of complex genome rearrangements that likely arise during replication stress.
Collapse
Affiliation(s)
- Ana María León-Ortiz
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stephanie Panier
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Grzegorz Sarek
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jean-Baptiste Vannier
- Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter J Campbell
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
23
|
Guo X, Hum YF, Lehner K, Jinks-Robertson S. Regulation of hetDNA Length during Mitotic Double-Strand Break Repair in Yeast. Mol Cell 2017; 67:539-549.e4. [PMID: 28781235 DOI: 10.1016/j.molcel.2017.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/05/2017] [Accepted: 07/07/2017] [Indexed: 12/24/2022]
Abstract
Heteroduplex DNA (hetDNA) is a key molecular intermediate during the repair of mitotic double-strand breaks by homologous recombination, but its relationship to 5' end resection and/or 3' end extension is poorly understood. In the current study, we examined how perturbations in these processes affect the hetDNA profile associated with repair of a defined double-strand break (DSB) by the synthesis-dependent strand-annealing (SDSA) pathway. Loss of either the Exo1 or Sgs1 long-range resection pathway significantly shortened hetDNA, suggesting that these pathways normally collaborate during DSB repair. In addition, altering the processivity or proofreading activity of DNA polymerase δ shortened hetDNA length or reduced break-adjacent mismatch removal, respectively, demonstrating that this is the primary polymerase that extends both 3' ends. Data are most consistent with the extent of DNA synthesis from the invading end being the primary determinant of hetDNA length during SDSA.
Collapse
Affiliation(s)
- Xiaoge Guo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yee Fang Hum
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Lehner
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
24
|
DNA mismatch repair and its many roles in eukaryotic cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:174-187. [PMID: 28927527 DOI: 10.1016/j.mrrev.2017.07.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
Abstract
DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore, the mechanism by which the eukaryotic MMR machinery discriminates between the parental (template) and the daughter (nascent) DNA strand is incompletely understood and how cells choose between the EXO1-dependent and the EXO1-independent subpathways of MMR is not known. This review summarizes recent literature on eukaryotic MMR, with emphasis on the diverse cellular roles of eukaryotic MMR proteins, the mechanism of strand discrimination and cross-talk/interactions between and co-regulation of MMR and other DNA repair pathways in eukaryotic cells. The main conclusion of the review is that MMR proteins contribute to genome stability through their ability to recognize and promote an appropriate cellular response to aberrant DNA structures, especially when they arise during DNA replication. Although the molecular mechanism of MMR in the eukaryotic cell is still not completely understood, increased used of single-molecule analyses in the future may yield new insight into these unsolved questions.
Collapse
|
25
|
Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 2017; 18:495-506. [PMID: 28512351 DOI: 10.1038/nrm.2017.48] [Citation(s) in RCA: 1133] [Impact Index Per Article: 141.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA double-strand breaks (DSBs) are the most dangerous type of DNA damage because they can result in the loss of large chromosomal regions. In all mammalian cells, DSBs that occur throughout the cell cycle are repaired predominantly by the non-homologous DNA end joining (NHEJ) pathway. Defects in NHEJ result in sensitivity to ionizing radiation and the ablation of lymphocytes. The NHEJ pathway utilizes proteins that recognize, resect, polymerize and ligate the DNA ends in a flexible manner. This flexibility permits NHEJ to function on a wide range of DNA-end configurations, with the resulting repaired DNA junctions often containing mutations. In this Review, we discuss the most recent findings regarding the relative involvement of the different NHEJ proteins in the repair of various DNA-end configurations. We also discuss the shunting of DNA-end repair to the auxiliary pathways of alternative end joining (a-EJ) or single-strand annealing (SSA) and the relevance of these different pathways to human disease.
Collapse
|
26
|
McVey M, Khodaverdian VY, Meyer D, Cerqueira PG, Heyer WD. Eukaryotic DNA Polymerases in Homologous Recombination. Annu Rev Genet 2017; 50:393-421. [PMID: 27893960 DOI: 10.1146/annurev-genet-120215-035243] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Homologous recombination (HR) is a central process to ensure genomic stability in somatic cells and during meiosis. HR-associated DNA synthesis determines in large part the fidelity of the process. A number of recent studies have demonstrated that DNA synthesis during HR is conservative, less processive, and more mutagenic than replicative DNA synthesis. In this review, we describe mechanistic features of DNA synthesis during different types of HR-mediated DNA repair, including synthesis-dependent strand annealing, break-induced replication, and meiotic recombination. We highlight recent findings from diverse eukaryotic organisms, including humans, that suggest both replicative and translesion DNA polymerases are involved in HR-associated DNA synthesis. Our focus is to integrate the emerging literature about DNA polymerase involvement during HR with the unique aspects of these repair mechanisms, including mutagenesis and template switching.
