1
|
Acchioni C, Sandini S, Acchioni M, Sgarbanti M. Co-Infections and Superinfections between HIV-1 and Other Human Viruses at the Cellular Level. Pathogens 2024; 13:349. [PMID: 38787201 PMCID: PMC11124504 DOI: 10.3390/pathogens13050349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Co-infection or superinfection of the host by two or more virus species is a common event, potentially leading to viral interference, viral synergy, or neutral interaction. The simultaneous presence of two or more viruses, even distantly related, within the same cell depends upon viral tropism, i.e., the entry of viruses via receptors present on the same cell type. Subsequently, productive infection depends on the ability of these viruses to replicate efficiently in the same cellular environment. HIV-1 initially targets CCR5-expressing tissue memory CD4+ T cells, and in the absence of early cART initiation, a co-receptor switch may occur, leading to the infection of naïve and memory CXCR4-expressing CD4+ T cells. HIV-1 infection of macrophages at the G1 stage of their cell cycle also occurs in vivo, broadening the possible occurrence of co-infections between HIV-1 and other viruses at the cellular level. Moreover, HIV-1-infected DCs can transfer the virus to CD4+ T cells via trans-infection. This review focuses on the description of reported co-infections within the same cell between HIV-1 and other human pathogenic, non-pathogenic, or low-pathogenic viruses, including HIV-2, HTLV, HSV, HHV-6/-7, GBV-C, Dengue, and Ebola viruses, also discussing the possible reciprocal interactions in terms of virus replication and virus pseudotyping.
Collapse
Affiliation(s)
| | | | | | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| |
Collapse
|
2
|
Espinar-Buitrago M, Muñoz-Fernández MA. New Approaches to Dendritic Cell-Based Therapeutic Vaccines Against HIV-1 Infection. Front Immunol 2022; 12:719664. [PMID: 35058917 PMCID: PMC8763680 DOI: 10.3389/fimmu.2021.719664] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Due to the success of combined antiretroviral therapy (cART) in recent years, the pathological outcome of Human Immunodeficiency Virus type 1 (HIV-1) infection has improved substantially, achieving undetectable viral loads in most cases. Nevertheless, the presence of a viral reservoir formed by latently infected cells results in patients having to maintain treatment for life. In the absence of effective eradication strategies against HIV-1, research efforts are focused on obtaining a cure. One of these approaches is the creation of therapeutic vaccines. In this sense, the most promising one up to now is based on the establishing of the immunological synapse between dendritic cells (DCs) and T lymphocytes (TL). DCs are one of the first cells of the immune system to encounter HIV-1 by acting as antigen presenting cells, bringing about the interaction between innate and adaptive immune responses mediated by TL. Furthermore, TL are the end effector, and their response capacity is essential in the adaptive elimination of cells infected by pathogens. In this review, we summarize the knowledge of the interaction between DCs with TL, as well as the characterization of the specific T-cell response against HIV-1 infection. The use of nanotechnology in the design and improvement of vaccines based on DCs has been researched and presented here with a special emphasis.
Collapse
Affiliation(s)
- Marisierra Espinar-Buitrago
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Ma Angeles Muñoz-Fernández
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Spanish Human Immunodeficiency Virus- Hospital Gregorio Marañón (HIV-HGM) BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
3
|
Tang Y, Woodward BO, Pastor L, George AM, Petrechko O, Nouvet FJ, Haas DW, Jiang G, Hildreth JEK. Endogenous Retroviral Envelope Syncytin Induces HIV-1 Spreading and Establishes HIV Reservoirs in Placenta. Cell Rep 2021; 30:4528-4539.e4. [PMID: 32234485 DOI: 10.1016/j.celrep.2020.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/16/2020] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
Radical cure of HIV-1 (HIV) is hampered by the establishment of HIV reservoirs and persistent infection in deep tissues despite suppressive antiretroviral therapy (ART). Here, we show that among HIV-positive women receiving suppressive ART, cells from placental tissues including trophoblasts contain HIV RNA and DNA. These viruses can be reactivated by latency reversal agents. We find that syncytin, the envelope glycoprotein of human endogenous retrovirus family W1 expressed on placental trophoblasts, triggers cell fusion with HIV-infected T cells. This results in cell-to-cell spread of HIV to placental trophoblasts. Such cell-to-cell spread of HIV is less sensitive to ART than free virus. Replication in syncytin-expressing cells can also produce syncytin-pseudotyped HIV, further expanding its ability to infect non-CD4 cells. These previously unrecognized mechanisms of HIV entry enable the virus to bypass receptor restriction to infect host barrier cells, thereby facilitating viral transmission and persistent infection in deep tissues.
