1
|
Phiwthong T, Limkul S, Aunkam P, Seabkongseng T, Teaumroong N, Tittabutr P, Boonchuen P. Quaking RNA-Binding protein (QKI) mediates circular RNA biogenesis in Litopenaeus vannamei during WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2025; 159:110178. [PMID: 39921020 DOI: 10.1016/j.fsi.2025.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
The Quaking RNA-binding protein (QKI), a member of the STAR family, is considered critical in the formation of circular RNAs (circRNAs), as it aids in catalyzing a back-splicing phenomenon by interacting with RNA precursors. CircRNAs have progressively been revealed to play central roles in the regulation of various biological processes, such as antiviral defense mechanisms. This study identifies a QKI in L. vannamei, referred to as LvQKI, comprised of conserved STAR and KH RNA-binding domains. Analysis through tissue-specific expression using qRT-PCR has revealed a high expression level of LvQKI in the gill - one of the primary regions heavily populated by the white spot syndrome virus (WSSV) - and its activation was triggered during WSSV infection. From an RNA interference-mediated suppression targeting LvQKI, a decrease and increase in survival rates and WSSV copy number were observed, respectively. Notably, circRNA levels were significantly lowered in LvQKI-silenced shrimp, whereas linear RNAs remained stable. Conversely, administration of recombinant LvQKI (rLvQKI) protein before a WSSV challenge not only enhanced survival rates but also reduced viral load, wherein both circRNAs and linear RNAs underwent up-regulation in rLvQKI-treated shrimp. Our results introduce LvQKI as a crucial factor in circRNA biogenesis and immune defense in shrimp, emphasizing the interplay between LvQKI's and circRNAs' roles in fighting viral invasion.
Collapse
Affiliation(s)
- Tannatorn Phiwthong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Sirawich Limkul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Phirom Aunkam
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Tuangrak Seabkongseng
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
2
|
Mushtaq A, Mir US, Altaf M. Multifaceted functions of RNA-binding protein vigilin in gene silencing, genome stability, and autism-related disorders. J Biol Chem 2023; 299:102988. [PMID: 36758804 PMCID: PMC10011833 DOI: 10.1016/j.jbc.2023.102988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
RNA-binding proteins (RBPs) are emerging as important players in regulating eukaryotic gene expression and genome stability. Specific RBPs have been shown to mediate various chromatin-associated processes ranging from transcription to gene silencing and DNA repair. One of the prominent classes of RBPs is the KH domain-containing proteins. Vigilin, an evolutionarily conserved KH domain-containing RBP has been shown to be associated with diverse biological processes like RNA transport and metabolism, sterol metabolism, chromosome segregation, and carcinogenesis. We have previously reported that vigilin is essential for heterochromatin-mediated gene silencing in fission yeast. More recently, we have identified that vigilin in humans plays a critical role in efficient repair of DNA double-stranded breaks and functions in homology-directed DNA repair. In this review, we highlight the multifaceted functions of vigilin and discuss the findings in the context of gene expression, genome organization, cancer, and autism-related disorders.
Collapse
Affiliation(s)
- Arjamand Mushtaq
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ulfat Syed Mir
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mohammad Altaf
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
3
|
Farooq Z, Abdullah E, Banday S, Ganai SA, Rashid R, Mushtaq A, Rashid S, Altaf M. Vigilin protein Vgl1 is required for heterochromatin-mediated gene silencing in Schizosaccharomyces pombe. J Biol Chem 2019; 294:18029-18040. [PMID: 31554660 DOI: 10.1074/jbc.ra119.009262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/28/2019] [Indexed: 11/06/2022] Open
Abstract
Heterochromatin is a conserved feature of eukaryotic genomes and regulates various cellular processes, including gene silencing, chromosome segregation, and maintenance of genome stability. In the fission yeast Schizosaccharomyces pombe, heterochromatin formation involves methylation of lysine 9 in histone H3 (H3K9), which recruits Swi6/HP1 proteins to heterochromatic loci. The Swi6/HP1-H3K9me3 chromatin complex lies at the center of heterochromatic macromolecular assemblies and mediates many functions of heterochromatin by recruiting a diverse set of regulators. However, additional factors may be required for proper heterochromatin organization, but they are not fully known. Here, using several molecular and biochemical approaches, we report that Vgl1, a member of a large family of multiple KH-domain proteins, collectively known as vigilins, is indispensable for the heterochromatin-mediated gene silencing in S. pombe ChIP analysis revealed that Vgl1 binds to pericentromeric heterochromatin in an RNA-dependent manner and that Vgl1 deletion leads to loss of H3K9 methylation and Swi6 recruitment to centromeric and telomeric heterochromatic loci. Furthermore, we show that Vgl1 interacts with the H3K9 methyltransferase, Clr4, and that loss of Vgl1 impairs Clr4 recruitment to heterochromatic regions of the genome. These findings uncover a novel role for Vgl1 as a key regulator in heterochromatin-mediated gene silencing in S. pombe.
Collapse
Affiliation(s)
- Zeenat Farooq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Ehsaan Abdullah
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Shabir Ahmad Ganai
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Romana Rashid
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Arjamand Mushtaq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Samia Rashid
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
4
|
Xu B, Devi G, Shao F. Regulation of telomeric i-motif stability by 5-methylcytosine and 5-hydroxymethylcytosine modification. Org Biomol Chem 2016; 13:5646-51. [PMID: 25886653 DOI: 10.1039/c4ob02646b] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The two important epigenetic markers in the human genome, 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC), are involved in gene regulation processes. As a major epigenetic target, cytosines in a C-rich DNA sequence were substituted with mC and hmC to investigate the thermal stability and pH sensitivity of the corresponding i-motifs. Circular Dichroism (CD) studies indicate the formation of i-motifs at acidic pH (<6.5) for mC- and hmC-modified DNA sequences. Thermal denaturation results suggest that DNA i-motifs are stabilized when modified with one or two mCs. However, hypermethylation with mC and single modification with hmC cause destabilization of the structure. A biomimetic crowding agent does not alter the stability effect trends resulting from mC and hmC modifications, though the corresponding i-motifs show elevated melting temperatures without significant changes in pKa values.