Collapse
Affiliation(s)
- Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts 02155;
| | | | - Damon Meyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616; .,College of Health Sciences, California Northstate University, Rancho Cordova, California 95670
| | - Paula Gonçalves Cerqueira
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616;
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616; .,Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
27
|
Anand R, Beach A, Li K, Haber J. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates. Nature 2017; 544:377-380. [PMID: 28405019 PMCID: PMC5544500 DOI: 10.1038/nature22046] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/06/2017] [Indexed: 01/14/2023]
Abstract
The Rad51 (also known as RecA) family of recombinases executes the critical step in homologous recombination: the search for homologous DNA to serve as a template during the repair of DNA double-strand breaks (DSBs). Although budding yeast Rad51 has been extensively characterized in vitro, the stringency of its search and sensitivity to mismatched sequences in vivo remain poorly defined. Here, in Saccharomyces cerevisiae, we analysed Rad51-dependent break-induced replication in which the invading DSB end and its donor template share a 108-base-pair homology region and the donor carries different densities of single-base-pair mismatches. With every eighth base pair mismatched, repair was about 14% of that of completely homologous sequences. With every sixth base pair mismatched, repair was still more than 5%. Thus, completing break-induced replication in vivo overcomes the apparent requirement for at least 6-8 consecutive paired bases that has been inferred from in vitro studies. When recombination occurs without a protruding nonhomologous 3' tail, the mismatch repair protein Msh2 does not discourage homeologous recombination. However, when the DSB end contains a 3' protruding nonhomologous tail, Msh2 promotes the rejection of mismatched substrates. Mismatch correction of strand invasion heteroduplex DNA is strongly polar, favouring correction close to the DSB end. Nearly all mismatch correction depends on the proofreading activity of DNA polymerase-δ, although the repair proteins Msh2, Mlh1 and Exo1 influence the extent of correction.
Collapse
Affiliation(s)
| | - Annette Beach
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| | - Kevin Li
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| | - James Haber
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| |
Collapse
|
28
|
Hollywood JA, Lee CM, Scallan MF, Harrison PT. Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CFTR gene. Sci Rep 2016; 6:32230. [PMID: 27557525 PMCID: PMC4997560 DOI: 10.1038/srep32230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 08/04/2016] [Indexed: 12/18/2022] Open
Abstract
To maximise the efficiency of template-dependent gene editing, most studies describe programmable and/or RNA-guided endonucleases that make a double-stranded break at, or close to, the target sequence to be modified. The rationale for this design strategy is that most gene repair tracts will be very short. Here, we describe a CRISPR Cas9/gRNA selection-free strategy which uses deep sequencing to characterise repair tracts from a donor plasmid containing seven nucleotide differences across a 216 bp target region in the human CFTR gene. We found that 90% of the template-dependent repair tracts were >100 bp in length with equal numbers of uni-directional and bi-directional repair tracts. The occurrence of long repair tracts suggests that a single gRNA could be used with variants of the same template to create or correct specific mutations within a 200 bp range, the size of ~80% of human exons. The selection-free strategy used here also allowed detection of non-homologous end joining events in many of the homology-directed repair tracts. This indicates a need to modify the donor, possibly by silent changes in the PAM sequence, to prevent creation of a second double-stranded break in an allele that has already been correctly edited by homology-directed repair.
Collapse
Affiliation(s)
- Jennifer A. Hollywood
- Department of Physiology, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Ciaran M. Lee
- Department of Physiology, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
29
|
Kolesar P, Altmannova V, Silva S, Lisby M, Krejci L. Pro-recombination Role of Srs2 Protein Requires SUMO (Small Ubiquitin-like Modifier) but Is Independent of PCNA (Proliferating Cell Nuclear Antigen) Interaction. J Biol Chem 2016; 291:7594-607. [PMID: 26861880 DOI: 10.1074/jbc.m115.685891] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Indexed: 11/06/2022] Open
Abstract
Srs2 plays many roles in DNA repair, the proper regulation and coordination of which is essential. Post-translational modification by small ubiquitin-like modifier (SUMO) is one such possible mechanism. Here, we investigate the role of SUMO in Srs2 regulation and show that the SUMO-interacting motif (SIM) of Srs2 is important for the interaction with several recombination factors. Lack of SIM, but not proliferating cell nuclear antigen (PCNA)-interacting motif (PIM), leads to increased cell death under circumstances requiring homologous recombination for DNA repair. Simultaneous mutation of SIM in asrs2ΔPIMstrain leads to a decrease in recombination, indicating a pro-recombination role of SUMO. Thus SIM has an ambivalent function in Srs2 regulation; it not only mediates interaction with SUMO-PCNA to promote the anti-recombination function but it also plays a PCNA-independent pro-recombination role, probably by stimulating the formation of recombination complexes. The fact that deletion of PIM suppresses the phenotypes of Srs2 lacking SIM suggests that proper balance between the anti-recombination PCNA-bound and pro-recombination pools of Srs2 is crucial. Notably, sumoylation of Srs2 itself specifically stimulates recombination at the rDNA locus.
