1
|
Shi Z, Han S. Personalized statin therapy: Targeting metabolic processes to modulate the therapeutic and adverse effects of statins. Heliyon 2025; 11:e41629. [PMID: 39866414 PMCID: PMC11761934 DOI: 10.1016/j.heliyon.2025.e41629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Statins are widely used for treating lipid disorders and cardiovascular diseases. However, the therapeutic efficiency and adverse effects of statins vary among different patients, which numerous clinical and epidemiological studies have attributed to genetic polymorphisms in statin-metabolizing enzymes and transport proteins. The metabolic processes of statins are relatively complex, involving spontaneous or enzyme-catalyzed interconversion between more toxic lactone metabolites and active acid forms in the liver and bloodstream, influenced by multiple factors, including the expression levels of many metabolic enzymes and transporters. Addressing the variable statin therapeutic outcomes is a pressing clinical challenge. Transcription factors and epigenetic modifications regulate the metabolic enzymes and transporters involved in statin metabolism and disposition and, therefore, hold promise as 'personalized' targets for achieving optimized statin therapy. In this review, we explore the potential for customizing therapy by targeting the metabolism of statin medications. The biochemical bases of adverse reactions to statin drugs and their correlation with polymorphisms in metabolic enzymes and transporters are summarized. Next, we mainly focus on the regulatory roles of transcription factors and epigenetic modifications in regulating the gene expression of statin biochemical machinery. The recommendations for future therapies are finally proposed by targeting the central regulatory factors of statin metabolism.
Collapse
Affiliation(s)
- Zhuangqi Shi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| |
Collapse
|
2
|
Jeong JS, Noh Y, Cho SW, Hsieh CY, Cho Y, Shin JY, Kim H. Association of higher potency statin use with risk of osteoporosis and fractures in patients with stroke in a Korean nationwide cohort study. Sci Rep 2024; 14:30825. [PMID: 39730536 PMCID: PMC11680841 DOI: 10.1038/s41598-024-81628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024] Open
Abstract
This population-based cohort study aimed to evaluate the risk of osteoporosis and fractures associated with higher-potency statin use compared to lower-potency statin use in patients with stroke, using data from the Health Insurance and Review Assessment database of South Korea (2010-2019). Patients who received statin within 30 days after hospitalization for a new-onset stroke (n = 276,911) were divided into higher-potency (n = 212,215, 76.6%) or lower-potency (n = 64,696, 23.4%) statin initiation groups. The primary outcome was a composite of osteoporosis and osteoporotic fractures. Secondary outcomes were individual components of the primary outcome, including osteoporosis, vertebral fracture, hip fracture, and non-hip non-vertebral fracture. Cox proportional hazard models weighted by standardized morbidity ratios were used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs). The risk of the composite outcome (HR 0.95, 95% CI 0.93-0.97), osteoporosis (0.93, 0.90-0.96), vertebral fracture (0.95, 0.91-0.99), and hip fracture (0.89, 0.84-0.95) were significantly lower in higher-potency statin users, while the risk for non-hip non-vertebral fracture was not significant (0.98, 0.95-1.02). The use of higher-potency statins compared to lower-potency statins was associated with a lower risk of osteoporosis, vertebral fracture, and hip fracture in patients with stroke.
Collapse
Affiliation(s)
- Jin Sook Jeong
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
| | - Yunha Noh
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Cheng-Yang Hsieh
- Department of Neurology, Tainan Sin Lau Hospital, Tainan, Taiwan
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yongtai Cho
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea.
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea.
| | - Hoon Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea.
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
3
|
Orban E, Pap Z, Sipos RS, Fechete R. Assessment of bone tissue cytoarchitectonics by 2D 1H NMR relaxometry maps. J Biol Phys 2024; 50:255-269. [PMID: 38935192 PMCID: PMC11492200 DOI: 10.1007/s10867-024-09658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Bone is a complex tissue that fulfills the role of a resistance structure. This quality is most commonly assessed by bone densitometry, but bone strength may not only be related to bone mineral density but also to the preservation of bone cytoarchitectonics. The study included two groups of rats, ovariectomized and non-ovariectomized. Each group was divided into three batches: control, simvastatin-treated, and fenofibrate-treated. In the ovariectomized group, hypolipidemic treatment was instituted at 12 weeks post ovariectomy. One rat from each of the 6 batches was sacrificed 8 weeks after the start of treatment in the group. The experimental study was performed using a Bruker Minispec mq 20 spectrometer operating at a frequency of 20 MHz, subsequently also performed by 1H T2-T2 molecular exchange maps. The results were represented by T2-T2 molecular exchange maps that showed, comparatively, both pore size and their interconnectivity at the level of the femoral epiphysis, being able to evaluate both the effect of estrogen on bone tissue biology and the effect of the lipid-lowering medication, simvastatin, and fenofibrate, in both the presence and absence of estrogen. T2-T2 molecular exchange maps showed that the absence of estrogen results in an increase in bone tissue pore size and interconnectivity. In the presence of estrogen, lipid-lowering medication, both simvastatin and fenofibrate alter bone tissue cytoarchitectonics by reducing pore interconnectivity. In the absence of estrogen, fenofibrate improves bone tissue cytoarchitectonics, the T2-T2 molecular exchange map being similar to that of non-osteoporotic bone tissue.
Collapse
Affiliation(s)
- Emese Orban
- George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu Str., Targu Mures 540139, Romania
| | - Zsuzsanna Pap
- George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu Str., Targu Mures 540139, Romania.
| | - Remus Sebastian Sipos
- George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu Str., Targu Mures 540139, Romania
| | - Radu Fechete
- Technical University of Cluj-Napoca, 28 Memorandumului Str., Cluj-Napoca-Napoca, 400114, Romania
| |
Collapse
|
4
|
Sun X, Liu X, Wang C, Luo Y, Li X, Yan L, Wang Y, Wang K, Li Q. Advantages of statin usage in preventing fractures for men over 50 in the United States: National Health and Nutrition Examination Survey. PLoS One 2024; 19:e0313583. [PMID: 39585849 PMCID: PMC11588256 DOI: 10.1371/journal.pone.0313583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
OBJECTIVES The relationship between statin treatment and fracture risk is still controversial, especially in in patients with cardiovascular diseases (CVDs). We aim to determine whether statin therapy affects the occurrence of fractures in the general US population and in patients with CVDs. METHODS Epidemiological data of this cross-sectional study were extracted from the National Health and Nutrition Examination Survey (NHANES, 2001-2020, n = 9,893). Statins records and fracture information were obtained from the questionnaires. Weighted logistic regressions were performed to explore the associations between statin and the risk of fracture. RESULTS Statin use was found to be associated with reduced risk of fracture mainly in male individuals aged over 50 years old and taking medications for less than 3 years, after adjusted for confounders including supplements of calcium and vitamin D. The protective effects were only found in subjects taking atorvastatin and rosuvastatin. We found null mediation role of LDL-C and 25(OH)D in such effects. Statin was found to reduce fracture risk in patients with cardiovascular diseases (CVDs, OR: 0.4366, 95%CI: 0.2664 to 0.7154, P = 0.0014), and in patients without diabetes (OR: 0.3632, 95%CI: 0.1712 to 0.7704, P = 0.0091). CONCLUSIONS Statin showed advantages in reducing risk of fracture in male individuals aged over 50 years old and taking medications for less than 3 years. More research is needed to determine the impact of gender variations, medication duration, and diabetes.
Collapse
Affiliation(s)
- Xiaona Sun
- School of Mathematics and Statistics, Southwest University, Chongqing, China
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoxiao Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chenyi Wang
- Department of Urology Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yushuang Luo
- School of Mathematics and Statistics, Southwest University, Chongqing, China
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Xinyi Li
- School of Mathematics and Statistics, Southwest University, Chongqing, China
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Lijuan Yan
- Department of Urology Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yaling Wang
- Department of Nursing, Daping Hospital, Army Medical University, Chongqing, China
| | - Kaifa Wang
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Qiang Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Arabi SM, Chambari M, Bahrami LS, Jafari A, Bahari H, Reiner Ž, Sahebkar A. The Effect of Statin Therapy on Bone Metabolism Markers and Mineral Density: Aa GRADE-Assessed Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Adv Pharm Bull 2024; 14:591-603. [PMID: 39494267 PMCID: PMC11530883 DOI: 10.34172/apb.2024.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose Statin therapy is widely used for the management of dyslipidemia and the prevention of cardiovascular diseases (CVDs). However, there is a growing concern about its potential effects on bone metabolism markers and mineral density. The aim of this systematic review and meta-analysis was to investigate the effect of statin therapy on these parameters. Methods PubMed/MEDLINE, Scopus, and Clarivate Analytics Web of Science databases were searched from inception to August 2023, using MESH terms and keywords. Results After screening 2450 articles, 16 studies that met the inclusion criteria were included, of which 12 randomized controlled trials (RCTs) were used for meta-analysis. The findings showed that statin therapy significantly reduced bone-specific alkaline phosphatase (B-ALP) levels (WMD=-1.1 U/L; 95% CI -2.2 to -0.07; P=0.03; I2=0%,), and bone mineral density (BMD) at different sites (WMD=-0.06 g/cm2; 95% CI -0.08 to -0.04; P<0.001; I2=97.7%, P<0.001). However, this treatment did not have a significant effect on osteocalcin, serum C-terminal peptide of type I collagen (S-CTx), serum N-telopeptides of type I collagen (NTx) concentration, or overall fracture risk. Conclusion This systematic review and meta-analysis provide evidence that statin therapy is associated with a significant reduction in B-ALP levels and BMD at different sites of the skeleton. Further studies are needed to investigate the long-term effects of statin therapy on bone health and to identify the potential underlying mechanisms.