Collapse
Affiliation(s)
- Baochang Xu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | | | | |
Collapse
|
5
|
Devi G, He L, Xu B, Li T, Shao F. In-stem thiazole orange reveals the same triplex intermediate for pH and thermal unfolding of i-motifs. Chem Commun (Camb) 2016; 52:7261-4. [DOI: 10.1039/c6cc01643j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The unfolding pathway of human telomeric i-motifs was monitored by both monomer and exciplex fluorescence of in-stem thiazole orange. A uniform triplex intermediate was determined upon unfolding i-motifs against either pH or thermal denaturation.
Collapse
Affiliation(s)
- Gitali Devi
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Lei He
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Baochang Xu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Fangwei Shao
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| |
Collapse
|
6
|
Wei L, Xie X, Li J, Li R, Shen W, Duan S, Zhao R, Yang W, Liu Q, Fu Q, Qin Y. Disruption of human vigilin impairs chromosome condensation and segregation. Cell Biol Int 2015; 39:1234-41. [PMID: 26032007 DOI: 10.1002/cbin.10496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/23/2015] [Indexed: 11/08/2022]
Abstract
Appropriate packaging and condensation are critical for eukaryotic chromatin's accommodation and separation during cell division. Human vigilin, a multi-KH-domain nucleic acid-binding protein, is associated with alpha satellites of centromeres. DDP1, a vigilin's homolog, is implicated with chromatin condensation and segregation. The expression of vigilin was previously reported to elevate in highly proliferating tissues and increased in a subset of hepatocellular carcinoma patients. Other studies showed that vigilin interacts with CTCF, contributes to regulation of imprinted genes Igf2/H19, and colocalizes with HP1α on heterochromatic satellite 2 and β-satellite repeats. These studies indicate that human vigilin might be involved in chromatin remodeling and regular cell growth. To investigate the potential role of human vigilin in cell cycle, the correlations between vigilin and chromosomal condensation and segregation were studied. Depletion of human vigilin by RNA interference in HepG2 cells resulted in chromosome undercondensation and various chromosomal defects during mitotic phase, including chromosome misalignments, lagging chromosomes, and chromosome bridges. Aberrant polyploid nucleus in telophase was also observed. Unlike the abnormal staining pattern of chromosomes, the shape of spindle was normal. Furthermore, the chromatin showed a greater sensitivity to MNase digestion. Collectively, our findings show that human vigilin apparently participates in chromatin condensation and segregation.
Collapse
Affiliation(s)
- Ling Wei
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoyan Xie
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junhong Li
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ran Li
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenyan Shen
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shuwang Duan
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Rongce Zhao
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenli Yang
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiuying Liu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiang Fu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.,Sichuan University "985 Project-Science and Technology Innovation Platform for Novel Drug Development", Chengdu, 610041, Sichuan, China
| |
Collapse
|
7
|
Zhong L, Yuan L, Rao Y, Li Z, Gu Q, Long Y, Zhang X, Cui Z, Xu Y, Dai H. Investigation of effect of 17α-ethinylestradiol on vigilin expression using an isolated recombinant antibody. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:1-9. [PMID: 25112681 DOI: 10.1016/j.aquatox.2014.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 06/03/2023]
Abstract
Vigilin, a highly conserved protein from yeast to mammals, is a multifunctional protein in eukaryotic organisms. One biological function of vigilin is to stabilize the expression level of vitellogenin (VTG). This study aimed to develop vigilin as a new estrogen-inducible biomarker that correlates with the widely applied estrogen-inducible biomarker VTG and expand the ability to detect it in various species. Here, a recombinant monoclonal antibody with high specificity against the conserved C-terminal region of vigilin from zebrafish (Danio rerio) was successfully isolated from a phage display antibody library and found to recognize vigilin proteins from multiple vertebrate species. The effect of 17α-ethinylestradiol (EE2) on vigilin expression in the liver of zebrafish and juvenile crucian carp (Carassius auratus) was investigated. Although vigilin mRNA was expressed in all tissues analyzed from male zebrafish, vigilin protein was detected exclusively in the testis of male zebrafish, as well as the liver of female zebrafish and juvenile crucian carp at a lower level without exposure to EE2. Significant induction of vigilin mRNA by exposure to EE2 was observed in the liver and testis of male zebrafish, even at a low dose of 6.25 ng/L (21.09 pmol/L). In Hela cells, the expression of vigilin coincided with high protein synthesis activity but not dose-dependently by EE2 exposure. Therefore, the recombinant antibody may be used as a detection tool to screen for mammalian cell lines or organs with estrogen-inducible expression of vigilin.
Collapse
Affiliation(s)
- Liqiao Zhong
- State Key Laboratory of Fresh water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China
| | - Li Yuan
- State Key Laboratory of Fresh water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China
| | - Yu Rao
- State Key Laboratory of Fresh water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China
| | - Zhouquan Li
- State Key Laboratory of Fresh water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100039, PR China
| | - Qilin Gu
- State Key Laboratory of Fresh water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100039, PR China
| | - Yong Long
- State Key Laboratory of Fresh water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China
| | - Xiaohua Zhang
- State Key Laboratory of Fresh water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China.
| | - Zongbin Cui
- State Key Laboratory of Fresh water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China
| | - Ying Xu
- State Key Laboratory of Fresh water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China
| | - Heping Dai
- State Key Laboratory of Fresh water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Southern East Lake Road, Wuhan 430072, PR China.
| |
Collapse
|
8
|
Mteirek R, Gueguen N, Jensen S, Brasset E, Vaury C. Drosophila heterochromatin: structure and function. CURRENT OPINION IN INSECT SCIENCE 2014; 1:19-24. [PMID: 32846725 DOI: 10.1016/j.cois.2014.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 06/11/2023]
Abstract
Heterochromatic domains, which are enriched in repetitive sequences and packaged in a higher-order chromatin folding, carry the potential to epigenetically inactivate a euchromatic gene that has been moved in close proximity. The discovery that these domains encode non-coding RNAs involved in RNA-silencing mechanisms has recently contributed to a better understanding of the mechanisms of the epigenetic repression established by heterochromatic domains. In this review, we will consider the repeated nature of their DNA sequence, the successive steps in heterochromatin assembly, starting with the decision process, the higher order state assembly and its epigenetic propagation. Recent findings provide new insights into the cellular functions of heterochromatin, notably its major contribution to genome stability and chromosome integrity.