Collapse
Affiliation(s)
- Peter Kolesar
- From the Department of Biology and National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic
| | | | - Sonia Silva
- the Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark, and
| | - Michael Lisby
- the Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark, and
| | - Lumir Krejci
- From the Department of Biology and National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic, the International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic
| |
Collapse
|
30
|
Saw1 localizes to repair sites but is not required for recruitment of Rad10 to repair intermediates bearing short non-homologous 3' flaps during single-strand annealing in S. cerevisiae. Mol Cell Biochem 2015; 412:131-9. [PMID: 26699908 DOI: 10.1007/s11010-015-2616-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
SAW1 is required for efficient removal by the Rad1-Rad10 nuclease of 3' non-homologous DNA ends (flaps) formed as intermediates during two modes of double-strand break (DSB) repair in S. cerevisiae, single-strand annealing (SSA) and synthesis-dependent strand annealing. Saw1 was shown in vitro to bind flaps with high affinity, but displayed diminished affinity when flaps were short (<30 deoxynucleotides [nt]), consistent with it not being required for short flap cleavage. Accordingly, this study, using in vivo fluorescence microscopy showed that SAW1 was not required for recruitment of Rad10-YFP to DNA DSBs during their repair by SSA when the flaps were ~10 nt. In contrast, recruitment of Rad10-YFP to DSBs when flaps were ~500 nt did require SAW1 in G1 phase of cell cycle. Interestingly, we observed a substantial increase in colocalization of Saw1-CFP and Rad10-YFP at DSBs when short flaps were formed during repair, especially in G1, indicating significant recruitment of Saw1 despite there being no requirement for Saw1 to recruit Rad10. Saw1-CFP was seldom observed at DSBs without Rad10-YFP. Together, these results support a model in which Saw1 and Rad1-Rad10 are recruited as a complex to short and long flaps in all phases of cell cycle, but that Saw1 is only required for recruitment of Rad1-Rad10 to DSBs when long flaps are formed in G1.
Collapse
|
31
|
DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2015; 112:E6907-16. [PMID: 26607450 DOI: 10.1073/pnas.1507833112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maintenance of genome stability is carried out by a suite of DNA repair pathways that ensure the repair of damaged DNA and faithful replication of the genome. Of particular importance are the repair pathways, which respond to DNA double-strand breaks (DSBs), and how the efficiency of repair is influenced by sequence homology. In this study, we developed a genetic assay in diploid Saccharomyces cerevisiae cells to analyze DSBs requiring microhomologies for repair, known as microhomology-mediated end-joining (MMEJ). MMEJ repair efficiency increased concomitant with microhomology length and decreased upon introduction of mismatches. The central proteins in homologous recombination (HR), Rad52 and Rad51, suppressed MMEJ in this system, suggesting a competition between HR and MMEJ for the repair of a DSB. Importantly, we found that DNA polymerase delta (Pol δ) is critical for MMEJ, independent of microhomology length and base-pairing continuity. MMEJ recombinants showed evidence that Pol δ proofreading function is active during MMEJ-mediated DSB repair. Furthermore, mutations in Pol δ and DNA polymerase 4 (Pol λ), the DNA polymerase previously implicated in MMEJ, cause a synergistic decrease in MMEJ repair. Pol λ showed faster kinetics associating with MMEJ substrates following DSB induction than Pol δ. The association of Pol δ depended on RAD1, which encodes the flap endonuclease needed to cleave MMEJ intermediates before DNA synthesis. Moreover, Pol δ recruitment was diminished in cells lacking Pol λ. These data suggest cooperative involvement of both polymerases in MMEJ.
Collapse
|
32
|
Wang H, Zhang Z, Zhang L, Zhang Q, Zhang L, Zhao Y, Wang W, Fan Y, Wang L. A novel protein, Rsf1/Pxd1, is critical for the single-strand annealing pathway of double-strand break repair in Schizosaccharomyces pombe. Mol Microbiol 2015; 96:1211-25. [PMID: 25777942 DOI: 10.1111/mmi.13001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2015] [Indexed: 11/27/2022]
Abstract
The process of single-strand annealing (SSA) repairs DNA double-strand breaks that are flanked by direct repeat sequences through the coordinated actions of a series of proteins implicated in recombination, mismatch repair and nucleotide excision repair (NER). Many of the molecular and mechanistic insights gained in SSA repair have principally come from studies in the budding yeast Saccharomyces cerevisiae. However, there is little molecular understanding of the SSA pathway in the fission yeast Schizosaccharomyces pombe. To further our understanding of this important process, we established a new chromosome-based SSA assay in fission yeast. Our genetic analyses showed that, although many homologous components participate in SSA repair in these species indicating that some evolutionary conservation, Saw1 and Slx4 are not principal agents in the SSA repair pathway in fission yeast. This is in marked contrast to the function of Saw1 and Slx4 in budding yeast. Additionally, a novel genus-specific protein, Rsf1/Pxd1, physically interacts with Rad16, Swi10 and Saw1 in vitro and in vivo. We find that Rsf1/Pxd1 is not required for NER and demonstrate that, in fission yeast, Rsf1/Pxd1, but not Saw1, plays a critical role in SSA recombination.
Collapse
Affiliation(s)
- Hanqian Wang
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Lan Zhang
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuxue Zhang
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Zhang
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Weibu Wang
- Shenzhen Nongke Group CO., LTD, Shenzhen, China
| | - Yunliu Fan
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Wang
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Abstract
Homologous recombination (HR) and mismatch repair (MMR) are inextricably linked. HR pairs homologous chromosomes before meiosis I and is ultimately responsible for generating genetic diversity during sexual reproduction. HR is initiated in meiosis by numerous programmed DNA double-strand breaks (DSBs; several hundred in mammals). A characteristic feature of HR is the exchange of DNA strands, which results in the formation of heteroduplex DNA. Mismatched nucleotides arise in heteroduplex DNA because the participating parental chromosomes contain nonidentical sequences. These mismatched nucleotides may be processed by MMR, resulting in nonreciprocal exchange of genetic information (gene conversion). MMR and HR also play prominent roles in mitotic cells during genome duplication; MMR rectifies polymerase misincorporation errors, whereas HR contributes to replication fork maintenance, as well as the repair of spontaneous DSBs and genotoxic lesions that affect both DNA strands. MMR suppresses HR when the heteroduplex DNA contains excessive mismatched nucleotides, termed homeologous recombination. The regulation of homeologous recombination by MMR ensures the accuracy of DSB repair and significantly contributes to species barriers during sexual reproduction. This review discusses the history, genetics, biochemistry, biophysics, and the current state of studies on the role of MMR in homologous and homeologous recombination from bacteria to humans.