Collapse
Affiliation(s)
- Seyyed Mostafa Arabi
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mahla Chambari
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI university, 56000 Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Leila Sadat Bahrami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jafari
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
- Student Research Committee, Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Bahari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, Zagreb, Croatia
- Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Liang Y, Yuan X, Dai X, Zhang G, Li C, Yang H, Zhang T, Qin J. The effects of simvastatin on the bone microstructure and mechanics of ovariectomized mice: a micro-CT and micro-finite element analysis study. BMC Musculoskelet Disord 2024; 25:748. [PMID: 39294613 PMCID: PMC11409800 DOI: 10.1186/s12891-024-07860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Osteoporosis is a major health concern for postmenopausal women, and the effect of simvastatin (Sim) on bone metabolism is controversial. This study aimed to investigate the effect of simvastatin on the bone microstructure and bone mechanical properties in ovariectomized (OVX) mice. METHODS 24 female C57BL/6J mice (8-week-old) were randomly allocated into three groups including the OVX + Sim group, the OVX group and the control group. At 8 weeks after operation, the L4 vertebral bones were dissected completely for micro-Computed Tomography (micro-CT) scanning and micro-finite element analysis (µFEA). The differences between three groups were compared using ANOVA with a LSD correction, and the relationship between bone microstructure and mechanical properties was analyzed using linear regression. RESULTS Bone volume fraction, trabecular number, connectivity density and trabecular tissue mineral density in the OVX + Sim group were significantly higher than those in the OVX group (P < 0.05). For the mechanical properties detected via µFEA, the OVX + Sim group had lower total deformation, equivalent elastic strain and equivalent stress compared to the OVX group (P < 0.05). In the three groups, the mechanical parameters were significantly correlated with bone volume fraction and trabecular bone mineral density. CONCLUSIONS The findings suggested that simvastatin had a potential role in the treatment of osteoporosis. The results of this study could guide future research on simvastatin and support the development of simvastatin-based treatments to improve bone health.
Collapse
Affiliation(s)
- Yanbo Liang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an City, Shandong Province, 271000, China
| | - Xiaoqing Yuan
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an City, Shandong Province, 271000, China
- Chinese institutes for medical research, Capital Medical University, Beijing, 100050, China
| | - Xiaoxue Dai
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 271000, China
| | - Guohui Zhang
- Shandong First Medical University, Jinan, Shandong, 271000, China
| | - Changqin Li
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an City, Shandong Province, 271000, China
| | - Hui Yang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an City, Shandong Province, 271000, China
| | - Tingting Zhang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an City, Shandong Province, 271000, China
| | - Jian Qin
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an City, Shandong Province, 271000, China.
| |
Collapse
|
7
|
Chen YJ, Jia LH, Han TH, Zhao ZH, Yang J, Xiao JP, Yang HJ, Yang K. Osteoporosis treatment: current drugs and future developments. Front Pharmacol 2024; 15:1456796. [PMID: 39188952 PMCID: PMC11345277 DOI: 10.3389/fphar.2024.1456796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteoporosis is a common systemic metabolic disease characterized by a decrease in bone density and bone mass, destruction of bone tissue microstructure, and increased bone fragility leading to fracture susceptibility. Pharmacological treatment of osteoporosis is the focus of current research, and anti-osteoporosis drugs usually play a role in inhibiting bone resorption, promoting bone formation, and having a dual role. However, most of the drugs have the disadvantages of single target and high toxic and side effects. There are many types of traditional Chinese medicines (TCM), from a wide range of sources and mostly plants. Herbal plants have unique advantages in regulating the relationship between osteoporosis and the immune system, acupuncture therapy has significant therapeutic effects in combination with medicine for osteoporosis. The target cells and specific molecular mechanisms of TCM in preventing and treating osteoporosis have not been fully elucidated. At present, there is a lack of comprehensive understanding of the pathological mechanism of the disease. Therefore, a better understanding of the pathological signaling pathways and key molecules involved in the pathogenesis of osteoporosis is crucial for the design of therapeutic targets and drug development. In this paper, we review the development and current status of anti-osteoporosis drugs currently in clinical application and under development to provide relevant basis and reference for drug prevention and treatment of osteoporosis, with the aim of promoting pharmacological research and new drug development.
Collapse
Affiliation(s)
- Ya-jing Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Li-hua Jia
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, China
| | - Jun-ping Xiao
- Jiangxi Prozin Pharmaceutical Co., Ltd., Jiangxi, China
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
8
|
Patil P, Vankani A, Sawant K. Design, optimization and characterization of atorvastatin loaded chitosan-based polyelectrolyte complex nanoparticles based transdermal patch. Int J Biol Macromol 2024; 274:133219. [PMID: 38897514 DOI: 10.1016/j.ijbiomac.2024.133219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
AIM Atorvastatin (ATO) loaded chitosan-based polyelectrolyte complex nanoparticles (PECN) incorporated transdermal patch was developed to enhance its skin permeability and bioavailability. METHODOLOGY The ATO loaded PECN were prepared by ionic gelation method and optimized by Box-Behnken design. The optimized batches were evaluated for physicochemical characteristics, in vitro, ex vivo, cell line and stability studies. The optimized ATO-PECN were incorporated into transdermal patches by solvent evaporation method and evaluated for their physicochemical properties, ex vivo skin permeation, in vivo pharmacokinetics and stability study. RESULTS The optimized batch of ATO-PECN had average size of 219.2 ± 5.98 nm with 82.68 ± 2.63 % entrapment and 25.41 ± 3.29 mV zeta potential. ATO-PECN showed sustained drug release and higher skin permeation. The cell line study showed that ATO-PECN increased the cell permeability of ATO as compared to ATO suspension. ATO-PECN loaded transdermal patch showed higher skin permeation. The in vivo pharmacokinetic study revealed that the ATO-PECN transdermal patch showed significant (p < 0.05) increase in pharmacokinetic parameters as compared to marketed oral tablet, confirming enhancement in bioavailability of ATO. CONCLUSIONS The results of the present work concluded that the ATO-PECN loaded transdermal patch is a promising novel drug delivery system for poorly bioavailable drugs.
Collapse
Affiliation(s)
- Pravin Patil
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India
| | - Ankit Vankani
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India
| | - Krutika Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India.
| |
Collapse
|
9
|
Dong C, Chen BS, Wu CH, Chiu YM, Liao PL, Perng WT. Hydroxychloroquine and risk of osteoporosis in patients with rheumatoid arthritis: A population-based retrospective study of 6408 patients. Int J Rheum Dis 2024; 27:e15286. [PMID: 39154356 DOI: 10.1111/1756-185x.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
AIM Patients with rheumatoid arthritis (RA) are at a higher risk of osteoporotic fractures. Studies have shown that patients with Sjogren's syndrome (SS) and systemic lupus erythematosus (SLE) experienced an increase in bone mineral density (BMD) after receiving hydroxychloroquine (HCQ) treatment, indicating a potential protective effect against osteoporosis. Therefore, this study is to examine the relationship between HCQ usage and the risk of osteoporosis in patients diagnosed with RA. METHODS The retrospective cohort study used data from Taiwan's National Health Insurance Research Database (NHIRD) covering the period from January 2010 to December 2018, which included 14 050 newly diagnosed RA patients, subsequently divided into two groups: HCQ users and non-users. Propensity score matching (PSM) based on sex, age, urbanization, insured unit type, insured area, and comorbidities was conducted to match the groups. The primary outcome assessed was the evaluation of the risk of osteoporosis by employing a multivariable Cox proportional hazard regression model to calculate the adjusted hazard ratio (aHR). RESULTS After PSM, a total of 6408 RA patients were included in the analysis (3204 HCQ users and 3204 non-users). There was no significantly higher risk of osteoporosis in HCQ users compared with non-users, aHR = 0.99 (95% CI: 0.82-1.196). Additionally, different durations of HCQ usage demonstrated a neutral effect on the risk of osteoporosis [HCQ <90 days, aHR = 0.88 (95% CI: 0.585-1.324); HCQ 90-180 days, aHR = 0.941 (95% CI: 0.625-1.418); HCQ >180 days, aHR = 1.019 (95% CI: 0.832-1.249)]. CONCLUSIONS The study indicates that there is no significant association between the use of HCQ and the risk of osteoporosis in patients with RA.
Collapse
Affiliation(s)
- Chen Dong
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | - Chun Hsien Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Ming Chiu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Lun Liao
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wuu-Tsun Perng
- Department of Recreational Sport & Health Promotion, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
10
|
Aaseth JO, Finnes TE, Askim M, Alexander J. The Importance of Vitamin K and the Combination of Vitamins K and D for Calcium Metabolism and Bone Health: A Review. Nutrients 2024; 16:2420. [PMID: 39125301 PMCID: PMC11313760 DOI: 10.3390/nu16152420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The aim of the present review is to discuss the roles of vitamin K (phylloquinone or menaquinones) and vitamin K-dependent proteins, and the combined action of the vitamins K and D, for the maintenance of bone health. The most relevant vitamin K-dependent proteins in this respect are osteocalcin and matrix Gla-protein (MGP). When carboxylated, these proteins appear to have the ability to chelate and import calcium from the blood to the bone, thereby reducing the risk of osteoporosis. Carboxylated osteocalcin appears to contribute directly to bone quality and strength. An adequate vitamin K status is required for the carboxylation of MGP and osteocalcin. In addition, vitamin K acts on bone metabolism by other mechanisms, such as menaquinone 4 acting as a ligand for the nuclear steroid and xenobiotic receptor (SXR). In this narrative review, we examine the evidence for increased bone mineralization through the dietary adequacy of vitamin K. Summarizing the evidence for a synergistic effect of vitamin K and vitamin D3, we find that an adequate supply of vitamin K, on top of an optimal vitamin D status, seems to add to the benefit of maintaining bone health. More research related to synergism and the possible mechanisms of vitamins D3 and K interaction in bone health is needed.