Collapse
Affiliation(s)
- Rana Mteirek
- Clermont Université, Université d'Auvergne, Laboratoire GReD, BP 38, 63001 Clermont-Ferrand, France; Inserm, U 1103, BP 38, 63001 Clermont-Ferrand, France; CNRS, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Nathalie Gueguen
- Clermont Université, Université d'Auvergne, Laboratoire GReD, BP 38, 63001 Clermont-Ferrand, France; Inserm, U 1103, BP 38, 63001 Clermont-Ferrand, France; CNRS, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Silke Jensen
- Clermont Université, Université d'Auvergne, Laboratoire GReD, BP 38, 63001 Clermont-Ferrand, France; Inserm, U 1103, BP 38, 63001 Clermont-Ferrand, France; CNRS, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Emilie Brasset
- Clermont Université, Université d'Auvergne, Laboratoire GReD, BP 38, 63001 Clermont-Ferrand, France; Inserm, U 1103, BP 38, 63001 Clermont-Ferrand, France; CNRS, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Chantal Vaury
- Clermont Université, Université d'Auvergne, Laboratoire GReD, BP 38, 63001 Clermont-Ferrand, France; Inserm, U 1103, BP 38, 63001 Clermont-Ferrand, France; CNRS, UMR 6293, BP 38, 63001 Clermont-Ferrand, France.
| |
Collapse
|
9
|
Day HA, Pavlou P, Waller ZAE. i-Motif DNA: structure, stability and targeting with ligands. Bioorg Med Chem 2014; 22:4407-18. [PMID: 24957878 DOI: 10.1016/j.bmc.2014.05.047] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/09/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
i-Motifs are four-stranded DNA secondary structures which can form in sequences rich in cytosine. Stabilised by acidic conditions, they are comprised of two parallel-stranded DNA duplexes held together in an antiparallel orientation by intercalated, cytosine-cytosine(+) base pairs. By virtue of their pH dependent folding, i-motif forming DNA sequences have been used extensively as pH switches for applications in nanotechnology. Initially, i-motifs were thought to be unstable at physiological pH, which precluded substantial biological investigation. However, recent advances have shown that this is not always the case and that i-motif stability is highly dependent on factors such as sequence and environmental conditions. In this review, we discuss some of the different i-motif structures investigated to date and the factors which affect their topology, stability and dynamics. Ligands which can interact with these structures are necessary to aid investigations into the potential biological functions of i-motif DNA and herein we review the existing i-motif ligands and give our perspective on the associated challenges with targeting this structure.
Collapse
Affiliation(s)
- Henry A Day
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Pavlos Pavlou
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
10
|
Shen WY, Liu QY, Wei L, Yu XQ, Li R, Yang WL, Xie XY, Liu WQ, Huang Y, Qin Y. CTCF-mediated reduction of vigilin binding affects the binding of HP1α to the satellite 2 locus. FEBS Lett 2014; 588:1549-55. [DOI: 10.1016/j.febslet.2014.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/28/2022]
|
11
|
Elgin SCR, Reuter G. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb Perspect Biol 2013; 5:a017780. [PMID: 23906716 DOI: 10.1101/cshperspect.a017780] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Position-effect variegation (PEV) results when a gene normally in euchromatin is juxtaposed with heterochromatin by rearrangement or transposition. When heterochromatin packaging spreads across the heterochromatin/euchromatin border, it causes transcriptional silencing in a stochastic pattern. PEV is intensely studied in Drosophila using the white gene. Screens for dominant mutations that suppress or enhance white variegation have identified many conserved epigenetic factors, including the histone H3 lysine 9 methyltransferase SU(VAR)3-9. Heterochromatin protein HP1a binds H3K9me2/3 and interacts with SU(VAR)3-9, creating a core memory system. Genetic, molecular, and biochemical analysis of PEV in Drosophila has contributed many key findings concerning establishment and maintenance of heterochromatin with concomitant gene silencing.
Collapse
Affiliation(s)
- Sarah C R Elgin
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | | |
Collapse
|
12
|
Batlle M, Marsellach FX, Huertas D, Azorín F. Drosophila vigilin, DDP1, localises to the cytoplasm and associates to the rough endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:46-55. [DOI: 10.1016/j.bbagrm.2010.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/06/2010] [Accepted: 10/19/2010] [Indexed: 01/22/2023]
|
13
|
Wen WL, Stevenson AL, Wang CY, Chen HJ, Kearsey SE, Norbury CJ, Watt S, Bähler J, Wang SW. Vgl1, a multi-KH domain protein, is a novel component of the fission yeast stress granules required for cell survival under thermal stress. Nucleic Acids Res 2010; 38:6555-66. [PMID: 20547592 PMCID: PMC2965253 DOI: 10.1093/nar/gkq555] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multiple KH-domain proteins, collectively known as vigilins, are evolutionarily highly conserved proteins that are present in eukaryotic organisms from yeast to metazoa. Proposed roles for vigilins include chromosome segregation, messenger RNA (mRNA) metabolism, translation and tRNA transport. As a step toward understanding its biological function, we have identified the fission yeast vigilin, designated Vgl1, and have investigated its role in cellular response to environmental stress. Unlike its counterpart in Saccharomyces cerevisiae, we found no indication that Vgl1 is required for the maintenance of cell ploidy in Schizosaccharomyces pombe. Instead, Vgl1 is required for cell survival under thermal stress, and vgl1Δ mutants lose their viability more rapidly than wild-type cells when incubated at high temperature. As for Scp160 in S. cerevisiae, Vgl1 bound polysomes accumulated at endoplasmic reticulum (ER) but in a microtubule-independent manner. Under thermal stress, Vgl1 is rapidly relocalized from the ER to cytoplasmic foci that are distinct from P-bodies but contain stress granule markers such as poly(A)-binding protein and components of the translation initiation factor eIF3. Together, these observations demonstrated in S. pombe the presence of RNA granules with similar composition as mammalian stress granules and identified Vgl1 as a novel component that required for cell survival under thermal stress.