Collapse
Affiliation(s)
- Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242
| | - Richard Fishel
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, Ohio 43210 Human Genetics Institute, The Ohio State University Medical Center, Columbus, Ohio 43210 Physics Department, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
34
|
Anand RP, Tsaponina O, Greenwell PW, Lee CS, Du W, Petes TD, Haber JE. Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev 2014; 28:2394-406. [PMID: 25367035 PMCID: PMC4215184 DOI: 10.1101/gad.250258.114] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Anand et al. examined break-induced replication (BIR) and template switching between highly diverged sequences in S. cerevisiae, induced during repair of a site-specific double-strand break (DSB). Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution. Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements. We examined BIR and template switching between highly diverged sequences in Saccharomyces cerevisiae, induced during repair of a site-specific double-strand break (DSB). Our data show that such template switches are robust mechanisms that give rise to complex rearrangements. Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. In particular, such jumps are less constrained by sequence divergence and exhibit a different pattern of microhomology junctions. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution.
Collapse
Affiliation(s)
- Ranjith P Anand
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | - Olga Tsaponina
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | - Patricia W Greenwell
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Cheng-Sheng Lee
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | - Wei Du
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - James E Haber
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA;
| |
Collapse
|
35
|
Increased meiotic crossovers and reduced genome stability in absence of Schizosaccharomyces pombe Rad16 (XPF). Genetics 2014; 198:1457-72. [PMID: 25293972 DOI: 10.1534/genetics.114.171355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Schizosaccharomyces pombe Rad16 is the ortholog of the XPF structure-specific endonuclease, which is required for nucleotide excision repair and implicated in the single strand annealing mechanism of recombination. We show that Rad16 is important for proper completion of meiosis. In its absence, cells suffer reduced spore viability and abnormal chromosome segregation with evidence for fragmentation. Recombination between homologous chromosomes is increased, while recombination within sister chromatids is reduced, suggesting that Rad16 is not required for typical homolog crossovers but influences the balance of recombination between the homolog and the sister. In vegetative cells, rad16 mutants show evidence for genome instability. Similar phenotypes are associated with mutants affecting Rhp14(XPA) but are independent of other nucleotide excision repair proteins such as Rad13(XPG). Thus, the XPF/XPA module of the nucleotide excision repair pathway is incorporated into multiple aspects of genome maintenance even in the absence of external DNA damage.
Collapse
|
36
|
Leland BA, King MC. Using LacO arrays to monitor DNA double-strand break dynamics in live Schizosaccharomyces pombe cells. Methods Mol Biol 2014; 1176:127-41. [PMID: 25030924 DOI: 10.1007/978-1-4939-0992-6_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
LacO arrays, when combined with LacI-GFP, have been a valuable tool for studying nuclear architecture and chromatin dynamics. Here, we outline an experimental approach to employ the LacO/LacI-GFP system in S. pombe to assess DNA double-strand break (DSB) dynamics and the contribution of chromatin state to DSB repair. Previously, integration of long, highly repetitive LacO arrays in S. pombe has been a challenge. To address this problem, we have developed a novel approach, based on the principles used for homologous recombination-based genome engineering in higher eukaryotes, to integrate long, repetitive LacO arrays with targeting efficiencies as high as 70 %. Combining this facile LacO/LacI-GFP system with a site-specific, inducible DSB provides a means to monitor DSB dynamics at engineered sites within the genome.
Collapse
Affiliation(s)
- Bryan A Leland
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | | |
Collapse
|
37
|
Zhang XP, Janke R, Kingsley J, Luo J, Fasching C, Ehmsen KT, Heyer WD. A conserved sequence extending motif III of the motor domain in the Snf2-family DNA translocase Rad54 is critical for ATPase activity. PLoS One 2013; 8:e82184. [PMID: 24358152 PMCID: PMC3864901 DOI: 10.1371/journal.pone.0082184] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/21/2013] [Indexed: 11/22/2022] Open
Abstract
Rad54 is a dsDNA-dependent ATPase that translocates on duplex DNA. Its ATPase function is essential for homologous recombination, a pathway critical for meiotic chromosome segregation, repair of complex DNA damage, and recovery of stalled or broken replication forks. In recombination, Rad54 cooperates with Rad51 protein and is required to dissociate Rad51 from heteroduplex DNA to allow access by DNA polymerases for recombination-associated DNA synthesis. Sequence analysis revealed that Rad54 contains a perfect match to the consensus PIP box sequence, a widely spread PCNA interaction motif. Indeed, Rad54 interacts directly with PCNA, but this interaction is not mediated by the Rad54 PIP box-like sequence. This sequence is located as an extension of motif III of the Rad54 motor domain and is essential for full Rad54 ATPase activity. Mutations in this motif render Rad54 non-functional in vivo and severely compromise its activities in vitro. Further analysis demonstrated that such mutations affect dsDNA binding, consistent with the location of this sequence motif on the surface of the cleft formed by two RecA-like domains, which likely forms the dsDNA binding site of Rad54. Our study identified a novel sequence motif critical for Rad54 function and showed that even perfect matches to the PIP box consensus may not necessarily identify PCNA interaction sites.