Collapse
Affiliation(s)
- Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, P.O. Box 104, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, N-2418 Elverum, Norway
| | - Trine Elisabeth Finnes
- Department of Medicine, Innlandet Hospital Hamar, P.O. Box 4453, N-2326 Hamar, Norway;
- Department of Endocrinology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| | - Merete Askim
- Independent Researcher, Bromstadvegen 43, N-7045 Trondheim, Norway;
| | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 222 Skøyen, N-0213 Oslo, Norway;
| |
Collapse
|
11
|
Ren H, Mao K, Yuan X, Mu Y, Zhao S, Fan X, Zhu L, Ye Z, Lan J. AN698/40746067 suppresses bone marrow adiposity to ameliorate hyperlipidemia-induced osteoporosis through targeted inhibition of ENTR1. Biomed Pharmacother 2024; 176:116843. [PMID: 38810405 DOI: 10.1016/j.biopha.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
Hyperlipidemia-induced osteoporosis is marked by increased bone marrow adiposity, and treatment with statins for hyperlipidemia often leads to new-onset osteoporosis. Endosome-associated trafficking regulator 1 (ENTR1) has been found to interact with different proteins in pathophysiology, but its exact role in adipogenesis is not yet understood. This research aimed to explore the role of ENTR1 in adipogenesis and to discover a new small molecule that targets ENTR1 for evaluating its effectiveness in treating hyperlipidemia-induced osteoporosis. We found that ENTR1 expression increased during the adipogenesis of bone marrow mesenchymal cells (BMSCs). ENTR1 gain- and loss-of-function assays significantly enhanced lipid droplets formation. Mechanistically, ENTR1 binds peroxisome proliferator-activated receptor γ (PPARγ) and enhances its expression, thereby elevating adipogenic markers including C/EBPα and LDLR. Therapeutically, AN698/40746067 attenuated adipogenesis by targeting ENTR1 to suppress PPARγ. In vivo, AN698/40746067 reduced bone marrow adiposity and bone loss, as well as prevented lipogenesis-related obesity, inflammation, steatohepatitis, and abnormal serum lipid levels during hyperlipidemia. Together, these findings suggest that ENTR1 facilitates adipogenesis by PPARγ involved in BMSCs' differentiation, and targeted inhibition of ENTR1 by AN698/40746067 may offer a promising therapy for addressing lipogenesis-related challenges and alleviating osteoporosis following hyperlipidemia.
Collapse
Affiliation(s)
- Huiping Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Kai Mao
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xin Yuan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Yuqing Mu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Shuaiqi Zhao
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xin Fan
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, 261053 China
| | - Lina Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 999077, Hong Kong Special Administrative Region of China
| | - Jing Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China.
| |
Collapse
|
12
|
Zhu Y, Hu Y, Pan Y, Li M, Niu Y, Zhang T, Sun H, Zhou S, Liu M, Zhang Y, Wu C, Ma Y, Guo Y, Wang L. Fatty infiltration in the musculoskeletal system: pathological mechanisms and clinical implications. Front Endocrinol (Lausanne) 2024; 15:1406046. [PMID: 39006365 PMCID: PMC11241459 DOI: 10.3389/fendo.2024.1406046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Fatty infiltration denotes the anomalous accrual of adipocytes in non-adipose tissue, thereby generating toxic substances with the capacity to impede the ordinary physiological functions of various organs. With aging, the musculoskeletal system undergoes pronounced degenerative alterations, prompting heightened scrutiny regarding the contributory role of fatty infiltration in its pathophysiology. Several studies have demonstrated that fatty infiltration affects the normal metabolism of the musculoskeletal system, leading to substantial tissue damage. Nevertheless, a definitive and universally accepted generalization concerning the comprehensive effects of fatty infiltration on the musculoskeletal system remains elusive. As a result, this review summarizes the characteristics of different types of adipose tissue, the pathological mechanisms associated with fatty infiltration in bone, muscle, and the entirety of the musculoskeletal system, examines relevant clinical diseases, and explores potential therapeutic modalities. This review is intended to give researchers a better understanding of fatty infiltration and to contribute new ideas to the prevention and treatment of clinical musculoskeletal diseases.
Collapse
Affiliation(s)
- Yihua Zhu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Hu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Traditional Chinese Medicine (TCM) Nursing Intervention Laboratory of Chronic Disease Key Laboratory, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuanyuan Niu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tianchi Zhang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haitao Sun
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College of Nantong University, Wuxi, Jiangsu, China
| | - Shijie Zhou
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengmin Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yili Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chengjie Wu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng TCM Hospital, Yancheng, Jiangsu, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Chinese Medicine Centre (International Collaboration between Western Sydney University and Beijing University of Chinese Medicine), Western Sydney University, Sydney, Australia
| |
Collapse
|
13
|
Orban E, Pap Z, Fechete R, Sipos RS. Evaluation of the Influence of Hypolipidemic Medication on Albino Wistar Rats' Bone Tissue by NMR Diffusiometry. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:918. [PMID: 38929535 PMCID: PMC11205403 DOI: 10.3390/medicina60060918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Introduction: The ongoing concern of the medical profession regarding chronic medication is related to increasing patient adherence and compliance to treatment and reducing medication side effects. In this respect, drugs represented by fixed-dose combinations of active substances within the same tablet have emerged. Such a principle can be extrapolated by following the potential beneficial effects that a chronic medication can have on chronic pathologies affecting different systems. Materials and Methods: The study included 48 female Albino Wistar rats, aged 16-18 months, which were divided into two groups: ovariectomized and non-ovariectomized rats. One batch of 12 non-ovariectomized rats received no treatment, becoming a control batch (NOVX-M). The ovariectomized (OVX) group was divided into 3 batches of 12 rats each: no treatment, control (OVX-M), fenofibrate-treated (OVX-F) and statin-treated (OVX-S) rats. At 12 weeks after ovariectomy, a femoral fracture occurred in the right hind limb of all animals included in the experiment To reveal the changes, at intervals of 2, 4, 6 and 8 weeks post-fracture, the proximal part of the femur was evaluated by NMR diffusiometry, which allows random motion of proton molecules expressed by self-diffusion coefficients, D, thus allowing analysis of the size and complexity of microscopic order cavities within biological structures, such as pores inside bones. Results: The effects of hypolipidemic medication in the absence of estrogen were evidenced, proving the beneficial effect that fenofibrate can have in preserving healthy tissue exposed to osteoporotic risk during the menopausal period. The effects of lipid-lowering medication are also influenced by the duration of administration. Conclusions: Osteoporosis and heart disease are two chronic pathologies that affect mainly female population in the second half of life, and proving the dual therapeutic potential of lipid-lowering medication may also have positive effects by increasing adherence and compliance to treatment.
Collapse
Affiliation(s)
- Emese Orban
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu Str., 540142 Targu Mures, Romania;
| | - Zsuzsanna Pap
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu Str., 540142 Targu Mures, Romania;
| | - Radu Fechete
- Physics Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania;
| | - Remus Sebastian Sipos
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu Str., 540142 Targu Mures, Romania;
| |
Collapse
|
14
|
Rasmussen NH, Driessen JHM, Kvist AV, Souverein PC, van den Bergh J, Vestergaard P. Fracture patterns in adult onset type 1 diabetes and associated risk factors - A nationwide cohort study. Bone 2024; 179:116977. [PMID: 38006906 DOI: 10.1016/j.bone.2023.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVE This study aimed to determine the hazard ratios (HR) for various fracture sites and identify associated risk factors in a cohort of relatively healthy adult people with newly diagnosed type 1 diabetes (T1D). METHODS The study utilized data from the UK Clinical Practice Research Datalink GOLD (1987-2017). Participants included people aged 20 and above with a T1D diagnosis code (n = 3281) and a new prescription for insulin. Controls without diabetes were matched based on sex, year of birth, and practice. Cox regression analysis was conducted to estimate HRs for any fracture, major osteoporotic fractures (MOFs), and peripheral fractures (lower-arm and lower-leg) in people with T1D compared to controls. Risk factors for T1D were examined and included sex, age, diabetic complications, medication usage, Charlson comorbidity index (CCI), hypoglycemia, previous fractures, falls, and alcohol consumption. Furthermore, T1D was stratified by duration of disease and presence of microvascular complications. RESULTS The proportion of any fracture was higher in T1D (10.8 %) than controls (7.3). Fully adjusted HRs for any fracture (HR: 1.43, CI95%: 1.17-1.74), MOFs (HR: 1.46, CI95%: 1.04-2.05), and lower-leg fractures (HR: 1.37, CI95%: 1.01-1.85) were statistically significantly increased in people with T1D compared to controls. The primary risk factor across all fracture sites in T1D was a previous fracture. Additional risk factors at different sites included previous falls (HR: 1.64, CI95%: 1.17-2.31), antidepressant use (HR: 1.34, CI95%: 1.02-1.76), and anxiolytic use (HR: 1.54, CI95%: 1.08-2.29) for any fracture; being female (HR: 1.65, CI95%: 1.14-2.38) for MOFs; the presence of retinopathy (HR: 1.47, CI95%: 1.02-2.11) and previous falls (HR: 2.04, CI95%: 1.16-3.59) for lower-arm and lower-leg fractures, respectively. Lipid-lowering medication use decreased the risk of MOFs (HR: 0.66, CI95%: 0.44-0.99). Stratification of T1D by disease duration showed that the relative risk of any fracture in T1D did not increase with longer diabetes duration (0-4 years: HR: 1.52, CI95%: 1.23-1.87; 5-9 years: HR: 1.30, CI95%: 0.99-1.71; <10 years: HR: 1.07, CI95%: 0.74-1.55). Similar patterns were observed for other fracture sites. Moreover, the occurrence of microvascular complications in T1D was linked to a heightened risk of fractures in comparison to controls. However, when considering the T1D cohort independently, the association was not statistically significant. CONCLUSION In a cohort of relatively healthy and newly diagnosed people with T1D HRs for any fracture, MOFs, and lower-leg fractures compared to controls were increased. A previous fracture was the most consistent risk factor for a subsequent fracture, whereas retinopathy was the only diabetes related one. We postulate a potential initial fracture risk, succeeded by a subsequent risk reduction, which might potentially increase in later years due to the accumulation of complications and other factors.