Collapse
Affiliation(s)
- Wei-Ling Wen
- Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhou J, Wang Q, Chen LL, Carmichael GG. On the mechanism of induction of heterochromatin by the RNA-binding protein vigilin. RNA (NEW YORK, N.Y.) 2008; 14:1773-1781. [PMID: 18648073 PMCID: PMC2525967 DOI: 10.1261/rna.1036308] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 05/22/2008] [Indexed: 05/26/2023]
Abstract
Vigilin is an RNA-binding protein localized to both the cytoplasm and the nucleus and has been previously implicated in heterochromatin formation and chromosome segregation. We demonstrate here that the C-terminal domain of human vigilin binds to the histone methyltransferase SUV39H1 in vivo. This association is independent of RNA and maps to a site on vigilin that is not involved in its interaction with several other known protein partners. Cells that express high levels of the C-terminal fragment display chromosome segregation defects, and ChIP analyses show changes in the status of pericentric beta-satellite and rDNA chromatin from heterochromatic to more euchromatic form. Finally, a cell line with inducible expression of the vigilin C-terminal fragment displays inducible alterations in beta-satellite chromatin. These and other results lead us to present a new model for vigilin-mediated, RNA-induced gene silencing.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut 06030-3301, USA
| | | | | | | |
Collapse
|
15
|
Przewloka MR, Zhang W, Costa P, Archambault V, D'Avino PP, Lilley KS, Laue ED, McAinsh AD, Glover DM. Molecular analysis of core kinetochore composition and assembly in Drosophila melanogaster. PLoS One 2007; 2:e478. [PMID: 17534428 PMCID: PMC1868777 DOI: 10.1371/journal.pone.0000478] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 05/01/2007] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Kinetochores are large multiprotein complexes indispensable for proper chromosome segregation. Although Drosophila is a classical model organism for studies of chromosome segregation, little is known about the organization of its kinetochores. METHODOLOGY/PRINCIPAL FINDINGS We employed bioinformatics, proteomics and cell biology methods to identify and analyze the interaction network of Drosophila kinetochore proteins. We have shown that three Drosophila proteins highly diverged from human and yeast Ndc80, Nuf2 and Mis12 are indeed their orthologues. Affinity purification of these proteins from cultured Drosophila cells identified a further five interacting proteins with weak similarity to subunits of the SPC105/KNL-1, MIND/MIS12 and NDC80 kinetochore complexes together with known kinetochore associated proteins such as dynein/dynactin, spindle assembly checkpoint components and heterochromatin proteins. All eight kinetochore complex proteins were present at the kinetochore during mitosis and MIND/MIS12 complex proteins were also centromeric during interphase. Their down-regulation led to dramatic defects in chromosome congression/segregation frequently accompanied by mitotic spindle elongation. The systematic depletion of each individual protein allowed us to establish dependency relationships for their recruitment onto the kinetochore. This revealed the sequential recruitment of individual members of first, the MIND/MIS12 and then, NDC80 complex. CONCLUSIONS/SIGNIFICANCE The Drosophila MIND/MIS12 and NDC80 complexes and the Spc105 protein, like their counterparts from other eukaryotic species, are essential for chromosome congression and segregation, but are highly diverged in sequence. Hierarchical dependence relationships of individual proteins regulate the assembly of Drosophila kinetochore complexes in a manner similar, but not identical, to other organisms.
Collapse
Affiliation(s)
- Marcin R. Przewloka
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Wei Zhang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Patricia Costa
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Vincent Archambault
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Pier Paolo D'Avino
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D. McAinsh
- Chromosome Segregation Laboratory, Marie Curie Research Institute, The Chart, Oxted, United Kingdom
| | - David M. Glover
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Brykailo MA, Corbett AH, Fridovich-Keil JL. Functional overlap between conserved and diverged KH domains in Saccharomyces cerevisiae SCP160. Nucleic Acids Res 2007; 35:1108-18. [PMID: 17264125 PMCID: PMC1994781 DOI: 10.1093/nar/gkl1160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 12/20/2006] [Accepted: 12/20/2006] [Indexed: 01/26/2023] Open
Abstract
The K homology (KH) domain is a remarkably versatile and highly conserved RNA-binding motif. Classical KH domains include a characteristic pattern of hydrophobic residues, a Gly-X-X-Gly (GXXG) segment, and a variable loop. KH domains typically occur in clusters, with some retaining their GXXG sequence (conserved), while others do not (diverged). As a first step towards addressing whether GXXG is essential for KH-domain function, we explored the roles of conserved and diverged KH domains in Scp160p, a multiple-KH-domain-containing protein in Saccharomyces cerevisiae. We specifically wanted to know (1) whether diverged KH domains were essential for Scp160p function, and (2) whether diverged KH domains could functionally replace conserved KH domains. To address these questions, we deleted and/or interchanged conserved and diverged KH domains of Scp160p and expressed the mutated alleles in yeast. Our results demonstrated that the answer to each question was yes. Both conserved and diverged KH domains are essential for Scp160p function, and diverged KH domains can function in place of conserved KH domains. These findings challenge the prevailing notions about the requisite features of a KH domain and raise the possibility that there may be more functional KH domains in the proteome than previously appreciated.