Collapse
Affiliation(s)
- Xiao-Ping Zhang
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Ryan Janke
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - James Kingsley
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Jerry Luo
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Clare Fasching
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Kirk T. Ehmsen
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
38
|
Chen H, Lisby M, Symington LS. RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol Cell 2013; 50:589-600. [PMID: 23706822 DOI: 10.1016/j.molcel.2013.04.032] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/14/2013] [Accepted: 04/12/2013] [Indexed: 11/29/2022]
Abstract
Replication protein A (RPA) is an essential eukaryotic single-stranded DNA binding protein with a central role in DNA metabolism. RPA directly participates in DNA double-strand break repair by stimulating 5'-3' end resection by the Sgs1/BLM helicase and Dna2 endonuclease in vitro. Here we investigated the role of RPA in end resection in vivo, using a heat-inducible degron system that allows rapid conditional depletion of RPA in Saccharomyces cerevisiae. We found that RPA depletion eliminated both the Sgs1-Dna2- and Exo1-dependent extensive resection pathways and synergized with mre11Δ to prevent end resection. The short single-stranded DNA tails formed in the absence of RPA were unstable due to 3' strand loss and the formation of fold-back hairpin structures that required resection initiation and Pol32-dependent DNA synthesis. Thus, RPA is required to generate ssDNA, and also to protect ssDNA from degradation and inappropriate annealing that could lead to genome rearrangements.
Collapse
Affiliation(s)
- Huan Chen
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
39
|
St. Charles J, Petes TD. High-resolution mapping of spontaneous mitotic recombination hotspots on the 1.1 Mb arm of yeast chromosome IV. PLoS Genet 2013; 9:e1003434. [PMID: 23593029 PMCID: PMC3616911 DOI: 10.1371/journal.pgen.1003434] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/20/2013] [Indexed: 11/18/2022] Open
Abstract
Although homologous recombination is an important pathway for the repair of double-stranded DNA breaks in mitotically dividing eukaryotic cells, these events can also have negative consequences, such as loss of heterozygosity (LOH) of deleterious mutations. We mapped about 140 spontaneous reciprocal crossovers on the right arm of the yeast chromosome IV using single-nucleotide-polymorphism (SNP) microarrays. Our mapping and subsequent experiments demonstrate that inverted repeats of Ty retrotransposable elements are mitotic recombination hotspots. We found that the mitotic recombination maps on the two homologs were substantially different and were unrelated to meiotic recombination maps. Additionally, about 70% of the DNA lesions that result in LOH are likely generated during G1 of the cell cycle and repaired during S or G2. We also show that different genetic elements are associated with reciprocal crossover conversion tracts depending on the cell cycle timing of the initiating DSB. Double-strand breaks (DSBs) are DNA lesions that can be fatal to a cell if left unrepaired. They can be caused by exogenous sources, such as gamma radiation, or endogenous stresses, such as high levels of transcription. Yeast cells primarily repair DSBs that are initiated outside of meiosis by mitotic recombination, which can result in physical exchanges between chromosomes, known as crossovers. We created a mitotic recombination map of one chromosome arm, representing 10% of the genome. This recombination map allows us to determine which regions of the chromosome arm are more susceptible to DNA damage than other regions. We were able to determine that most DSBs that result in detectable genomic changes were initiated prior to DNA replication and that some secondary DNA structures can be recombination hotspots. Recombination can also occur during meiosis, as a method of ensuring proper chromosome segregation. However, previously reported meiotic recombination maps have no correlation with our mitotic recombination map.
Collapse
Affiliation(s)
- Jordan St. Charles
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
40
|
Sneeden JL, Grossi SM, Tappin I, Hurwitz J, Heyer WD. Reconstitution of recombination-associated DNA synthesis with human proteins. Nucleic Acids Res 2013; 41:4913-25. [PMID: 23535143 PMCID: PMC3643601 DOI: 10.1093/nar/gkt192] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The repair of DNA breaks by homologous recombination is a high-fidelity process, necessary for the maintenance of genome integrity. Thus, DNA synthesis associated with recombinational repair must be largely error-free. In this report, we show that human DNA polymerase delta (δ) is capable of robust DNA synthesis at RAD51-mediated recombination intermediates dependent on the processivity clamp PCNA. Translesion synthesis polymerase eta (η) also extends these substrates, albeit far less processively. The single-stranded DNA binding protein RPA facilitates recombination-mediated DNA synthesis by increasing the efficiency of primer utilization, preventing polymerase stalling at specific sequence contexts, and overcoming polymerase stalling caused by topological constraint allowing the transition to a migrating D-loop. Our results support a model whereby the high-fidelity replicative DNA polymerase δ performs recombination-associated DNA synthesis, with translesion synthesis polymerases providing a supportive role as in normal replication.