Collapse
Affiliation(s)
| | - Johanna H M Driessen
- NUTRIM Research School, Maastricht University, Maastricht, the Netherlands; Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Annika Vestergaard Kvist
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, Odense, Denmark; University of Southern Denmark, Odense, Denmark; Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark; Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH-Zurich, Zurich, Switzerland
| | - Patrick C Souverein
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Joop van den Bergh
- School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Division of Rheumatology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Peter Vestergaard
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Denmark; Department of Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
15
|
Raggi P, Takyar FM, Gadiyaram V, Zhang C, Stillman AE, Davarpanah AH. Differential effect of atorvastatin and pravastatin on thoracic spine attenuation: A sub-analysis of a randomized clinical trial. Atherosclerosis 2024; 388:117425. [PMID: 38109819 DOI: 10.1016/j.atherosclerosis.2023.117425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Statins reduce cardiovascular events and may improve bone mineral density. METHODS We conducted a sub-analysis of a randomized clinical trial that investigated the differential effect of moderate vs intensive low-density lipoprotein cholesterol (LDL-C) lowering therapies on coronary artery calcium (CAC) scores, and used the acquired images to assess the change in radiological attenuation of selected thoracic vertebrae. Baseline and 12-month unenhanced chest CT scans were performed in 420 hyperlipidemic, postmenopausal women randomized to atorvastatin (ATV) 80 mg/day or pravastatin (PRV) 40 mg/day in the Beyond Endorsed Lipid Lowering with Electron Beam Tomography Scanning (BELLES) trial. Bone attenuation was measured in three contiguous thoracic vertebrae at baseline and 12 months. RESULTS There were no differences in baseline demographic and clinical characteristics between treatment arms. The median percent lowering (interquartile range) in LDL-C was significantly greater with ATV than PRV [-53 (-69 to 20)% vs -28 (-55 to 74)%, p < 0.001], although the CAC score change was similar [12 (-63 to 208)% vs 13 (-75 to 358)%; p = 0.44]. At follow-up, the median bone attenuation loss was significantly greater with PRV than with ATV [-2.6 (-27 to 11)% vs 0 (-11 to 25)%; p < 0.001]. The attenuation loss in the PRV group was comparable to that of a historical untreated general population sample. In the entire cohort, the changes in LDL-C and total cholesterol were inversely correlated with bone attenuation change (p < 0.01). In adjusted multivariable linear regression analyses, race and percent change in LDL-C were independent predictors of bone attenuation change. Age, body mass index, history of smoking, diabetes mellitus, hypertension, peripheral vascular disease, or hormone replacement therapy did not affect percent change in BMD. CONCLUSIONS These findings support the hypothesis that there is an interaction between bone and cardiometabolic health and that intensive lipid lowering has a beneficial effect on bone health.
Collapse
Affiliation(s)
- Paolo Raggi
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | - Farzin M Takyar
- Endocrine Research Center, Research Institute for Endocrine Sciences, Tehran, Iran
| | - Varuna Gadiyaram
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Chao Zhang
- Pediatric Biostatistics Core, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; General Dynamics Information Technology, Falls Church, VA, USA
| | - Arthur E Stillman
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Amir H Davarpanah
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
16
|
Zahedipour F, Hosseini SA, Reiner Ž, Tedeschi-Reiner E, Jamialahmadi T, Sahebkar A. Therapeutic Effects of Statins: Promising Drug for Topical and Transdermal Administration. Curr Med Chem 2024; 31:3149-3166. [PMID: 37157198 DOI: 10.2174/0929867330666230508141434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/10/2023]
Abstract
Statins are HMG-CoA reductase inhibitors and decrease plasma low-density lipoprotein cholesterol (LDL-C) levels. They are well tolerated, and because of their LDL-C-lowering effect, they are utilized to decrease the risk of atherosclerosis and cardiovascular disease. However, statins have pleiotropic effects, including immunomodulatory, anti-inflammatory, antioxidant, and anticancer. Currently, oral administration is the only Food and Drug Administration (FDA)-approved route of administration for statins. However, other administration routes have demonstrated promising results in different pre-clinical and clinical studies. For instance, statins also seem beneficial in dermatitis, psoriasis, vitiligo, hirsutism, uremic pruritus, and graft-versus-host disease. Topically applied statins have been studied to treat seborrhea, acne, rhinophyma, and rosacea. They also have beneficial effects in contact dermatitis and wound healing in animal studies, (HIV) infection, osseointegration, porokeratosis, and some ophthalmologic diseases. Topical and transdermal application of statins is a non-invasive drug administration method that has shown significant results in bypassing the first-pass metabolism in the liver, thereby reducing possible adverse effects. This study reviews the multifaceted molecular and cellular impacts of statins, their topical and transdermal application, novel delivery systems, such as nanosystems for topical and transdermal administration and the challenges concerning this approach.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyede Atefe Hosseini
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Željko Reiner
- University Hospital Center Zagreb, Department of Internal Medicine, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | | | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Ahn J, Lee S, Won S. Possible link between statin and iron deficiency anemia: A South Korean nationwide population-based cohort study. SCIENCE ADVANCES 2023; 9:eadg6194. [PMID: 37889968 PMCID: PMC10610901 DOI: 10.1126/sciadv.adg6194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
An extensive evaluation of disease occurrence after statin use based on a "hypothesis-free" approach remains scarce. To examine the effect of statin use on the potential risk of developing diseases, a propensity score-matched cohort study was executed using data from the National Sample Cohort in South Korea. A total of 7847 statin users and 39,235 nonstatin users were included in the final analysis. The period of statin use was defined as our main time-dependent exposure and was divided into three periods: current, recent, and past. The main outcomes were defined as new-onset diseases with ≥100 events based on the International Statistical Classification of Diseases, 10th Revision. We calculated the adjusted hazard ratios and 95% confidence intervals (CIs) using Cox regression. We found that statin use significantly increased the risk of developing iron deficiency anemia up to 5.04 times (95% CI, 2.11 to 12.03). Therefore, the iron levels of patients using statins should be monitored carefully.
Collapse
Affiliation(s)
- Juhee Ahn
- Department of Public Health Science, Seoul National University, Seoul, Republic of Korea
| | - Sanghun Lee
- Department of Bioconvergence Engineering, Dankook University, Gyeonggi-do, Republic of Korea
- NH Institute for Natural Product Research, Myungji Hospital, Ilsan, Republic of Korea
| | - Sungho Won
- Department of Public Health Science, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- RexSoft Inc, Seoul, Republic of Korea
| |
Collapse
|
18
|
Dayanandan AP, Cho WJ, Kang H, Bello AB, Kim BJ, Arai Y, Lee SH. Emerging nano-scale delivery systems for the treatment of osteoporosis. Biomater Res 2023; 27:68. [PMID: 37443121 DOI: 10.1186/s40824-023-00413-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023] Open
Abstract
Osteoporosis is a pathological condition characterized by an accelerated bone resorption rate, resulting in decreased bone density and increased susceptibility to fractures, particularly among the elderly population. While conventional treatments for osteoporosis have shown efficacy, they are associated with certain limitations, including limited drug bioavailability, non-specific administration, and the occurrence of adverse effects. In recent years, nanoparticle-based drug delivery systems have emerged as a promising approach for managing osteoporosis. Nanoparticles possess unique physicochemical properties, such as a small size, large surface area-to-volume ratio, and tunable surface characteristics, which enable them to overcome the limitations of conventional therapies. These nanoparticles offer several advantages, including enhanced drug stability, controlled release kinetics, targeted bone tissue delivery, and improved drug bioavailability. This comprehensive review aims to provide insights into the recent advancements in nanoparticle-based therapy for osteoporosis. It elucidates the various types of nanoparticles employed in this context, including silica, polymeric, solid lipid, and metallic nanoparticles, along with their specific processing techniques and inherent properties that render them suitable as potential drug carriers for osteoporosis treatment. Furthermore, this review discusses the challenges and future suggestions associated with the development and translation of nanoparticle drug delivery systems for clinical use. These challenges encompass issues such as scalability, safety assessment, and regulatory considerations. However, despite these challenges, the utilization of nanoparticle-based drug delivery systems holds immense promise in revolutionizing the field of osteoporosis management by enabling more effective and targeted therapies, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
| | - Woong Jin Cho
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyemin Kang
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | | | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
19
|
Zhang N, Guo L, Yu Y, Chen S, Gao L, Hou X, Tian F, Wu S. New-onset stroke on the risk of hip fracture: the Kailuan cohort study in China. BMC Public Health 2023; 23:925. [PMID: 37217860 DOI: 10.1186/s12889-023-15787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
PURPOSE Stroke is a documented risk factor for hip fracture(HF). However, no data is currently available on this issue in mainland China, we therefore assessed the risk of hip fracture after new-onset stroke using a cohort study. METHODS This study included 165,670 participants without a history of stroke at baseline from the Kailuan study. All participants were followed biennially until December 31, 2021. During follow-up, a total of 8,496 new-onset stroke cases were identified. For each case subject, four control subjects was randomly selected, matched for age (± 1 years) and sex. The final analysis comprised 42,455 pair-matched cases and controls. A multivariate Cox proportional hazard regression model was used to estimate the effect of new-onset stroke on the risk of hip fracture. RESULTS During an average follow-up of 8.87 (3.94) years, a total of 231 hip fracture cases occurred, 78 cases in the stroke group and 153 cases in the control group, with incidence rates of 1.12 and 0.50 per 1000 person-years, respectively. The cumulative incidence of the stroke group was higher than that of the controls (P < 0.01). The adjusted hazard ratio (95% confidence interval) of hip fractures in the stroke group was 2.35 (1.77 to 3.12) (P < 0.001) to controls. After stratifying by gender, age, and body mass index, the higher risk was revealed in female (HR 3.10, 95 CI: 2.18 to 6.14, P < 0.001), age < 60 years old (HR 4.12, 95% CI: 2.18 to 7.78, P < 0.001), and non-obesity (BMI<28 kg/m2) (HR 1.74, 95% CI:1.31 to 2.31, P < 0.001) subgroup. CONCLUSIONS Stroke significantly increases the risk of hip fracture, strategy for protecting stroke patients from falls and hip fractures should be emphasized in poststroke long-term management, particularly the female, age < 60 years old, and non-obese patients.
Collapse
Affiliation(s)
- Nan Zhang
- Department of orthopedics, Kailuan General Hospital, Tangshan, Hebei, China
| | - Lu Guo
- the School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yaohui Yu
- the School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei, China
| | - Lishu Gao
- Department of Endocrinology, Tangshan People's Hospital, Tangshan, Hebei, China
| | - Xiaoli Hou
- the School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Faming Tian
- the School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China.