Collapse
Affiliation(s)
- Melissa A. Brykailo
- Graduate Program in Genetics and Molecular Biology, Emory University Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 and Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H. Corbett
- Graduate Program in Genetics and Molecular Biology, Emory University Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 and Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Judith L. Fridovich-Keil
- Graduate Program in Genetics and Molecular Biology, Emory University Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 and Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Mao C, Flavin KG, Wang S, Dodson R, Ross J, Shapiro DJ. Analysis of RNA-protein interactions by a microplate-based fluorescence anisotropy assay. Anal Biochem 2006; 350:222-32. [PMID: 16448619 DOI: 10.1016/j.ab.2005.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 11/29/2005] [Accepted: 12/05/2005] [Indexed: 11/29/2022]
Abstract
Quantitative studies of RNA-protein interactions are quite cumbersome using traditional methods. We developed a rapid microplate-based fluorescence anisotropy (FA)/fluorescence polarization assay that works well, even with RNA probes >90 nucleotides long. We analyzed binding of RNA targets by vigilin/DDP1/SCP160p and by c-myc coding region instability determinant (CRD) binding protein, CRD-BP. Vigilin is essential for cell viability and functions in heterochromatin formation and mRNA decay. The CRD-BP stabilizes c-myc mRNA. Vigilin bound to a vitellogenin mRNA 3'-UTR probe with a two to three-fold lower affinity than to a Drosophila dodecasatellite ssDNA binding site and bound to the c-myc CRD with a two- to three-fold lower affinity than to the vitellogenin mRNA 3'-UTR. Competition between vigilin and CRD-BP for binding to the CRD may therefore play a role in regulating c-myc mRNA degradation. We analyzed suitability of the microplate-based FA assay for high-throughput screening for small-molecule regulators of RNA-protein interactions. The assay exhibits high reproducibility and precision and works well in 384-well plates and in 5 microl to 20 microl samples. To demonstrate the potential of this assay for screening libraries of small molecules to identify novel regulators of RNA-protein interactions, we identified neomycin and H33342 as inhibitors of binding of vigilin to the vitellogenin mRNA 3'-UTR.
Collapse
Affiliation(s)
- Chengjian Mao
- Department of Biochemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801-3602, USA
| | | | | | | | | | | |
Collapse
|
18
|
Gamberi C, Johnstone O, Lasko P. Drosophila RNA Binding Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:43-139. [PMID: 16487790 DOI: 10.1016/s0074-7696(06)48002-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA binding proteins are fundamental mediators of gene expression. The use of the model organism Drosophila has helped to elucidate both tissue-specific and ubiquitous functions of RNA binding proteins. These proteins mediate all aspects of the mRNA lifespan including splicing, nucleocytoplasmic transport, localization, stability, translation, and degradation. Most RNA binding proteins fall into several major groups, based on their RNA binding domains. As well, experimental data have revealed several proteins that can bind RNA but lack canonical RNA binding motifs, suggesting the presence of as yet uncharacterized RNA binding domains. Here, we present the major classes of Drosophila RNA binding proteins with special focus on those with functional information.
Collapse
Affiliation(s)
- Chiara Gamberi
- Department of Biology, McGill University, Montreal, Québec, Canada
| | | | | |
Collapse
|
19
|
Wang Q, Zhang Z, Blackwell K, Carmichael GG. Vigilins bind to promiscuously A-to-I-edited RNAs and are involved in the formation of heterochromatin. Curr Biol 2005; 15:384-91. [PMID: 15723802 DOI: 10.1016/j.cub.2005.01.046] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 11/27/2004] [Accepted: 11/30/2004] [Indexed: 01/09/2023]
Abstract
The fate of double-stranded RNA (dsRNA) in the cell depends on both its length and location . The expression of dsRNA in the nucleus leads to several distinct consequences. First, the promiscuous deamination of adenosines to inosines by dsRNA-specific adenosine deaminase (ADAR) can lead to the nuclear retention of edited transcripts . Second, dsRNAs might induce heterochromatic gene silencing through an RNAi-related mechanism . Is RNA editing also connected to heterochromatin? We report that members of the conserved Vigilin class of proteins have a high affinity for inosine-containing RNAs. In agreement with other work , we find that these proteins localize to heterochromatin and that mutation or depletion of the Drosophila Vigilin, DDP1, leads to altered nuclear morphology and defects in heterochromatin and chromosome segregation. Furthermore, nuclear Vigilin is found in complexes containing not only the editing enzyme ADAR1 but also RNA helicase A and Ku86/70. In the presence of RNA, the Vigilin complex recruits the DNA-PKcs enzyme, which appears to phosphorylate a discrete set of targets, some or all of which are known to participate in chromatin silencing. These results are consistent with a mechanistic link between components of the DNA-repair machinery and RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030 USA
| | | | | | | |
Collapse
|
20
|
Huertas D, Cortés A, Casanova J, Azorín F. Drosophila DDP1, a multi-KH-domain protein, contributes to centromeric silencing and chromosome segregation. Curr Biol 2005; 14:1611-20. [PMID: 15380062 DOI: 10.1016/j.cub.2004.09.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 07/22/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND The Drosophila melanogaster DDP1 protein is a highly evolutionarily conserved protein that is characterised by the presence of 15 tandemly organized KH domains, known for mediating high-affinity binding to single-stranded nucleic acids (RNA and ssDNA). Consistent with its molecular organization, DDP1 binds single-stranded nucleic acids with high affinity, in vitro. It was shown earlier that, in polytene chromosomes, DDP1 is found in association with chromocenter heterochromatin, suggesting a contribution to heterochromatin formation and/or maintenance. RESULTS In this paper, the actual contribution of DDP1 to the structural and functional properties of heterochromatin was determined through the analysis of the phenotypes associated with the hypomorphic ddp1(15.1) mutation that was generated through the mobilization of a P element inserted in the second intron of ddp1. ddp1(15.1) behaves as a dominant suppressor of PEV in the variegated rearrangement In(1)w(m4) as well as in several transgenic lines showing variegated expression of a hsp70-white(+) transgene. In polytene chromosomes from homozygous ddp1(15.1) larvae, histone H3-K9 methylation and HP1 deposition at chromocentre heterochromatin are strongly reduced. Our results also show that, when the maternal contribution of DDP1 is reduced, chromosome condensation and segregation are compromised. Moreover, in a ddp1(15.1) mutant background, transmission of the nonessential Dp1187 minichromosome is reduced. CONCLUSIONS We conclude that DDP1 contributes to the structural and functional properties of heterochromatin. These results are discussed in the context of current models for the formation and maintenance of heterochromatin; in these models, HP1 deposition depends on H3-K9 methylation that, in turn, requires the contribution of the RNAi pathway.