Collapse
Affiliation(s)
- Jessica L Sneeden
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | | | | | | | | |
Collapse
|
41
|
Microhomology directs diverse DNA break repair pathways and chromosomal translocations. PLoS Genet 2012; 8:e1003026. [PMID: 23144625 PMCID: PMC3493447 DOI: 10.1371/journal.pgen.1003026] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/24/2012] [Indexed: 11/23/2022] Open
Abstract
Chromosomal structural change triggers carcinogenesis and the formation of other genetic diseases. The breakpoint junctions of these rearrangements often contain small overlapping sequences called “microhomology,” yet the genetic pathway(s) responsible have yet to be defined. We report a simple genetic system to detect microhomology-mediated repair (MHMR) events after a DNA double-strand break (DSB) in budding yeast cells. MHMR using >15 bp operates as a single-strand annealing variant, requiring the non-essential DNA polymerase subunit Pol32. MHMR is inhibited by sequence mismatches, but independent of extensive DNA synthesis like break-induced replication. However, MHMR using less than 14 bp is genetically distinct from that using longer microhomology and far less efficient for the repair of distant DSBs. MHMR catalyzes chromosomal translocation almost as efficiently as intra-chromosomal repair. The results suggest that the intrinsic annealing propensity between microhomology sequences efficiently leads to chromosomal rearrangements. Cancer results from an accumulation of mutations that transform a normal cell into one that proliferates uncontrollably. DNA double-strand breaks (DSBs) can lead to genetic mutations and chromosome rearrangements, underscoring the importance of functional DNA DSB repair pathways in the maintenance of chromosome integrity and tumor suppression. Ample evidence suggests that cells possess multiple DSB repair mechanisms with distinct mutational potentials, and one or more of these pathways is likely responsible for the formation of chromosomal translocations. Importantly, at the junctions of many rearrangements, small (2–20 bp in length) overlapping sequences from each of the original sequences, termed “microhomology,” are found, and they may provide a clue as to how these rearrangements form. Here, we describe our genetic investigation into how flanking microhomology influences the type and frequency of DSB repair. We also show that microhomology-mediated repair (MHMR) efficiently induces chromosomal translocations. This research provides a basic understanding of the mechanisms that utilize microhomology for mutagenic repair.
Collapse
|
42
|
The Rad1-Rad10 nuclease promotes chromosome translocations between dispersed repeats. Nat Struct Mol Biol 2012; 19:964-71. [PMID: 22885325 PMCID: PMC3443319 DOI: 10.1038/nsmb.2359] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/11/2012] [Indexed: 01/26/2023]
Abstract
Holliday junctions can be formed during homology-dependent repair of DNA double-strand breaks and their resolution is essential for chromosome segregation and generation of crossover products. The Mus81–Mms4 and Yen1 nucleases are required for mitotic crossovers between chromosome homologs in Saccharomyces cerevisiae; however, crossovers between dispersed repeats are still detected in their absence. Here we show the Rad1–Rad10 nuclease promotes formation of crossover and noncrossover recombinants between ectopic sequences. Crossover products were not recovered from the mus81Δ rad1Δ yen1Δ triple mutant indicating that all three nucleases participate in processing recombination intermediates that form between dispersed repeats. We suggest a novel mechanism for crossovers that involves Rad1–Rad10 clipping and resolution of a single Holliday junction-containing intermediate by Mus81–Mms4 or Yen1 cleavage, or by replication. Consistent with the model, we show the accumulation of Rad1 dependent joint molecules in the mus81Δ yen1Δ mutant.
Collapse
|
43
|
Abstract
DNA double-strand breaks (DSBs) have proven to be very potent initiators of recombination in yeast and other organisms. A single, site-specific DSB initiates homologous DNA repair events such as gene conversion, break-induced replication, and single-strand annealing, as well as nonhomologous end joining, microhomology-mediated end joining, and new telomere addition. When repair is either delayed or prevented, a single DSB can trigger checkpoint-mediated cell cycle arrest. In budding yeast, expressing the HO endonuclease under the control of a galactose-inducible promoter has been instrumental in the study of these processes by providing us a way to synchronously induce a DSB at a unique site in vivo. We describe how the HO endonuclease has been used to study the recombination events in mating-type (MAT) switching. Southern blots provide an overview of the process by allowing one to examine the formation of the DSB, DNA degradation at the break, and formation of the product. Denaturing gels and slot blots as well as PCR have provided important tools to follow the progression of resection in wild-type and mutant cells. PCR has also been important in allowing us to follow the kinetics of certain recombination intermediates such as the initiation of repair DNA synthesis or the removal of nonhomologous Y sequences during MAT switching. Finally chromatin immunoprecipitation has been used to follow the recruitment of key proteins to the DSB and in subsequent steps in DSB repair.
Collapse
Affiliation(s)
- Neal Sugawara
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | |
Collapse
|
44
|
Abstract
ERCC1-XPF is a structure-specific endonuclease required for nucleotide excision repair, interstrand crosslink repair, and the repair of some double-strand breaks. Mutations in ERCC1 or XPF cause xeroderma pigmentosum, XFE progeroid syndrome or cerebro-oculo-facio-skeletal syndrome, characterized by increased risk of cancer, accelerated aging and severe developmental abnormalities, respectively. This review provides a comprehensive overview of the health impact of ERCC1-XPF deficiency, based on these rare diseases and mouse models of them. This offers an understanding of the tremendous health impact of DNA damage derived from environmental and endogenous sources.