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei, China.
| |
Collapse
|
20
|
Lv F, Cai X, Lin C, Yang W, Hu S, Ji L. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors and the Risk of Fracture: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Calcif Tissue Int 2023:10.1007/s00223-023-01085-0. [PMID: 37099141 DOI: 10.1007/s00223-023-01085-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/13/2023] [Indexed: 04/27/2023]
Abstract
Osteoporosis and hyperlipidemia are closely correlated and statins might be associated with a decreased risk of fracture. We aimed to investigate the association between proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) therapy and the risk of fracture. The PubMed, Cochrane library, and EMBASE databases were systematically searched from the inception dates to October 22, 2022. Randomized clinical trials (RCTs) that addressed to fracture events of participants using alirocumab, evolocumab, bococizumab or inclisiran, with a follow-up of ≥ 24 weeks were included. Meta-analyses were conducted to calculate the odds ratio (OR) with 95% confidence intervals (CIs) for major osteoporotic fracture, hip fracture, osteoporotic non-vertebral fracture, and total fracture. 30 trials assessing PCSK9i among 95, 911 adults were included. There were no significant associations between PCSK9i therapy and the risk of major osteoporotic fracture [OR 1.08 (95% Cl 0.87-1.34), p = 0.49], hip fracture [OR 1.05 (95% Cl 0.73-1.53), p = 0.79], osteoporotic non-vertebral fracture [OR 1.03 (95% Cl 0.80-1.32), p = 0.83], and total fracture [OR 1.03 (95% Cl 0.88-1.19), p = 0.74] over a period of 6-64 months. No significant associations were detected in any of the sensitivity analyses and subgroup analyses stratified by the type of PCSK9i, follow-up duration, age, sex, sample size, and patient profile. Pooled results of our meta-analysis showed that exposure to PCSK9i was not associated with reduced risks of fracture in the short term.
Collapse
Affiliation(s)
- Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| | - Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Suiyuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
21
|
Kautzky-Willer A, Leutner M, Harreiter J. Sex differences in type 2 diabetes. Diabetologia 2023; 66:986-1002. [PMID: 36897358 PMCID: PMC10163139 DOI: 10.1007/s00125-023-05891-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023]
Abstract
The prevalence of type 2 diabetes mellitus is increasing in both sexes, but men are usually diagnosed at a younger age and lower body fat mass than women. Worldwide, an estimated 17.7 million more men than women have diabetes mellitus. Women appear to bear a greater risk factor burden at the time of their type 2 diabetes diagnosis, especially obesity. Moreover, psychosocial stress might play a more prominent role in diabetes risk in women. Across their lifespan, women experience greater hormone fluctuations and body changes due to reproductive factors than men. Pregnancies can unmask pre-existing metabolic abnormalities, resulting in the diagnosis of gestational diabetes, which appears to be the most prominent risk factor for progression to type 2 diabetes in women. Additionally, menopause increases women's cardiometabolic risk profile. Due to the progressive rise in obesity, there is a global increase in women with pregestational type 2 diabetes, often with inadequate preconceptual care. There are differences between men and women regarding type 2 diabetes and other cardiovascular risk factors with respect to comorbidities, the manifestation of complications and the initiation of and adherence to therapy. Women with type 2 diabetes show greater relative risk of CVD and mortality than men. Moreover, young women with type 2 diabetes are currently less likely than men to receive the treatment and CVD risk reduction recommended by guidelines. Current medical recommendations do not provide information on sex-specific or gender-sensitive prevention strategies and management. Thus, more research on sex differences, including the underlying mechanisms, is necessary to increase the evidence in the future. Nonetheless, intensified efforts to screen for glucose metabolism disorders and other cardiovascular risk factors, as well as the early establishment of prophylactic measures and aggressive risk management strategies, are still required for both men and women at increased risk of type 2 diabetes. In this narrative review we aim to summarise sex-specific clinical features and differences between women and men with type 2 diabetes into risk factors, screening, diagnosis, complications and treatment.
Collapse
Affiliation(s)
- Alexandra Kautzky-Willer
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria.
- Gender Institute, Lapura Women's Health Resort, Gars am Kamp, Austria.
| | - Michael Leutner
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Jürgen Harreiter
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Manubolu VS, Mao S, Kinninger A, Dahal S, Ahmad K, Havistin R, Gao Y, Dailing C, Carr JJ, Roy SK, Budoff MJ. Association between coronary artery calcium and thoracic spine bone mineral density: Multiethnic Study of Atherosclerosis (MESA). Nutr Metab Cardiovasc Dis 2023; 33:532-540. [PMID: 36642601 PMCID: PMC9974807 DOI: 10.1016/j.numecd.2022.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Previously, osteoporosis and coronary artery disease were considered unrelated. However, beyond age, these two conditions appear to share common etiologies that are not yet fully understood. We examined the relationship between thoracic spine bone mineral density (BMD) and severity of coronary artery calcium (CAC) score. METHODS AND RESULTS MESA is a prospective cohort study of 6814 men and women between the ages of 45 and 84 years, without clinical cardiovascular disease. This study included participants who underwent non-contrast chest CT scans to determine CAC score and thoracic spine BMD. The thoracic spine BMD was categorized into osteoporosis (defined as T score: ≤ -2.5), osteopenia (T-score between: -2.5 and -1) and normal BMD (T-score ≥ -1). There were 3392 subjects who had CAC >0 at baseline. The prevalence of CAC >0 was 36% in normal BMD group, 49% in the osteopenia and 68% in osteoporosis group. After adjusting for risk factors of atherosclerosis, in multivariate regression models we found a significant association between CAC and osteoporosis (OR: 1.40, 95% CI 1.16-1.69, p value < 0.0004). Furthermore, we stratified our results by gender and found a statistically significant association in both men and women. CONCLUSION Results from this cross-sectional analysis of a large population based ethnically diverse cohort indicate a significant inverse relationship between thoracic BMD and CAC in both genders independent of other cardiovascular risk factors. Future studies need to explore the underlying pathophysiological mechanisms relating BMD and coronary artery calcification.
Collapse
Affiliation(s)
| | - Song Mao
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - April Kinninger
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Suraj Dahal
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Khadije Ahmad
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ruby Havistin
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yanlin Gao
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Chris Dailing
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - J Jeffrey Carr
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sion K Roy
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Matthew J Budoff
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
23
|
Yu SY, Li HL, Tse YK, Li X, Ren QW, Wu MZ, Wong PF, Tse HF, Lip GYH, Yiu KH. Pre-admission and In-Hospital Statin Use is Associated With Reduced Short-Term Mortality in Infective Endocarditis. Mayo Clin Proc 2023; 98:252-265. [PMID: 36114025 DOI: 10.1016/j.mayocp.2022.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/11/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate for potential protective effects of statin use among patients with infective endocarditis (IE) with consideration for underlying diseases and bacterial culture - variables which have prognostic implications and show considerable geographic variation yet are unappreciated in previous pharmacoepidemiological studies. PATIENTS AND METHODS Patients diagnosed with IE between January 1, 1996, and December 31, 2019, were identified. We estimated the effect on mortality of pre-admission statin use (≥90 cumulative days of use before index date) and in-hospital use (use beginning within 2 days of admission), compared with nonusers and discontinued users, respectively, through propensity score analytics. RESULTS Of 6700 IE patients (mean age, 58.0 years; 63.3% male [n=4251]), 776 patients had pre-admission statin use, with 626 continuing statin use following admission (in-hospital users). Pre-admission statin users had a 31% lower risk of 1-year mortality (HR, 0.69; 95% CI, 0.58 to 0.82) compared with nonusers. In-hospital users had a 48% lower risk of 1-year mortality (HR, 0.52; 95% CI, 0.34 to 0.78) compared with discontinued users. Subgroup analyses showed significant protective effects of statin use for patients with varying causative agents, underlying diseases, and with or without prosthetic valves. Results were consistent across different statins, and were dose-dependent. CONCLUSION In patients with IE, pre-admission and in-hospital use of statin, when compared with statin nonusers and discontinued users, respectively, were associated with a lower risk of 1-year mortality.
Collapse
Affiliation(s)
- Si-Yeung Yu
- Division of Cardiology, Department of Medicine, the University of Hong Kong Shenzhen Hospital, Shenzhen, China; Division of Cardiology, Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Hang-Long Li
- Division of Cardiology, Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Yi-Kei Tse
- Division of Cardiology, Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Xue Li
- Division of Cardiology, Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Qing-Wen Ren
- Division of Cardiology, Department of Medicine, the University of Hong Kong Shenzhen Hospital, Shenzhen, China; Division of Cardiology, Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Mei-Zhen Wu
- Division of Cardiology, Department of Medicine, the University of Hong Kong Shenzhen Hospital, Shenzhen, China; Division of Cardiology, Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Pui-Fai Wong
- Division of Cardiology, Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Hung-Fat Tse
- Division of Cardiology, Department of Medicine, the University of Hong Kong Shenzhen Hospital, Shenzhen, China; Division of Cardiology, Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Kai-Hang Yiu
- Division of Cardiology, Department of Medicine, the University of Hong Kong Shenzhen Hospital, Shenzhen, China; Division of Cardiology, Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|
24
|
Leutner M, Butylina M, Matzhold C, Klimek P, Cuhaj C, Bellach L, Baumgartner-Parzer S, Reiter B, Preindl K, Kautzky A, Stimpfl T, Thurner S, Pietschmann P, Fürnsinn C, Kautzky-Willer A. Simvastatin therapy in higher dosages deteriorates bone quality: Consistent evidence from population-wide patient data and interventional mouse studies. Biomed Pharmacother 2023; 158:114089. [PMID: 36538862 DOI: 10.1016/j.biopha.2022.114089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Combining mouse experiments with big data analysis of the Austrian population, we investigated the association between high-dose statin treatment and bone quality. METHODS The bone microarchitecture of the femur and vertebral body L4 was measured in male and ovariectomized female mice on a high-fat diet containing simvastatin (1.2 g/kg). A sex-specific matched big data analysis of Austrian health insurance claims using multiple logistic regression models was conducted (simvastatin 60-80 mg/day vs. controls; males: n = 138,666; females: n = 155,055). RESULTS High-dose simvastatin impaired bone quality in male and ovariectomized mice. In the trabecular femur, simvastatin reduced bone volume (µm3: ♂, 213 ± 15 vs. 131 ± 7, p < 0.0001; ♀, 66 ± 7 vs. 44 ± 5, p = 0.02) and trabecular number (1/mm: ♂, 1.88 ± 0.09 vs. 1.27 ± 0.06, p < 0.0001; ♀, 0.60 ± 0.05 vs. 0.43 ± 0.04, p = 0.01). In the cortical femur, bone volume (mm3: ♂, 1.44 ± 0.03 vs. 1.34 ± 0.03, p = 0.009; ♀, 1.33 ± 0.03 vs. 1.12 ± 0.03, p = 0.0002) and cortical thickness were impaired (µm: ♂, 211 ± 4 vs. 189 ± 4, p = 0.0004; ♀, 193 ± 3 vs. 169 ± 3, p < 0.0001). Similar impairments were found in vertebral body L4. Simvastatin-induced changes in weight or glucose metabolism were excluded as mediators of deteriorations in bone quality. Results from mice were supported by a matched cohort analysis showing an association between high-dose simvastatin and increased risk of osteoporosis in patients (♂, OR: 5.91, CI: 3.17-10.99, p < 0.001; ♀, OR: 4.16, CI: 2.92-5.92, p < 0.001). CONCLUSION High-dose simvastatin dramatically reduces bone quality in obese male and ovariectomized female mice, suggesting that direct drug action accounts for the association between high dosage and increased risk of osteoporosis as observed in comparable human cohorts. The underlying pathophysiological mechanisms behind this relationship are presently unknown and require further investigation.