Collapse
Affiliation(s)
- Dori Huertas
- Departament de Biologia Molecular i Cellular, Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Josep Samitier, 1-5, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
21
|
Vollbrandt T, Willkomm D, Stossberg H, Kruse C. Vigilin is co-localized with 80S ribosomes and binds to the ribosomal complex through its C-terminal domain. Int J Biochem Cell Biol 2004; 36:1306-18. [PMID: 15109574 DOI: 10.1016/j.biocel.2003.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Revised: 11/14/2003] [Accepted: 11/14/2003] [Indexed: 12/30/2022]
Abstract
The biological relevance of vigilin a ubiquitous multi (KH)-domain protein is still barely understood. Investigations over the last years, however, provided evidence for a possible involvement of vigilin in the nucleo-cytoplasmic transport of tRNA and in the subsequent association of tRNA with ribosomes. We therefore investigated the potential association of vigilin with 80S ribosomes. Immunostaining, gel filtration, westernblot analysis of polyribosomes and high salt treatment of 80S ribosomes isolated from fresh human placenta were applied to analyze the possible association of vigilin with ribosomes. Overlay assays were performed to examine whether vigilin is capable of binding to ribosomal proteins. Immunostaining of HEp-2 cells, gel filtration of a cytoplasmic extract of HEp-2 cells and westernblot analysis of isolated 80S ribosomes clearly demonstrate that vigilin is bond to the ribosomal complex. Vigilin detaches from the ribosomal complex under the influence of high salt concentrations. We present data that radioactively labeled human vigilin interacts directly with a subset of ribosomal proteins from both subunits. We were able to narrow down the putative binding region to the C-terminal domain by using vigilin mutant constructs. Therefore our results provide strong evidence that vigilin is bond to the ribosomal complex and underline the hypothesis that vigilin might be involved in the link between tRNA-export and the channeled tRNA-cycle on ribosomes.
Collapse
Affiliation(s)
- Tillman Vollbrandt
- Department of Medical Molecular Biology, University of Lübeck, Ratzeburger Allee 160, Lübeck D-23538, Germany
| | | | | | | |
Collapse
|
22
|
Musunuru K, Darnell RB. Determination and augmentation of RNA sequence specificity of the Nova K-homology domains. Nucleic Acids Res 2004; 32:4852-61. [PMID: 15367696 PMCID: PMC519101 DOI: 10.1093/nar/gkh799] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Nova onconeural antigens are implicated in the pathogenesis of paraneoplastic opsoclonus-myoclonus-ataxia (POMA). The Nova antigens are neuron-specific RNA-binding proteins harboring three repeats of the K-homology (KH) motif; they have been implicated in the regulation of alternative splicing of a host of genes involved in inhibitory synaptic transmission. Although the third Nova KH domain (KH3) has been extensively characterized using biochemical and crystallographic techniques, the roles of the KH1 and KH2 domains remain unclear. Furthermore, the specificity determinants that distinguish the Nova KH domains from those of the closely related hnRNP E and hnRNP K proteins are undefined. We demonstrate through the use of RNA selection and biochemical analysis that the sequence specificity of the Nova KH1/2 domains is similar to that of Nova KH3. We also show that the mutagenesis of a Nova KH domain to render it similar to the KH domains of the heterogeneous nuclear ribonucleoprotein E (hnRNP E) and hnRNP K allow it to recognize longer RNA sequences. These data yield important insights into KH domain function and suggest a strategy by which to engineer KH domains with novel sequence preferences.
Collapse
Affiliation(s)
- Kiran Musunuru
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
23
|
Li AM, Vargas CA, Brykailo MA, Openo KK, Corbett AH, Fridovich-Keil JL. Both KH and non-KH domain sequences are required for polyribosome association of Scp160p in yeast. Nucleic Acids Res 2004; 32:4768-75. [PMID: 15356294 PMCID: PMC519109 DOI: 10.1093/nar/gkh812] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 07/21/2004] [Accepted: 08/19/2004] [Indexed: 11/12/2022] Open
Abstract
Scp160p is a 160 kDa RNA-binding protein in yeast previously demonstrated to associate with specific messages as an mRNP component of both soluble and membrane-bound polyribosomes. Although the vast majority of Scp160p sequence consists of 14 closely spaced KH domains, comparative sequence analyses also demonstrate the presence of a potential nuclear localization sequence located between KH domains 3 and 4, as well as a 110 amino acid non-KH N-terminal region that includes a potential nuclear export sequence (NES). As a step toward investigating the structure/function relationships of Scp160p, we generated two truncated alleles, FLAG.SCP160DeltaN1, encoding a protein product that lacks the first 74 amino acids, including the potential NES, and FLAG.SCP160DeltaC1, encoding a protein product that lacks the final KH domain (KH14). We report here that the N-truncated protein, expressed as a green fluorescent protein fusion in yeast, remains cytoplasmic, with no apparent nuclear accumulation. Biochemical studies further demonstrate that although the N-truncated protein remains competent to form RNPs, the C-truncated protein does not. Furthermore, polyribosome association is severely compromised for both truncated proteins. Perhaps most important, both truncated alleles appear only marginally functional in vivo, as demonstrated by the inability of each to complement scp160/eap1 synthetic lethality in a tester strain. Together, these data challenge the notion that Scp160p normally shuttles between the nucleus and cytoplasm, and further implicate polyribosome association as an essential component of Scp160p function in vivo. Finally, these data underscore the vital roles of both KH and non-KH domain sequences in Scp160p.
