1
|
Boerner JL, Danielsen AJ, Lovejoy CA, Wang Z, Juneja SC, Faupel-Badger JM, Darce JR, Maihle NJ. Grb2 regulation of the actin-based cytoskeleton is required for ligand-independent EGF receptor-mediated oncogenesis. Oncogene 2003; 22:6679-89. [PMID: 14555981 DOI: 10.1038/sj.onc.1206830] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations within members of the EGF/ErbB receptor family frequently release the oncogenic potential of these receptors, resulting in the activation of downstream signaling events independent of ligand regulatory constraints. We previously have demonstrated that the signal transduction events originating from S3-v-ErbB, a ligand-independent, oncogenic EGF receptor mutant, are qualitatively distinct from the ligand-dependent mitogenic signaling pathways associated with the wild-type EGF receptor. Specifically, expression of S3-v-ErbB in primary fibroblasts results in anchorage-independent growth, increased invasive potential, and the formation of a transformation-specific phosphoprotein signaling complex, all in a Ras-independent manner. Here we demonstrate the transformation-specific interaction between two components of this complex: the adaptor protein Grb2 and the cytoskeletal regulatory protein caldesmon. This interaction is mediated via both the amino-terminal SH3 and central SH2 domains of Grb2, and the amino-terminal (myosin-binding) domain of caldesmon. Expression of a dominant-negative Grb2 deletion mutant, which lacks the carboxy-terminal SH3 domain, in fibroblasts expressing S3-v-ErbB results in a reduction in phosphoprotein complex formation, the loss of anchorage-independent growth, and a reduction in invasive potential. Together, these results demonstrate a Ras-independent role for Grb2 in modulating cytoskeletal function during ligand-independent EGF receptor-mediated transformation, and provide further support for the hypothesis that ligand-independent oncogenic signaling is qualitatively distinct from ligand-dependent mitogenic signaling by the EGF receptor.
Collapse
Affiliation(s)
- Julie L Boerner
- Tumor Biology Program, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MI 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Reiter JL, Maihle NJ. A 1.8 kb alternative transcript from the human epidermal growth factor receptor gene encodes a truncated form of the receptor. Nucleic Acids Res 1996; 24:4050-6. [PMID: 8918811 PMCID: PMC146204 DOI: 10.1093/nar/24.20.4050] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is encoded by the c-erbB1 proto-oncogene and plays an important role in the control of cell growth and differentiation. To study the potential growth regulatory role of soluble EGF receptors, we have isolated cDNA clones encoding a truncated, secreted form of the human EGFR. The 5' sequence of this cDNA is identical to the EGFR transcript encoding the full-length receptor through exon 10. The unique 3' sequence encodes two additional amino acid residues before encountering an in-frame stop codon, a poly(A) addition site and a poly(A)+ tail. Sequence comparison with genomic DNA sequences demonstrates that this alternative transcript arises by read-through of a splice donor site. As a result, this transcript encodes a portion of the extracellular ligand-binding domain, but lacks the transmembrane domain and the intracellular tyrosine kinase catalytic domain present in the EGFR. Conditioned medium from transfected fibroblast cells contains a 60 kDa protein that is specifically immunoprecipitated by an EGFR monoclonal antibody. These findings demonstrate that alternative processing of the human EGFR transcript produces a secreted product composed of only the extracellular ligand-binding domain.
Collapse
Affiliation(s)
- J L Reiter
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
3
|
Chang CM, Shu HK, Ravi L, Pelley RJ, Shu H, Kung HJ. A minor tyrosine phosphorylation site located within the CAIN domain plays a critical role in regulating tissue-specific transformation by erbB kinase. J Virol 1995; 69:1172-80. [PMID: 7815495 PMCID: PMC188690 DOI: 10.1128/jvi.69.2.1172-1180.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Avian c-erbB encodes a protein that is homologous to the human epidermal growth factor receptor. Truncation of the amino-terminal, ligand-binding domain of this receptor results in an oncogene product which is a potent inducing agent for erythroleukemias but not fibrosarcomas in chickens. Here we show that mutation of a single tyrosine residue, p5, in the carboxyl terminus of the erbB oncogene product allows it to become sarcomagenic in vivo and to transform fibroblasts in vitro. Mutations of other autophosphorylation sites do not generate comparable effects. The increased transforming activity of the p5 mutant is accompanied by an elevated level of mitogen-activated protein kinase phosphorylation. By analogy to the human epidermal growth factor receptor, p5 is a minor autophosphorylation site and is located in a domain known to be involved in regulating calcium influx and receptor internalization (CAIN domain). This area of the erbB product has been found to be repeatedly deleted in various sarcomagenic avian erythroblastosis virus isolates. We precisely deleted the CAIN domain and also made point mutations of the acidic residues within the CAIN domain. In both cases, fibroblast-transforming potential is activated. We interpret these data to mean that p5 and its surrounding region negatively regulate fibroblast-transforming and sarcomagenic potential. To our knowledge, this represents the first point mutation of an autophosphorylation site that activates erbB oncogenicity.