Collapse
Affiliation(s)
- Michael Leutner
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Maria Butylina
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Caspar Matzhold
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, A-1090, Austria; Complexity Science Hub Vienna, Josefstaedter Straße 39, 1080 Vienna, Austria
| | - Peter Klimek
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, A-1090, Austria; Complexity Science Hub Vienna, Josefstaedter Straße 39, 1080 Vienna, Austria
| | - Carina Cuhaj
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Luise Bellach
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Birgit Reiter
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
| | - Karin Preindl
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Thomas Stimpfl
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Thurner
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, A-1090, Austria; Complexity Science Hub Vienna, Josefstaedter Straße 39, 1080 Vienna, Austria; Santa Fe Institute, Santa Fe, NM 85701, USA
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Clemens Fürnsinn
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Gender Institute, A-3571 Gars am Kamp, Austria.
| |
Collapse
|
25
|
Zhu M, Guo Q, Kang H, Peng R, Dong Y, Zhang Y, Wang S, Liu H, Zhao H, Dong Z, Song K, Xu S, Wang P, Chen L, Liu J, Li F. Inhibition of FAAH suppresses RANKL-induced osteoclastogenesis and attenuates ovariectomy-induced bone loss partially through repressing the IL17 pathway. FASEB J 2023; 37:e22690. [PMID: 36468880 DOI: 10.1096/fj.202200911r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Fatty amide hydrolase (FAAH) is a key degradation enzyme of the endocannabinoid system, mainly responsible for the hydrolysis of arachidonic acid ethanolamine (AEA). Previous investigations have shown that FAAH is involved in a series of biological processes, such as inflammation, immune regulation, and transmembrane signal transduction of neurons. Endogenous cannabinoids and cannabinoid receptors have been reported to participate in the regulation of bone homeostasis by regulating the differentiation of osteoblasts and osteoclasts. We hypothesized that FAAH may play an important role in osteoclastogenesis based on the above evidence. The present study found that the FAAH expression was increased at both mRNA and protein levels during RANKL-induced osteoclastogenesis. Pharmacological and genetic inhibition of FAAH in bone marrow-derived macrophages (BMMs) inhibited osteoclastogenesis, F-actin ring formation, bone resorption, and osteoclast-specific gene expression in vitro. Moreover, intragastric administration of the FAAH inhibitor PF-04457845(PF) ameliorated ovariectomy (OVX)-induced bone loss in mice. Further investigation revealed that nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways were inhibited by PF treatment and FAAH knockdown. RNAseq indicated that the IL17 pathway was blocked by PF, and administration of recombinant murine IL17 protein could partially restore osteoclastogenesis and activate NF-κB and MAPK pathways. To sum up, our findings demonstrate that targeting FAAH could be a promising candidate strategy for treating osteoclast-related diseases, especially osteoporosis.
Collapse
Affiliation(s)
- Meipeng Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renpeng Peng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yayun Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sibo Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijian Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kehan Song
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimeng Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengju Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangxi Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Hansen KE, Mortezavi M, Nagy E, Wang C, Connell CA, Radi Z, Litman HJ, Adami G, Rossini M. Fracture in clinical studies of tofacitinib in rheumatoid arthritis. Ther Adv Musculoskelet Dis 2022; 14:1759720X221142346. [PMID: 36601090 PMCID: PMC9806361 DOI: 10.1177/1759720x221142346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/14/2022] [Indexed: 12/28/2022] Open
Abstract
Background Preclinical data suggest that tofacitinib would protect bone health in patients with rheumatoid arthritis (RA). Objective To assess fracture risk in tofacitinib RA clinical trials. Design Post hoc analysis. Methods We analyzed pooled data of phase I/II/III and long-term extension studies ('P123LTE cohort'), pooled data of placebo-controlled portions of phase III studies (phase III placebo-controlled cohort), and data from ORAL Surveillance [phase IIIb/IV randomized, open-label trial evaluating tofacitinib 5/10 mg twice daily (BID) vs tumor necrosis factor inhibitor (TNFi) in patients ⩾ 50 years with ⩾ 1 additional cardiovascular risk factor]. Results In the phase III placebo-controlled cohort, incidence rates (IRs) [95% confidence interval (CI)] of fracture were 2.11 (1.09-3.68), 2.56 (1.23-4.71), and 4.43 (1.78-9.12) per 100 patient-years (PYs) for tofacitinib 5 mg BID, tofacitinib 10 mg BID, and placebo, respectively [tofacitinib 5 mg BID vs placebo: hazard ratio (HR) (95% CI) = 0.55(0.18-1.65); tofacitinib 10 mg BID vs placebo: HR (95% CI) = 0.72 (0.26-2.01)]. In P123LTE, IRs (95% CI) were 2.62 (2.29-2.99) and 2.26 (2.02-2.52) per 100 PY for average tofacitinib 5 and 10 mg BID, respectively. In ORAL Surveillance, IRs (95% CI) were 2.79 (2.34-3.30), 2.87 (2.40-3.40), and 2.27 (1.87-2.74) per 100 PY for tofacitinib 5 mg BID, tofacitinib 10 mg BID, and TNFi, respectively. In ORAL Surveillance, the risk of fracture was numerically higher than TNFi for tofacitinib 5 mg BID [HR (95% CI) = 1.23 (0.96-1.58)] and tofacitinib 10 mg BID [HR (95% CI) = 1.26 (0.97-1.62)]. In ORAL Surveillance, independent predictors of all and osteoporotic fractures with tofacitinib or TNFi included age ⩾ 65, female sex, history of fracture/osteoporosis, and baseline oral corticosteroid use. Conclusion This post hoc analysis showed numerically lower fracture risk with tofacitinib versus placebo and numerically greater risk versus TNFi. We did not identify any tofacitinib-specific predictors of fractures, and predictors of fracture were generally aligned with prior literature in the general population and patients with RA. Patients with fracture risk factors should be adequately monitored and treated. Clinical trial registration NCT00960440, NCT00847613, NCT00814307, NCT00856544, NCT00853385, NCT01039688, NCT02187055, NCT02831855, NCT00413699, NCT00147498, NCT00413660, NCT00550446, NCT00603512, NCT00687193, NCT00661661, NCT01164579, NCT00976599, NCT01059864, NCT01359150, NCT01262118, NCT01484561, NCT02281552, NCT02147587, NCT02092467.
Collapse
Affiliation(s)
- Karen E. Hansen
- Division of Rheumatology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | | | | | - Giovanni Adami
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Maurizio Rossini
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
27
|
Zhang Z, Deng C, Ma X, Wu Q, Zhou F, Liu X. The association between statin use and osteoarthritis-related outcomes: An updated systematic review and meta-analysis. Front Pharmacol 2022; 13:1003370. [PMID: 36506528 PMCID: PMC9729269 DOI: 10.3389/fphar.2022.1003370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: Findings among studies evaluating the effect of statin use and OA development in a 2020 meta-analysis of data from 11 observational studies of statin use and osteoarthritis (OA) revealed controversial results. We aimed to determine the associations between statin use and OA-related outcomes in an updated meta-analysis. Methods: The protocol was registered with PROSPERO (CRD42020163983). A systematic literature retrieval was performed in the online databases, including PubMed, Cochrane Library, Embase, Web of Science, and Scopus, from inception to 1 June 2022, for clinical studies that compared the effects of statin users vs. nonusers on OA-related outcomes risks. Systematic reviews and meta-analyses were performed to estimate the correlations between statin use and OA-related outcomes. Tendency analysis was also used to estimate dose-response effects. The risk of bias was evaluated with the Newcastle-Ottawa scale. Results: We included 23 studies involving more than 6,000,000 participants. Statin use was associated with increased OA risk (OR 1.099 [95%CI 1.002-1.206, p = 0.045]). Higher statin doses had higher OA risk (simvastatin equivalent daily of >40 mg). OA and related surgery risks were significantly reduced in statin users using antihypertensive drugs (AHDs). No significant differences were seen in other outcomes. Conclusion: This meta-analysis inferred that statin use might be associated with increased OA development, especially at higher doses. The present study highlights the importance of recognizing potential OA risk in the population with long-term and/or high-dose statin use, especially in older populations. In addition, AHDs are associated with lower OA risk and fewer surgeries in hypertensive statin users. Due to limitations of heterogeneity and confounders, more rigorous studies are needed to define the correlations between statin use and OA-related outcomes.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunbo Deng
- Department of Orthopedics, Central Hospital of Shenyang Medical College, Shenyang, China
| | - Xun Ma
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qijun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fenghua Zhou
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueyong Liu
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7:265. [PMID: 35918332 PMCID: PMC9344793 DOI: 10.1038/s41392-022-01125-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Collapse
Affiliation(s)
- Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suowen Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
29
|
Liu X, Li T, Wang F, Sun F, Hu J, Ye X, Wang D, Yang X. Controlling sustained statins release in multi-layered composite scaffolds for healing of osteoporotic bone defects. BIOMATERIALS ADVANCES 2022; 137:212838. [PMID: 35929268 DOI: 10.1016/j.bioadv.2022.212838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The risk of fragility fracture sharply increases due to the decreased bone mineral density and toughness in patients with osteoporosis (OP). The local use of bone tissue scaffolds with both mechanical stability and drug-delivery functionality is one of the key strategies for the efficient curing of OP. In this work, we reported a layer-by-layer constructing strategy to fabricate 3-D composite bone tissue scaffolds (eSTPS) by assembling β-tri‑calcium phosphate (β-TCP)/polycaprolactone (PCL) microchips and lovastatin-loaded nanofiber membranes (eLOV/PCL). The eSTPS scaffolds show a strong and suited compressive strength as well as long-term delivery of lovastatin. The in vitro tests indicate well biocompatibility and alkaline phosphatase activity of the scaffolds. The eSTPS scaffolds were implanted into the femur of OP modeled rabbits. After 12 weeks curing, the bone parameters are significantly improved, meanwhile ingrowth of new bone and vascular-like tissue were observed. These results suggest the eSTPS scaffolds to be a promising candidate for the local treatment of OP.