Collapse
Affiliation(s)
- Ai-min Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Mutation of the multi-KH domain protein DPP1, which has single-stranded nucleic acid binding activity, suppresses heterochromatin-mediated silencing in Drosophila; it also disrupts the modification of histone H3 at lysine 9, and association of heterochromatin protein 1 on the heterochromatic regions, suggesting a role for DDP1 in heterochromatin formation.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, Tucker Hall, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
25
|
Goolsby KM, Shapiro DJ. RNAi-mediated depletion of the 15 KH domain protein, vigilin, induces death of dividing and non-dividing human cells but does not initially inhibit protein synthesis. Nucleic Acids Res 2003; 31:5644-53. [PMID: 14500828 PMCID: PMC206468 DOI: 10.1093/nar/gkg768] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vigilin/Scp160p/DDP1 is a ubiquitous and highly conserved protein containing 15 related, but non-identical, K-homology (KH) nucleic acid binding domains. While its precise function remains unknown, proposed roles for vigilin include chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. To probe sites of vigilin action in vertebrate cells, we performed nucleic acid binding and RNA interference studies. Consistent with a potential role in chromosome partitioning, human vigilin exhibits a higher affinity for Drosophila dodecasatellite single-stranded DNA than for vitellogenin mRNA 3'-UTR. Direct observation and flow cytometry in non-mitotic, serum-starved, HeLa cells showed that RNAi-mediated vigilin knockdown is rapidly lethal, indicating an essential function for vigilin distinct from its proposed role in chromosome partitioning. Pulse labeling experiments revealed that rates of protein synthesis and degradation are unaffected by the several fold reduction in vigilin levels early in siRNA knockdown indicating that vigilin is not a global regulator of translation. These data show that vigilin is an essential protein in human cells, support the view that vigilin's most essential functions are neither chromosome partitioning nor control of translation, and are consistent with vigilin playing a critical role in cytoplasmic mRNA metabolism.
Collapse
Affiliation(s)
- Kathryn M Goolsby
- Department of Biochemistry, 600 S. Mathews Avenue, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
26
|
Mendelsohn BA, Li AM, Vargas CA, Riehman K, Watson A, Fridovich-Keil JL. Genetic and biochemical interactions between SCP160 and EAP1 in yeast. Nucleic Acids Res 2003; 31:5838-47. [PMID: 14530432 PMCID: PMC219487 DOI: 10.1093/nar/gkg810] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 09/05/2003] [Accepted: 09/05/2003] [Indexed: 12/25/2022] Open
Abstract
Scp160p is a multiple KH-domain RNA-binding protein in yeast known to associate with polyribosomes as an mRNP component, although its biological role remains unclear. As a genetic approach to examine Scp160p function, we applied an ethyl methanesulfonate (EMS) screen for loci synthetically lethal with scp160 loss, and identified a single candidate gene, EAP1, whose protein product functions in translation as an eIF4E-binding protein, with additional uncharacterized spindle pole body functions. To reconfirm scp160/eap1 synthetic lethality, we constructed a strain null for both genes, supported by an SCP160 maintenance plasmid. We used this strain to establish a quantitative assay for both Scp160p and Eap1p functions in vivo, and applied this assay to demonstrate that Y109A EAP1, a previously described allele of EAP1 that cannot bind eIF4E, is markedly impaired with regard to its SCP160-related activity. In addition, we explored the possibility of physical interaction between Eap1p and Scp160p, and discovered that Eap1p associates with Scp160p-containing complexes in an RNA-dependent manner. Finally, we probed the impact of EAP1 loss on Scp160p, and vice versa, and found that loss of each gene resulted in a significant change in either the complex associations or subcellular distribution of the other protein. These results clearly support the hypothesis that Scp160p plays a role in translation, demonstrate that the interaction of SCP160 and EAP1 is biologically significant, and provide important tools for future studies of the in vivo functions of both genes.
Collapse
Affiliation(s)
- Bryce A Mendelsohn
- Department of Biology, Emory College, Emory University School of Medicine, Room 325.2 Whitehead Building, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
27
|
Li AM, Watson A, Fridovich-Keil JL. Scp160p associates with specific mRNAs in yeast. Nucleic Acids Res 2003; 31:1830-7. [PMID: 12654998 PMCID: PMC152800 DOI: 10.1093/nar/gkg284] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2003] [Accepted: 02/04/2003] [Indexed: 11/12/2022] Open
Abstract
Scp160p is a multiple KH-domain RNA-binding protein in yeast that has been demonstrated previously to associate with both soluble and membrane-bound polyribosomes as an mRNP component. One key question that has remained unanswered, however, is whether the mRNAs in these mRNP complexes are random or specific. We have addressed this question using microarray analyses of RNAs released from affinity isolated Scp160p-containing complexes, compared with total RNA controls from the same lysates. Our results, confirmed by quantitative RT-PCR analysis, clearly demonstrate that Scp160p associates with specific rather than with random messages, and that among the enriched targets are DHH1, YOR338W, BIK1, YOL155C and NAM8. Furthermore, loss of Scp160p resulted in a significant change in both the abundance and distribution between soluble and membrane-associated fractions for at least one of these messages (YOR338W), and in a subtle yet significant shift from soluble polyribosomes to soluble mRNPs for at least two of these target messages (DHH1 and YOR338W). Together, these data not only identify specific mRNA targets associated with Scp160p in vivo, they demonstrate that the association of Scp160p with these messages is biologically relevant.
Collapse
Affiliation(s)
- Ai-Min Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
28
|
Affiliation(s)
- George Simos
- Biochemie-Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
29
|
Dodson RE, Shapiro DJ. Regulation of pathways of mRNA destabilization and stabilization. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:129-64. [PMID: 12206451 DOI: 10.1016/s0079-6603(02)72069-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The level of an mRNA in the cytoplasm represents a balance between the rate at which the mRNA precursor is synthesized in the nucleus and the rates of nuclear RNA processing and export and cytoplasmic mRNA degradation. Although most studies of gene expression have focused on gene transcription and in the area of eukaryotic mRNA degradation, but to provide a short general discussion of the importance of mRNA degradation and its regulation and a brief overview of recent findings and present knowledge. The overview is followed by a more in-depth discussion of one of the several pathways for mRNA degradation. We concentrate on the pathway for regulated mRNA degradation mediated by mRNA-binding proteins and endonucleases that cleave within the body of mRNAs. As a potential example of this type of control, we focus on the regulated degradation of the egg yolk precursor protein vitellogenin on the mRNA-binding protein vigilin and the mRNA endonuclease polysomal ribonuclease 1 (PMR-1).