Collapse
Affiliation(s)
- C M Chang
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | | | | | | | |
Collapse
|
4
|
Activation of c-fos gene expression by a kinase-deficient epidermal growth factor receptor. Mol Cell Biol 1994. [PMID: 7935468 DOI: 10.1128/mcb.14.11.7527] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intrinsic tyrosine kinase activity of the epidermal growth factor receptor (EGFR) has been shown to be responsible for many of the pleiotropic intracellular effects resulting from ligand stimulation [W.S. Chen, C.S. Lazar, M. Poenie, R.Y. Tsien, G.N. Gill, and M.G. Rosenfeld, Nature (London) 328:820-823, 1987; A.M. Honegger, D. Szapary, A. Schmidt, R. Lyall, E. Van Obberghen, T.J. Dull, A. Ulrich, and J. Schlessinger, Mol. Cell. Biol. 7:4568-4571, 1987]. Recently, however, it has been shown that addition of ligand to cells expressing kinase-defective EGFR mutants can result in the phosphorylation of mitogen-activated protein kinase (R. Campos-González and J.R. Glenney, Jr., J. Biol. Chem. 267:14535-14538, 1992; E. Selva, D.L. Raden, and R.J. Davis, J. Biol. Chem. 268:2250-2254, 1993), as well as stimulation of DNA synthesis (K.J. Coker, J.V. Staros, and C.A. Guyer, Proc. Natl. Acad. Sci. USA 91:6967-6971, 1994). Moreover, mitogen-activated protein kinase has been shown to phosphorylate the transcription factor p62TCF in vitro, leading to enhanced ternary complex formation between p62TCF, p67SRF, and the c-fos serum response element (SRE) [H. Gille, A.D. Sharrocks, and P.E. Shaw, Nature (London) 358:414-417, 1992]. On the basis of these observations, we have investigated the possibility that the intrinsic tyrosine kinase activity of the EGFR may not be necessary for transcriptional activation mediated via p62TCF. Here, we demonstrate that a kinase-defective EGFR mutant can signal ligand-induced expression of c-fos protein and that a significant component of this induction appears to be mediated at the transcriptional level. Investigation of transcriptional activation mediated by the c-fos SRE shows that this response is impaired by mutations in the SRE which eliminate binding of p62(TCF). These data indicate that information inherent in the structure of the EGFR can be accessed by ligand stimulation independent of the receptor's catalytic kinase function.