Collapse
Affiliation(s)
- Xilin Liu
- Department of Orthopaedic Surgery, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, Affiliated Hospital of University of Electronic Science and Technology, Chengdu 610072, China; Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Ting Li
- Department of Orthopaedic Surgery, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, Affiliated Hospital of University of Electronic Science and Technology, Chengdu 610072, China; Chengdu Medical College, Chengdu 610500, China
| | - Fei Wang
- Department of Orthopaedic Surgery, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, Affiliated Hospital of University of Electronic Science and Technology, Chengdu 610072, China
| | - Fanxi Sun
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jiang Hu
- Department of Orthopaedic Surgery, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, Affiliated Hospital of University of Electronic Science and Technology, Chengdu 610072, China
| | - Xiaojian Ye
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Dongsheng Wang
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Xiao Yang
- Department of Orthopaedic Surgery, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, Affiliated Hospital of University of Electronic Science and Technology, Chengdu 610072, China.
| |
Collapse
|
30
|
Xiong M, Xue Y, Zhu W, Deng A, Tan Z, Zhou G, Xiang N. Comparative efficacy and safety of statins for osteoporosis: a study protocol for a systematic review and network meta-analysis. BMJ Open 2022; 12:e054158. [PMID: 35580965 PMCID: PMC9115030 DOI: 10.1136/bmjopen-2021-054158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Osteoporosis (OP) is a prevalent skeletal disease with high mortality and morbidity, followed by acute and chronic back pain, severe spinal deformity and dysfunction. First-line drugs for OP work through antiresorptive or anabolic mechanisms. Although with good efficacy, these drugs still have certain limitations in clinical application due to delivery routes, medication cycles and cost issues. Nowadays, statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) appear to be potentially promising drugs for OP. Despite the controversy, previous studies have shown the efficacy of statins in treating OP. Other studies have further indicated that the therapeutic effect of OP in statin-treated patients is dose dependent. However, scientists have not yet reached a consensus on the use of statins for the treatment or which statin to choose first. This study aims to review the literature, ascertaining the relative efficacy and safety of statins for patients with OP using a Bayesian network meta-analysis. METHODS AND ANALYSIS We will systematically search the following databases: MEDLINE, EMBASE, Web of Science, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, Wanfang Database, China Science and Technology Journal Database, Chinese BioMedical Literature Database and preprint servers to include randomised controlled trials that compare different statins for treating OP. Primary outcomes are the incidence of overall fractures and bone mineral density changes. Secondary outcomes contain adverse effects and bone turnover markers. All items of this review will comply with the Cochrane Handbook, and the quality of evidence will be evaluated by Grading of Recommendations Assessment, Development and Evaluation. A traditional pairwise meta-analysis and the Bayesian network meta-analysis will be performed to compare the efficacy of different statins. ETHICS AND DISSEMINATION Ethical approval is not required since this is a protocol study for meta-analyses. Results will be submitted to a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42021242619. SEARCH DATES From database inception to February 2022.
Collapse
Affiliation(s)
- Mengxin Xiong
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yaojun Xue
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wei Zhu
- College of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Ali Deng
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhangkui Tan
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Guangwen Zhou
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Nan Xiang
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
31
|
Effect of PCSK9 Inhibitor on Blood Lipid Levels in Patients with High and Very-High CVD Risk: A Systematic Review and Meta-Analysis. Cardiol Res Pract 2022; 2022:8729003. [PMID: 35529059 PMCID: PMC9072011 DOI: 10.1155/2022/8729003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives We aimed to investigate the effects of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor on blood lipid levels in patients with high and very-high cardiovascular risk. Design 14 trials (n = 52,586 patients) comparing treatment with or without PCSK9 inhibitors were retrieved from PubMed and Embase updated to 1st Jun 2021. The data quality of included studies was assessed by two independent researchers using the Cochrane systematic review method. All-cause mortality, cardiovascular mortality, and changes in serum low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), apolipoprotein B (ApoB), lipoprotein (a) (LP (a)), non-high-density lipoprotein cholesterol (non-HDL-C), high-density lipoprotein cholesterol (HDL-C), and apolipoprotein A1 (ApoA1) from baseline were analyzed using Rev Man 5.1.0 software. Results Compared with treatments without PCSK9 inhibitor, addition of PCSK9 inhibitors (evolocumab and alirocumab) had obvious decreasing effects on the levels of LDL-C [MD = −46.86, 95% CI (−54.99 to −38.72), P < 0.00001], TC [MD = −31.92, 95% CI (−39.47 to −24.38), P < 0.00001], TG [MD = −8.13, 95% CI (−10.48 to −5.79), P < 0.00001], LP(a) [MD = −26.69, 95% CI (-27.93 to −25.44), P < 0.00001], non-HDL-C [MD = −42.86, 95% CI (−45.81 to −39.92), P < 0.00001], and ApoB [MD = −38.44, 95% CI (−42.23 to -34.65), P < 0.00001] in high CVD risk patients. Conversely, changes of HDL-C [MD = 6.27, CI (5.17 to 7.36), P < 0.00001] and ApoA1 [MD = 4.33, 95% CI (3.53 to 5.13), P < 0.00001] from baseline were significantly more in high cardiovascular disease risk patients who received PCSK9 inhibitors treatment. Conclusion Addition of PCSK9 inhibitors to standard therapy resulted in definite improvement in blood lipid levels compared with therapies that did not include them.
Collapse
|
32
|
Qiao M, Xu Z, Pei X, Liu Y, Wang J, Chen J, Zhu Z, Wan Q. Nano SIM@ZIF-8 modified injectable High-intensity biohydrogel with bidirectional regulation of osteogenesis and Anti-adipogenesis for bone repair. CHEMICAL ENGINEERING JOURNAL 2022; 434:134583. [DOI: 10.1016/j.cej.2022.134583] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Minichsdorfer C, Fuereder T, Leutner M, Singer CF, Kacerovsky-Strobl S, Egle D, Greil R, Balic M, Fitzal F, Pfeiler G, Frantal S, Bartsch R, Gnant M. Effect of concomitant statin treatment in postmenopausal patients with hormone receptor-positive early-stage breast cancer receiving adjuvant denosumab or placebo: a post hoc analysis of ABCSG-18. ESMO Open 2022; 7:100426. [PMID: 35334418 PMCID: PMC9058905 DOI: 10.1016/j.esmoop.2022.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background Statins are cholesterol-lowering drugs prescribed for the prevention and treatment of cardiovascular disease. Moreover, statins may possess anticancer properties and interact with receptor activator of nuclear factor κB ligand expression. We aimed at evaluating a hypothetical synergistic effect of statins with denosumab in early-stage breast cancer (BC) patients from the Austrian Breast and Colorectal Cancer Study Group (ABCSG) trial 18. Patients and methods ABCSG-18 (NCT00556374) is a prospective, randomized, double-blind, phase III study; postmenopausal patients with hormone receptor-positive BC receiving a nonsteroidal aromatase inhibitor were randomly assigned to denosumab or placebo. In this post hoc analysis, we investigated the effects of concomitant statin therapy on recurrence risk (RR) of BC, fracture risk and bone mineral density (BMD). Results In the study population (n = 3420), statin therapy (n = 824) was associated with worse disease-free survival (DFS) [hazard ratio (HR) 1.35, 95% confidence interval (CI) 1.04-1.75; P = 0.023]. While no significant effect of lipophilic statins (n = 710) on RR was observed (HR 1.30, 95% CI 0.99-1.72; P = 0.062), patients on hydrophilic statins (n = 87) had worse DFS compared with patients not receiving any statins (HR 2.00, 95% CI 1.09-3.66; P = 0.026). This finding was mainly driven by the effect of hydrophilic statins on DFS in the denosumab arm (HR 2.63, 95% CI 1.21-5.68; P = 0.014). However, this effect subsided after correction for confounders in the sensitivity analysis. No association between statin use and fracture risk or osteoporosis was observed. Conclusion According to this analysis, hydrophilic statins showed a detrimental effect on DFS in the main model, which was attenuated after correction for confounders. Our data need to be interpreted with caution due to their retrospective nature and the low number of patients receiving hydrophilic statins. Statin co-medication was initially associated with a worse DFS in hormone receptor-positive early-stage BC patients. This effect was mainly driven by patients on hydrophilic statins. However, this effect subsided after correction for confounders in the sensitivity analysis. No association between statin use and fracture risk or osteoporosis was observed.
Collapse
Affiliation(s)
- C Minichsdorfer
- Departments of Medicine 1, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - T Fuereder
- Departments of Medicine 1, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - M Leutner
- Departments of Medicine 3, Clinical Division of Endocrinology, Medical University of Vienna, Vienna, Austria
| | - C F Singer
- Departments of Gynaecology, Medical University of Vienna, Vienna, Austria
| | | | - D Egle
- Department of Gynaecology, Medical University of Innsbruck, Innsbruck, Austria
| | - R Greil
- Department of Medicine 3, Paracelsus University Salzburg, Salzburg Cancer Research Institute-CCCIT, Cancer Cluster Salzburg, Salzburg, Austria
| | - M Balic
- Department of Medicine, Clinical Division of Oncology, Medical University of Graz, Graz, Austria
| | - F Fitzal
- General Surgery, Medical University of Vienna, Vienna, Austria
| | - G Pfeiler
- Departments of Gynaecology, Medical University of Vienna, Vienna, Austria
| | - S Frantal
- Austrian Breast & Colorectal Cancer Study Group, Vienna, Austria
| | - R Bartsch
- Departments of Medicine 1, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.
| | - M Gnant
- Austrian Breast & Colorectal Cancer Study Group, Vienna, Austria; Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Ho J, Kim B, Kim KS, Jihn CH, Kim MY, Kang DR, Park YH, Ahn J. Statin Supply and Polydrug Use in Older Adults: A Focus on Drug Combinations that Reduce Bone Density. Ann Geriatr Med Res 2022; 25:269-277. [PMID: 34986544 PMCID: PMC8749039 DOI: 10.4235/agmr.21.0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background We investigated the comorbidities of individuals who were prescribed statins to identify the use of bone mineral density (BMD)-reducing drugs, examine polydrug use trends involving these drugs, and explore their relationship with osteoporosis. Methods We analyzed claims data from the Korean National Health Insurance Service (January 2014–December 2018). We sampled 20% of 8,379,419 patients aged ≥50 years who were prescribed statins. Among them, we analyzed the data of those who were administered two or more prescriptions for 14 days or longer within 6 months of the initial date of statin prescription. Data on comorbidities and drugs that can potentially reduce BMD were obtained. Osteoporosis-related diagnoses were obtained as an outcome measure. The relationship between statins and BMD-reducing drugs was analyzed using logistic regression. Results Among the 4,138 statin users aged 50 years or older, 552 were diagnosed with osteoporosis. The most common comorbidity in statin users was hypertension, followed by ischemic heart disease, diabetes mellitus, and stroke. The most frequently administered BMD-reducing drugs were proton pump inhibitors (PPIs). The osteoporosis diagnosis rate was higher in patients who were prescribed both statins and PPIs or both statins and levothyroxine than in those using only a statin. Conclusion PPIs and levothyroxine should be prescribed cautiously in statin users and bone densitometry should be proactively performed considering the increased risk of osteoporosis.