Collapse
Affiliation(s)
- Siobhán Q. Gregg
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 USA
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Hillman Cancer Center, 2.6, Pittsburgh, PA 15213 USA
| | - Andria Rasile Robinson
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Hillman Cancer Center, 2.6, Pittsburgh, PA 15213 USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto Street, Pittsburgh, PA 15261 USA
| | - Laura J. Niedernhofer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 USA
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Hillman Cancer Center, 2.6, Pittsburgh, PA 15213 USA
| |
Collapse
|
45
|
Schwartz EK, Heyer WD. Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes. Chromosoma 2011; 120:109-27. [PMID: 21369956 PMCID: PMC3057012 DOI: 10.1007/s00412-010-0304-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 10/27/2022]
Abstract
Homologous recombination is required for maintaining genomic integrity by functioning in high-fidelity repair of DNA double-strand breaks and other complex lesions, replication fork support, and meiotic chromosome segregation. Joint DNA molecules are key intermediates in recombination and their differential processing determines whether the genetic outcome is a crossover or non-crossover event. The Holliday model of recombination highlights the resolution of four-way DNA joint molecules, termed Holliday junctions, and the bacterial Holliday junction resolvase RuvC set the paradigm for the mechanism of crossover formation. In eukaryotes, much effort has been invested in identifying the eukaryotic equivalent of bacterial RuvC, leading to the discovery of a number of DNA endonucleases, including Mus81-Mms4/EME1, Slx1-Slx4/BTBD12/MUS312, XPF-ERCC1, and Yen1/GEN1. These nucleases exert different selectivity for various DNA joint molecules, including Holliday junctions. Their mutant phenotypes and distinct species-specific characteristics expose a surprisingly complex system of joint molecule processing. In an attempt to reconcile the biochemical and genetic data, we propose that nicked junctions constitute important in vivo recombination intermediates whose processing determines the efficiency and outcome (crossover/non-crossover) of homologous recombination.
Collapse
Affiliation(s)
- Erin K. Schwartz
- Department of Microbiology, University of California—Davis, Davis, CA 95616 USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology, University of California—Davis, Davis, CA 95616 USA
- Department of Molecular and Cellular Biology, University of California—Davis, Davis, CA 95616 USA
| |
Collapse
|
46
|
Rahn JJ, Lowery MP, Della-Coletta L, Adair GM, Nairn RS. Depletion of Werner helicase results in mitotic hyperrecombination and pleiotropic homologous and nonhomologous recombination phenotypes. Mech Ageing Dev 2010; 131:562-73. [PMID: 20708636 PMCID: PMC2949496 DOI: 10.1016/j.mad.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/22/2010] [Accepted: 08/03/2010] [Indexed: 11/30/2022]
Abstract
Werner syndrome (WS) is a rare, segmental progeroid syndrome caused by defects in the WRN gene, which encodes a RecQ helicase. WRN has roles in many aspects of DNA metabolism including DNA repair and recombination. In this study, we exploited two different recombination assays previously used to describe a role for the structure-specific endonuclease ERCC1-XPF in mitotic and targeted homologous recombination. We constructed Chinese hamster ovary (CHO) cell lines isogenic with the cell lines used in these previous studies by depleting WRN using shRNA vectors. When intrachromosomal, mitotic recombination was assayed in WRN-depleted CHO cells, a hyperrecombination phenotype was observed, and a small number of aberrant recombinants were generated. Targeted homologous recombination was also examined in WRN-depleted CHO cells using a plasmid-chromosome targeting assay. In these experiments, loss of WRN resulted in a significant decrease in nonhomologous integration events and ablation of recombinants that required random integration of the corrected targeting vector. Aberrant recombinants were also recovered, but only from WRN-depleted cells. The pleiotropic recombination phenotypes conferred by WRN depletion, reflected in distinct homologous and nonhomologous recombination pathways, suggest a role for WRN in processing specific types of homologous recombination intermediates as well as an important function in nonhomologous recombination.
Collapse
Affiliation(s)
- Jennifer J. Rahn
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, P.O. Box 389, Smithville TX 78597
| | - Megan P. Lowery
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, P.O. Box 389, Smithville TX 78597
| | - Luis Della-Coletta
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, P.O. Box 389, Smithville TX 78597
| | - Gerald M. Adair
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, P.O. Box 389, Smithville TX 78597
| | - Rodney S. Nairn
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, P.O. Box 389, Smithville TX 78597
- University of Texas Graduate School of Biomedical Sciences at Houston, P.O. Box 20334, Houston TX 77225
| |
Collapse
|
47
|
Manthey GM, Bailis AM. Rad51 inhibits translocation formation by non-conservative homologous recombination in Saccharomyces cerevisiae. PLoS One 2010; 5:e11889. [PMID: 20686691 PMCID: PMC2912366 DOI: 10.1371/journal.pone.0011889] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022] Open
Abstract
Chromosomal translocations are a primary biological response to ionizing radiation (IR) exposure, and are likely to result from the inappropriate repair of the DNA double-strand breaks (DSBs) that are created. An abundance of repetitive sequences in eukaryotic genomes provides ample opportunity for such breaks to be repaired by homologous recombination (HR) between non-allelic repeats. Interestingly, in the budding yeast, Saccharomyces cerevisiae the central strand exchange protein, Rad51 that is required for DSB repair by gene conversion between unlinked repeats that conserves genomic structure also suppresses translocation formation by several HR mechanisms. In particular, Rad51 suppresses translocation formation by single-strand annealing (SSA), perhaps the most efficient mechanism for translocation formation by HR in both yeast and mammalian cells. Further, the enhanced translocation formation that emerges in the absence of Rad51 displays a distinct pattern of genetic control, suggesting that this occurs by a separate mechanism. Since hypomorphic mutations in RAD51 in mammalian cells also reduce DSB repair by conservative gene conversion and stimulate non-conservative repair by SSA, this mechanism may also operate in humans and, perhaps contribute to the genome instability that propels the development of cancer.