Collapse
|
5
|
Eldredge ER, Korf GM, Christensen TA, Connolly DC, Getz MJ, Maihle NJ. Activation of c-fos gene expression by a kinase-deficient epidermal growth factor receptor. Mol Cell Biol 1994; 14:7527-34. [PMID: 7935468 PMCID: PMC359289 DOI: 10.1128/mcb.14.11.7527-7534.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The intrinsic tyrosine kinase activity of the epidermal growth factor receptor (EGFR) has been shown to be responsible for many of the pleiotropic intracellular effects resulting from ligand stimulation [W.S. Chen, C.S. Lazar, M. Poenie, R.Y. Tsien, G.N. Gill, and M.G. Rosenfeld, Nature (London) 328:820-823, 1987; A.M. Honegger, D. Szapary, A. Schmidt, R. Lyall, E. Van Obberghen, T.J. Dull, A. Ulrich, and J. Schlessinger, Mol. Cell. Biol. 7:4568-4571, 1987]. Recently, however, it has been shown that addition of ligand to cells expressing kinase-defective EGFR mutants can result in the phosphorylation of mitogen-activated protein kinase (R. Campos-González and J.R. Glenney, Jr., J. Biol. Chem. 267:14535-14538, 1992; E. Selva, D.L. Raden, and R.J. Davis, J. Biol. Chem. 268:2250-2254, 1993), as well as stimulation of DNA synthesis (K.J. Coker, J.V. Staros, and C.A. Guyer, Proc. Natl. Acad. Sci. USA 91:6967-6971, 1994). Moreover, mitogen-activated protein kinase has been shown to phosphorylate the transcription factor p62TCF in vitro, leading to enhanced ternary complex formation between p62TCF, p67SRF, and the c-fos serum response element (SRE) [H. Gille, A.D. Sharrocks, and P.E. Shaw, Nature (London) 358:414-417, 1992]. On the basis of these observations, we have investigated the possibility that the intrinsic tyrosine kinase activity of the EGFR may not be necessary for transcriptional activation mediated via p62TCF. Here, we demonstrate that a kinase-defective EGFR mutant can signal ligand-induced expression of c-fos protein and that a significant component of this induction appears to be mediated at the transcriptional level. Investigation of transcriptional activation mediated by the c-fos SRE shows that this response is impaired by mutations in the SRE which eliminate binding of p62(TCF). These data indicate that information inherent in the structure of the EGFR can be accessed by ligand stimulation independent of the receptor's catalytic kinase function.
Collapse
Affiliation(s)
- E R Eldredge
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | | | | | | | | | | |
Collapse
|
6
|
Differential modulation of plasminogen activator gene expression by oncogene-encoded protein tyrosine kinases. Mol Cell Biol 1993. [PMID: 7689154 DOI: 10.1128/mcb.13.9.5888] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA) gene transcription is increased > or = 50-fold in chicken embryo fibroblasts (CEF) following transformation by the protein tyrosine kinase pp60v-src. Protein phosphorylation appears to play a critical role in uPA gene expression in these cells; protein kinase C-activating phorbol esters cooperate with pp60v-src to synergistically increase uPA mRNA, whereas cyclic AMP (cAMP)-dependent protein kinase-activating agents (e.g., 8-bromo cAMP) repress uPA mRNA levels. To explore the relationship between transforming oncogenes and uPA gene expression, uPA mRNA levels were measured in CEF infected with selected avian retroviruses. We report that v-ras and the transforming protein tyrosine kinases v-src, v-yes, and v-ros all increase cellular uPA mRNAs. However, transformation with the protein tyrosine kinase encoded by v-erbB, or the nuclear proteins encoded by v-jun, v-ski, or v-myc, did not increase uPA mRNA detectably. Ras and all of the protein tyrosine kinases analyzed, including the v-erbB product, but none of the nuclear oncoproteins sensitized cells to phorbol ester induction of uPA gene expression. Thus, increased uPA gene expression is not simply a secondary consequence of cell transformation but, rather, is regulated or comodulated by only a subset of oncogene products. Analysis of cells expressing site-directed mutants of pp60v-src showed that the induction of the uPA gene is dependent on protein tyrosine kinase catalytic activity, myristylation, and plasma membrane localization. However, these properties together are not sufficient; an additional feature in the src homology 2 domain is also required. The major sites of serine phosphorylation, serines 12 and 17, and the autophosphorylation site, tyrosine 416, are not essential for uPA gene induction. However, the reduction of uPA mRNA in pp60v-src-transformed cells by 8-bromo cAMP is dependent on tyrosine 416.