Collapse
Affiliation(s)
- Robin E Dodson
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | |
Collapse
|
30
|
Abstract
DNA repetitions may provoke heterochromatinization. We explore here a model in which multiple cis-acting sequences that display no silencing activity on their own (protosilencers) may cooperate to establish and maintain a heterochromatin domain efficiently. Protosilencers, first defined in budding yeast, have now been found in a wide range of genomes where they appear to stabilize and to extend the propagation of heterochromatin domains. Strikingly, isolated or moderately repeated protosilencers can also be found in promoters where they participate in transcriptional activation and have insulation functions. This suggests that the proper juxtaposition of a threshold number of protosilencers converts them from neutral or transactivating elements into ones that nucleate heterochromatin. Interactions might be transient or permanent, and are likely to occur over distances by looping. This model provides a conceptual framework for as varied phenomena as telomere-driven silencing in Drosophila, X inactivation in mammals, and rDNA silencing in S. cerevisiae. It may also account for the silencing that occurs when multiple copies of a transgene are inserted in tandem.
Collapse
|
31
|
Cornuel JF, Moraillon A, Guéron M. Participation of yeast inosine 5'-monophosphate dehydrogenase in an in vitro complex with a fragment of the C-rich telomeric strand. Biochimie 2002; 84:279-89. [PMID: 12106905 DOI: 10.1016/s0300-9084(02)01400-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As part of our investigation of the i-motif, an intercalated structure formed by C-rich nucleic acid sequences, we searched for proteins of Saccharomyces cerevisiae which could associate with a sequence of the C-rich telomeric strand, d((CCCACA)(3)CCC). A gel retardation assay of yeast protein extract, in conditions where the DNA fragment folds into an intramolecular i-motif, shows formation of one major retarded band. The retarding factor was further characterized by a differential affinity procedure using streptavidin beads coated (or not coated) with the biotin-labeled DNA fragment. Differentially bound proteins were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and identified by mass spectroscopy and Edman degradation as Imd2p, Imd3p and Imd4p. These highly similar (>95%) proteins are analogs of the two human NAD-dependent inosine 5'-monophosphate dehydrogenases (IMPDH) which occur as tetramers. The mass of the protein, as determined by gel exclusion chromatography, is about 250 kDa and is compatible with an IMPDH tetramer, but other compositions, involving non-IMPDH components, are not excluded. We note that the genes coding for Imd2p and Imd3p are located close to the telomere, and could therefore be subject to silencing by the telomere position effect.
Collapse
Affiliation(s)
- Jean François Cornuel
- Groupe de Biophysique de l'UMR 7643 du CNRS, Ecole Polytechnique, 91128, Palaiseau, France
| | | | | |
Collapse
|
32
|
Smith RK, Carroll PM, Allard JD, Simon MA. MASK, a large ankyrin repeat and KH domain-containing protein involved inDrosophilareceptor tyrosine kinase signaling. Development 2002; 129:71-82. [PMID: 11782402 DOI: 10.1242/dev.129.1.71] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The receptor tyrosine kinases Sevenless (SEV) and the Epidermal growth factor receptor (EGFR) are required for the proper development of the Drosophila eye. The protein tyrosine phosphatase Corkscrew (CSW) is a common component of many RTK signaling pathways, and is required for signaling downstream of SEV and EGFR. In order to identify additional components of these signaling pathways, mutations that enhanced the phenotype of a dominant negative form of Corkscrew were isolated. This genetic screen identified the novel signaling molecule MASK, a large protein that contains two blocks of ankyrin repeats as well as a KH domain. MASK genetically interacts with known components of these RTK signaling pathways. In the developing eye imaginal disc, loss of MASK function generates phenotypes similar to those generated by loss of other components of the SEV and EGFR pathways. These phenotypes include compromised photoreceptor differentiation, cell survival and proliferation. Although MASK is localized predominantly in the cellular cytoplasm, it is not absolutely required for MAPK activation or nuclear translocation. Based on our results, we propose that MASK is a novel mediator of RTK signaling, and may act either downstream of MAPK or transduce signaling through a parallel branch of the RTK pathway.
Collapse
Affiliation(s)
- Rachel K Smith
- Department of Biological Sciences, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020, USA
| | | | | | | |
Collapse
|
33
|
Worbs M, Bourenkov GP, Bartunik HD, Huber R, Wahl MC. An extended RNA binding surface through arrayed S1 and KH domains in transcription factor NusA. Mol Cell 2001; 7:1177-89. [PMID: 11430821 DOI: 10.1016/s1097-2765(01)00262-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The crystal structure of Thermotoga maritima NusA, a transcription factor involved in pausing, termination, and antitermination processes, reveals a four-domain, rod-shaped molecule. An N-terminal alpha/beta portion, a five-stranded beta-barrel (S1 domain), and two K-homology (KH) modules create a continuous spine of positive electrostatic potential, suitable for nonspecific mRNA attraction. Homology models suggest how, in addition, specific mRNA regulatory sequences can be recognized by the S1 and KH motifs. An arrangement of multiple S1 and KH domains mediated by highly conserved residues is seen, creating an extended RNA binding surface, a paradigm for other proteins with similar domain arrays. Structural and mutational analyses indicate that the motifs cooperate, modulating strength and specificity of RNA binding.
Collapse
Affiliation(s)
- M Worbs
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152, Martinsried, Germany
| | | | | | | | | |
Collapse
|
34
|
Frey S, Pool M, Seedorf M. Scp160p, an RNA-binding, polysome-associated protein, localizes to the endoplasmic reticulum of Saccharomyces cerevisiae in a microtubule-dependent manner. J Biol Chem 2001; 276:15905-12. [PMID: 11278502 DOI: 10.1074/jbc.m009430200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scp160p is an RNA-binding protein containing 14 tandemly repeated heterogenous nuclear ribonucleoprotein K-homology domains, which are implicated in RNA binding. Scp160p interacts with free and membrane-bound polysomes that are dependent upon the presence of mRNA. Despite its presence on cytosolic polysomes, Scp160p is predominantly localized to the endoplasmic reticulum (ER). Accumulation of Scp160p-ribosome complexes at the ER requires the function of microtubules but is independent of the actin cytoskeleton. We propose that the multi-K-homology-domain protein Scp160p functions as an RNA binding platform, interacting with polysomes that are transported to the ER.
Collapse
Affiliation(s)
- S Frey
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|