Collapse
Affiliation(s)
- Glenn M. Manthey
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Adam M. Bailis
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Rahn JJ, Adair GM, Nairn RS. Multiple roles of ERCC1-XPF in mammalian interstrand crosslink repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:567-581. [PMID: 20658648 DOI: 10.1002/em.20583] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
DNA interstrand crosslinks (ICLs) are among the most deleterious cytotoxic lesions encountered by cells, mainly due to the covalent linkage these lesions create between the two strands of DNA which effectively blocks replication and transcription. Although ICL repair in mammalian cells is not fully understood, processing of these lesions is thought to begin by "unhooking" at the site of the damaged base accompanied by the generation of a double strand break and ultimately repair through translesion synthesis and homologous recombination. A key player in this repair process is the heterodimeric protein complex ERCC1-XPF. Although some models of ICL repair restrict ERCC1-XPF activity to the unhooking step, recent data suggest that this protein complex acts in additional downstream steps. Here, we review the evidence implicating ERCC1-XPF in multiple steps of ICL repair.
Collapse
Affiliation(s)
- Jennifer J Rahn
- Department of Carcinogenesis, Science Park-Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA.
| | | | | |
Collapse
|
49
|
Toh GWL, Sugawara N, Dong J, Toth R, Lee SE, Haber JE, Rouse J. Mec1/Tel1-dependent phosphorylation of Slx4 stimulates Rad1-Rad10-dependent cleavage of non-homologous DNA tails. DNA Repair (Amst) 2010; 9:718-26. [PMID: 20382573 PMCID: PMC4352089 DOI: 10.1016/j.dnarep.2010.02.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/09/2010] [Accepted: 02/24/2010] [Indexed: 01/22/2023]
Abstract
Budding yeast Slx4 interacts with the Rad1-Rad10 endonuclease that is involved in nucleotide excision repair (NER), homologous recombination (HR) and single-strand annealing (SSA). We previously showed that Slx4 is dispensable for NER but is essential for SSA. Slx4 is phosphorylated by the Mec1 and Tel1 kinases after DNA damage on at least six Ser/Thr residues, and mutation of all six residues to Ala reduces the efficiency of SSA. In this study, we further investigated the role of Slx4 phosphorylation in SSA, specifically in regulating cleavage of 3' non-homologous (NH) DNA tails by Rad1-Rad10 during SSA and HR. Slx4 became phosphorylated after induction of a single double-strand break (DSB) during SSA and dephosphorylation coincided approximately with completion of repair. Slx4 is recruited to 3' NH tails during DSB repair, but this does not require phosphorylation of Slx4. However, we identified a specific damage-dependent Mec1/Tel1 site of Slx4 phosphorylation, Thr 113, that is required for efficient cleavage of NH tails by Rad1-Rad10. Consistent with these data, deletion of both Mec1 and Tel1 severely reduces the efficiency of NH DNA tail cleavage during HR. These data show that phosphorylation of Slx4 by Mec1 and Tel1 plays an important role in facilitating NH DNA tail cleavage during HR.
Collapse
Affiliation(s)
- Geraldine W.-L. Toh
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Neal Sugawara
- Rosentiel Basic Medical Sciences Research Centre, Waltham, Massachusetts
| | - Junchao Dong
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | - Rachel Toth
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sang Eun Lee
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | - James E. Haber
- Rosentiel Basic Medical Sciences Research Centre, Waltham, Massachusetts
| | - John Rouse
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
50
|
Functional studies and homology modeling of Msh2-Msh3 predict that mispair recognition involves DNA bending and strand separation. Mol Cell Biol 2010; 30:3321-8. [PMID: 20421420 DOI: 10.1128/mcb.01558-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Msh2-Msh3 heterodimer recognizes various DNA mispairs, including loops of DNA ranging from 1 to 14 nucleotides and some base-base mispairs. Homology modeling of the mispair-binding domain (MBD) of Msh3 using the related Msh6 MBD revealed that mismatch recognition must be different, even though the MBD folds must be similar. Model-based point mutation alleles of Saccharomyces cerevisiae msh3 designed to disrupt mispair recognition fell into two classes. One class caused defects in repair of both small and large insertion/deletion mispairs, whereas the second class caused defects only in the repair of small insertion/deletion mispairs; mutations of the first class also caused defects in the removal of nonhomologous tails present at the ends of double-strand breaks (DSBs) during DSB repair, whereas mutations of the second class did not cause defects in the removal of nonhomologous tails during DSB repair. Thus, recognition of small insertion/deletion mispairs by Msh3 appears to require a greater degree of interactions with the DNA conformations induced by small insertion/deletion mispairs than with those induced by large insertion/deletions that are intrinsically bent and strand separated. Mapping of the two classes of mutations onto the Msh3 MBD model appears to distinguish mispair recognition regions from DNA stabilization regions.
Collapse
|