Collapse
|
7
|
Bell SM, Connolly DC, Maihle NJ, Degen JL. Differential modulation of plasminogen activator gene expression by oncogene-encoded protein tyrosine kinases. Mol Cell Biol 1993; 13:5888-97. [PMID: 7689154 PMCID: PMC360337 DOI: 10.1128/mcb.13.9.5888-5897.1993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Urokinase-type plasminogen activator (uPA) gene transcription is increased > or = 50-fold in chicken embryo fibroblasts (CEF) following transformation by the protein tyrosine kinase pp60v-src. Protein phosphorylation appears to play a critical role in uPA gene expression in these cells; protein kinase C-activating phorbol esters cooperate with pp60v-src to synergistically increase uPA mRNA, whereas cyclic AMP (cAMP)-dependent protein kinase-activating agents (e.g., 8-bromo cAMP) repress uPA mRNA levels. To explore the relationship between transforming oncogenes and uPA gene expression, uPA mRNA levels were measured in CEF infected with selected avian retroviruses. We report that v-ras and the transforming protein tyrosine kinases v-src, v-yes, and v-ros all increase cellular uPA mRNAs. However, transformation with the protein tyrosine kinase encoded by v-erbB, or the nuclear proteins encoded by v-jun, v-ski, or v-myc, did not increase uPA mRNA detectably. Ras and all of the protein tyrosine kinases analyzed, including the v-erbB product, but none of the nuclear oncoproteins sensitized cells to phorbol ester induction of uPA gene expression. Thus, increased uPA gene expression is not simply a secondary consequence of cell transformation but, rather, is regulated or comodulated by only a subset of oncogene products. Analysis of cells expressing site-directed mutants of pp60v-src showed that the induction of the uPA gene is dependent on protein tyrosine kinase catalytic activity, myristylation, and plasma membrane localization. However, these properties together are not sufficient; an additional feature in the src homology 2 domain is also required. The major sites of serine phosphorylation, serines 12 and 17, and the autophosphorylation site, tyrosine 416, are not essential for uPA gene induction. However, the reduction of uPA mRNA in pp60v-src-transformed cells by 8-bromo cAMP is dependent on tyrosine 416.
Collapse
Affiliation(s)
- S M Bell
- Division of Basic Science Research, Children's Hospital Research Foundation, Cincinnati, Ohio 45229
| | | | | | | |
Collapse
|
8
|
Maihle NJ, Flickinger TW, Raines MA, Sanders ML, Kung HJ. Native avian c-erbB gene expresses a secreted protein product corresponding to the ligand-binding domain of the receptor. Proc Natl Acad Sci U S A 1991; 88:1825-9. [PMID: 1672045 PMCID: PMC51118 DOI: 10.1073/pnas.88.5.1825] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A primer-directed cDNA library was used to obtain cDNA clones corresponding to the 5' end (i.e., the ligand-binding domain) of the avian c-erbB gene. Bacterial c-erbB fusion proteins were synthesized and used to obtain polyclonal antisera specific for the ligand-binding domain of the avian receptor. These antisera and antisera specific for the carboxyl terminal domain of the chicken c-erbB gene product have been used to study the native protein products of the c-erbB locus in primary cell cultures by in vivo labeling and immunoprecipitation. Our studies reveal that three c-erbB gene products of Mr 300,000, Mr 170,000, and Mr 95,000 are synthesized in uninfected chicken embryo fibroblasts. Only the Mr 300,000 and Mr 170,000 species can be precipitated by using antisera specific for the cytoplasmic domain of the c-erbB product. The 95,000 species is not recognized by the antiserum directed against the carboxyl-terminal domain of c-erbB and is specifically released into the culture medium. Northern transfer studies reveal a lower molecular weight transcript of approximately 2.6 kilobases that selectively hybridizes to the ligand-binding domain of the avian c-erbB gene product but does not hybridize with probes specific for the cytoplasmic kinase domain of c-erbB. An additional cDNA clone corresponding to this transcript has been isolated, and its sequence suggests it may arise via alternative processing. Together, these data suggest that a truncated form of this growth factor receptor--i.e., a Mr 95,000 species--is synthesized from a low molecular weight c-erbB transcript that exclusively encodes the ligand-binding domain of the receptor. Secretion of truncated growth factor receptors has been reported recently in several systems, and our results are discussed in the light of these findings.
Collapse
Affiliation(s)
- N J Maihle
- Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, MN 55905
| | | | | | | | | |
Collapse
|
9
|
Tissue-specific transformation by epidermal growth factor receptor: a single point mutation within the ATP-binding pocket of the erbB product increases its intrinsic kinase activity and activates its sarcomagenic potential. Proc Natl Acad Sci U S A 1990; 87:9103-7. [PMID: 1979168 PMCID: PMC55112 DOI: 10.1073/pnas.87.23.9103] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Avian c-erbB is activated to a leukemia oncogene following truncation of its amino-terminal, ligand-binding domain by retroviral insertion. The insertionally activated transcripts encode protein products that have constitutive tyrosine kinase activity and that can induce erythro-leukemia but not sarcomas. We have found that a single point mutation within the ATP-binding pocket of the tyrosine kinase domain in this truncated molecule can increase the ability of this oncogene to induce anchorage-independent growth of fibroblasts in vitro and fibrosarcoma formation in vivo. Associated with this increased transforming potential is a corresponding increase in the kinase activity of the mutant erbB protein product. The mutation, which converts a valine to isoleucine at position 157 of the insertionally activated c-erbB product, is at a residue that is highly conserved within the protein kinase family. To our knowledge, this is the first demonstration of a point mutation in the ATP-binding pocket that activates a tyrosine kinase.