Collapse
Affiliation(s)
- Yuyang Tang
- University of North Carolina at Chapel Hill, HIV Cure Center and Institute of Global Health & Infectious Diseases, Chapel Hill, NC 27599, USA; Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Beverly O Woodward
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Lorena Pastor
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Alvin M George
- Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Oksana Petrechko
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Franklin J Nouvet
- Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - David W Haas
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, TN 37240, USA; Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Guochun Jiang
- University of North Carolina at Chapel Hill, HIV Cure Center and Institute of Global Health & Infectious Diseases, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - James E K Hildreth
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA; Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208, USA.
| |
Collapse
|
4
|
Campos KR, Caterino-de-Araujo A. Provirus Mutations of Human T-Lymphotropic Virus 1 and 2 (HTLV-1 and HTLV-2) in HIV-1-Coinfected Individuals. mSphere 2020; 5:e00923-20. [PMID: 32999083 PMCID: PMC7529439 DOI: 10.1128/msphere.00923-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 12/15/2022] Open
Abstract
Provirus mutations of human T-lymphotropic virus 1 (HTLV-1), mostly the lack of the 5' long terminal repeat (LTR) genomic region, have been described and associated with severe adult T cell leukemia/lymphoma (ATLL), non-sense point mutations with low proviral load, and Western blotting indeterminate results. Until now, no information concerning provirus mutations of HTLV-2 and its consequences, as well as those of HTLV-1/2 in HIV-coinfected individuals, had been described. Therefore, we searched for these mutations in provirus samples of 44 HIV/HTLV-1- and 25 HIV/HTLV-2-coinfected individuals. Using protocols well established for amplification and sequencing of segments of the LTR, env, and tax regions, we searched for defective type 1 particles that retain LTRs and lack internal sequences and type 2 particles that lack the 5'LTR region. In addition, using as references the prototypes ATK (HTLV-1) and Mo (HTLV-2), we searched for point mutations in the LTR and synonyms and nonsynonymous mutations and non-sense mutations in env and tax regions. Defective HTLV-1 and HTLV-2 provirus type 1 or 2 was detected in 31.8% of HIV/HTLV-1- and 32.0% of HIV/HTLV-2-coinfected individuals. Synonymous and nonsynonymous mutations were identified mostly in HTLV-2 and associated with lower levels of specific antibodies. No non-sense mutations that resulted in premature termination of Env and Tax proteins were detected. On the contrary, mutation in the stop codon of Tax2a produced a long protein characteristic of the HTLV-2c subtype. The clinical significance of these mutations in coinfected individuals remains to be defined, but they confirmed the lower sensitivity of serological and molecular diagnostic tests in HIV/HTLV-1/2 coinfections.IMPORTANCE HTLV-1 and HTLV-2 are endemic to Brazil, and they have different effects in HIV/AIDS disease progression. HIV/HTLV-1 has been described as accelerating the progression to AIDS and death, while HIV/HTLV-2 slows the progression to AIDS. Provirus mutations of HTLV-1 were implicated in severe leukemia development and in problems in the diagnosis of HTLV-1; in contrast, provirus mutations of HTLV-2 had not been confirmed and associated with problems in HTLV-2 diagnosis or disease outcome. Nevertheless, data obtained here allowed us to recognize and understand the false-negative results in serologic and molecular tests applied for HTLV-1 and HTLV-2 diagnosis. Defective proviruses, as well as synonymous and nonsynonymous mutations, were associated with the diagnosis deficiencies. Additionally, since HIV-1 and HTLV-1 infect the same cells (CD4 positive), the production of HIV-1 pseudotypes with HTLV-1 envelope glycoprotein during HIV/HTLV-1 coinfection cannot be excluded. Defective provirus of HTLV-2 and Tax2c is speculated to influence progression to AIDS.
Collapse
Affiliation(s)
- Karoline Rodrigues Campos
- Laboratório de Pesquisa em HTLV, Centro de Imunologia, Instituto Adolfo Lutz, Coordenadoria de Controle de Doenças, Secretaria de Estado da Saúde, São Paulo, Brazil
| | - Adele Caterino-de-Araujo
- Laboratório de Pesquisa em HTLV, Centro de Imunologia, Instituto Adolfo Lutz, Coordenadoria de Controle de Doenças, Secretaria de Estado da Saúde, São Paulo, Brazil
| |
Collapse
|