Collapse
|
10
|
Pelley RJ, Maihle NJ, Boerkoel C, Shu HK, Carter TH, Moscovici C, Kung HJ. Disease tropism of c-erbB: effects of carboxyl-terminal tyrosine and internal mutations on tissue-specific transformation. Proc Natl Acad Sci U S A 1989; 86:7164-8. [PMID: 2550929 PMCID: PMC298016 DOI: 10.1073/pnas.86.18.7164] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Avian leukosis virus induces erythroleukemia in chickens by proviral insertional mutation of the protooncogene c-erbB. The product of the insertionally activated c-erbB locus lacks the extracellular ligand-binding domain and is strictly leukemogenic. It has previously been demonstrated that the disease spectrum associated with aberrant c-erbB expression can be expanded by structural perturbation of the cytoplasmic domain of this protein. In this report, we use mutagenesis and retroviral vectors to identify specific mutations in the carboxyl-terminal domain of the insertionally activated c-erbB product that are sufficient to activate the sarcomagenic potential of this protein. Interestingly, a point mutation in the kinase domain appears to be sufficient for sarcomagenic activation. However, removal of the terminal tyrosine residue of the c-erbB product, implicated in modulating kinase activity, does not lead to a fully transforming phenotype. These studies suggest that there are multiple ways to activate the fibroblast-transforming potential of the insertionally activated c-erbB product. The conformation of this protein may play a more significant role in oncogenic activation than the phosphorylation status of the putative carboxyl-terminal autophosphorylation site.
Collapse
Affiliation(s)
- R J Pelley
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | | | | | | | |
Collapse
|
11
|
Snavely MD, Florer JB, Miller CG, Maguire ME. Magnesium transport in Salmonella typhimurium: expression of cloned genes for three distinct Mg2+ transport systems. J Bacteriol 1989; 171:4752-60. [PMID: 2548999 PMCID: PMC210276 DOI: 10.1128/jb.171.9.4752-4760.1989] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In Salmonella typhimurium, the corA, mgtA, and mgtB loci are involved in active transport of Mg2+ (S. P. Hmiel, M. D. Snavely, C. G. Miller, and M. E. Maguire, J. Bacteriol. 168:1444-1450, 1988; S. P. Hmiel, M. D. Snavely, J. B. Florer, M. E. Maguire, and C. G. Miller, J. Bacteriol. 171:4742-4751, 1989). In this study, the gene products coded for by the corA, mgtA, and mgtB genes were identified by using plasmid expression in Escherichia coli maxicells. Complementation was assessed by introducing plasmids into a Mg2+-dependent corA mgtA mgtB strain and determining the ability of the plasmid to restore growth on medium without a Mg2+ supplement. Complementing plasmids containing corA expressed a 42-kilodalton (kDa) protein. This protein was not expressed by plasmids containing insertions or deletions that eliminated complementation. A plasmid containing mgtA expressed 37- and 91-kDa gene products. Data obtained with subclones and insertions in this plasmid indicated that plasmids expressing only the 91-kDa polypeptide complemented; plasmids that did not express this protein did not complement regardless of whether they expressed the 37-kDa protein. Plasmids carrying mgtB expressed a single protein of 102 kDa whose presence or absence correlated with the ability of the plasmid to complement the Mg2+-dependent triple mutant. Fractionation of labeled maxicells demonstrated that the 42-kDa corA, the 91-kDa mgtA, and the 102-kDa mgtB gene products are all tightly associated with the membrane, a location consistent with involvement in a transport process. These data provide further support the for existence of three distinct systems for Mg2+ transport in S. typhimurium.
Collapse
Affiliation(s)
- M D Snavely
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | | | |
Collapse
|