Collapse
Affiliation(s)
- JaHyun Ho
- Division of Hospital Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Bokyoung Kim
- Department of Nursing, Catholic Kwandong University, Gangneung, Korea
| | - Kue Sook Kim
- Health Care Center, Seoul Metropolitan Dongbu Hospital, Seoul, Korea
| | - Chang-Ho Jihn
- Department of Industrial and Management Systems Engineering, Kyung Hee University, Yongin, Korea
| | - Min-Young Kim
- Department of Dental Hygiene, Howon University, Gunsan, Korea
| | - Dae Ryong Kang
- Center of Biomedical Data Science, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - You Hyun Park
- Department of Biostatistics, Yonsei University, Seoul, Korea
| | - Jihyun Ahn
- Department of Internal Medicine, Korea Medical Institute, Seoul, Korea
| |
Collapse
|
35
|
Antonenko A, Leahy A, Babenko M, Lyons D. Low dose hydrophilic statins are the preferred agents for females at risk of osteoporosis. Bone Rep 2021; 16:101152. [PMID: 34934779 PMCID: PMC8654793 DOI: 10.1016/j.bonr.2021.101152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 10/27/2022] Open
Abstract
Objectives The correlation between atherosclerosis and osteoporosis, independent of age, is clear. Multifactorial co-dependence between bone mineral density (BMD) and statin dose has been proposed. It is hypothesised that inhibition of the synthesis of cholesterol will also inhibit the synthesis of sex hormones and Vitamin D, negatively affecting BMD. This study aims to evaluate hydrophilic and non-hydrophilic statins effect on osteoporosis and analyse any possible superiority of one agent over the other within the group. Methods We identified 538 caucasian females who had a DEXA scan performed between 2002 and 2016 (age 60-89) in one DEXA center in Mid-West Ireland. A DEXA T-score results were analysed in the current study. Two hundred fifty females were not on statin therapy, and 323 females were on statin therapy. Females on therapy were separated into the atorvastatin group (N = 190), rosuvastatin group (N = 97), and pravastatin group (N = 36), comprising low dose and high dose groups. All anonymised data were analysed with SPSS statistical. To test the hypothesis that lower bone density is associated with high dose statins, an independent sample t-test was performed. The one-way between-groups ANOVA test was used to test the hypothesis that the BMD level depended on the statin's potency. Results Statin-naïve females have a statistically higher bone mineral density in the lumbar spine, t (538) = 3.42, p < 0.05 and in hip t (538) = 4.99, p < 0.05 than females on statin therapy. There was a significant difference in patient's age between the group, and no significant correlation was found between the patient's age and type of statin or bone density. In the atorvastatin group statistically, significant results were obtained both for spine and hip bone mineral density, t (188) = -5.61, p < 0.05 and t (188) = -3.62, p < 0.05, respectively. In the rosuvastatin group, statistically, a significant result was noted for bone mineral density of hip t (95) = -3.52, p < 0.05. This demonstrates a dose-dependency between bone mineral density and the dose of the statin. The independent between-group ANOVA yielded a statistically significant effect, F (2, 59) = 6.69, p < 0.05, η2 = 0.21 in the spine. Thus, patients on lipophilic statins had statistically lower BMD than females on hydrophilic statins. Multilinear regression analysis identified that age is not a statistically significant contributor in our analysis; however, the trend of decrease in bone mineral density with women's age is acknowledged by authors. Conclusions The study results support the theory that bone mineral density decreases with an increase in a statin dose, and hydrophilic statins, like pravastatin, have a better metabolic profile in the lumbar spine than lipophilic agents.
Collapse
Affiliation(s)
- Alisa Antonenko
- University Hospital Limerick, St. Nessan's Road, Dooradoyle, co. Limerick V94F858, Ireland
| | - Aoife Leahy
- University Hospital Limerick, St. Nessan's Road, Dooradoyle, co. Limerick V94F858, Ireland
| | - Mihaly Babenko
- University Hospital Limerick, St. Nessan's Road, Dooradoyle, co. Limerick V94F858, Ireland
| | - Declan Lyons
- University Hospital Limerick, St. Nessan's Road, Dooradoyle, co. Limerick V94F858, Ireland
| |
Collapse
|
36
|
Leutner M, Matzhold C, Bellach L, Deischinger C, Harreiter J, Thurner S, Klimek P, Kautzky-Willer A. Response to: 'Association between osteoporosis and statin therapy: the story continues' by Burden and Weiler. Ann Rheum Dis 2021; 80:e205. [PMID: 31801740 DOI: 10.1136/annrheumdis-2019-216627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 11/04/2022]
Affiliation(s)
- Michael Leutner
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Caspar Matzhold
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
| | - Luise Bellach
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Carola Deischinger
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Jürgen Harreiter
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Thurner
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
- Santa Fe Institute, Santa Fe, NM, USA
- IIASA, Laxenburg, Austria
| | - Peter Klimek
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Burden AM, Weiler S. Association between osteoporosis and statins therapy: the story continues. Ann Rheum Dis 2021; 80:e204. [PMID: 31744826 DOI: 10.1136/annrheumdis-2019-216574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 11/03/2022]
Affiliation(s)
- Andrea Michelle Burden
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland
| | - Stefan Weiler
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland
- National Poisons Information Centre, Tox Info Suisse, Associated Institute of the University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Kim SY, Yoo DM, Min C, Kim JH, Kwon MJ, Kim JH, Choi HG. Association between Osteoporosis and Previous Statin Use: A Nested Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211902. [PMID: 34831656 PMCID: PMC8620647 DOI: 10.3390/ijerph182211902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
The relationship between statin use and osteoporosis is controversial; therefore, this study aimed to investigate this association. The ≥40-year-old population of the Korean National Health Insurance Service Health Screening Cohort was enrolled. The 68,592 osteoporosis patients were matched 1:1 with control participants for age, sex, income, and region of residence using propensity score matching. The histories of statin use for two years before the diagnosis of osteoporosis (index date) in the osteoporosis and control groups were compared using conditional/unconditional logistic regression. An increased number of days of statin use was not associated with osteoporosis (adjusted OR (aOR) = 0.97, 95% confidence interval (95% CI) = 0.94–1.00, p = 0.052). In the subgroup analyses, a large number of days of statin use was related to a reduced rate of osteoporosis in the <60-year-old female group, while the opposite was true in the ≥60-year-old female group. Both lipophilic and hydrophilic statins were related to a decreased rate of osteoporosis in the <60-year-old female group. Lipophilic statins, but not hydrophilic statins, were associated with an increased rate of osteoporosis in the ≥60-year-old female group. Statin use showed different associations in middle-aged and elderly women.
Collapse
Affiliation(s)
- So Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea;
| | - Dae Myoung Yoo
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang 14068, Korea; (D.M.Y.); (C.M.)
| | - Chanyang Min
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang 14068, Korea; (D.M.Y.); (C.M.)
- Graduate School of Public Health, Seoul National University, Seoul 08826, Korea
| | - Ji Hee Kim
- Department of Neurosurgery, Hallym University College of Medicine, Anyang 14068, Korea;
| | - Mi Jung Kwon
- Department of Pathology, Hallym University College of Medicine, Anyang 14068, Korea;
| | - Joo-Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University College of Medicine, Anyang 14068, Korea;
| | - Hyo Geun Choi
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang 14068, Korea; (D.M.Y.); (C.M.)
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Anyang 14068, Korea
- Correspondence:
| |
Collapse
|
39
|
Khandkar C, Vaidya K, Karimi Galougahi K, Patel S. Low bone mineral density and coronary artery disease: A systematic review and meta-analysis. IJC HEART & VASCULATURE 2021; 37:100891. [PMID: 34746361 PMCID: PMC8554269 DOI: 10.1016/j.ijcha.2021.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/24/2022]
Abstract
Coronary artery disease (CAD) and osteoporosis both cause significant morbidity and mortality. Recent interest in inflammation and the bone-vascular axis suggests a mechanistic link between the two conditions. This review and meta-analysis was conducted to examine the potential association between low bone mineral density (BMD) and CAD in adults. Two authors searched for studies that examined the association between low BMD and CAD. Risk of bias assessment was conducted using the modified Newcastle Ottawa score. Ten studies were selected from the 2258 unique records identified. Pooled analysis showed a significant association between low BMD and CAD (OR 1.65, 95%CI 1.37-2.39, p < 0.01). Subgroup analysis investigating males and females separately was not significant. The subgroup analyses looking for any differences across geographic locations and differences between coronary imaging modalities were also negative. Studies with adjusted ORs (n = 4) were also pooled (OR 3.01, 95%CI 0.91-9.99, p = 0.07). Low BMD is associated with CAD; however, it is unclear whether this result is confounded by common risk factors given the heterogeneity between study populations and methodologies. Further large-scale epidemiological studies are required.
Collapse
Affiliation(s)
- Chinmay Khandkar
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.,The University of Sydney, Sydney, Australia
| | - Kaivan Vaidya
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.,The University of Sydney, Sydney, Australia
| | - Keyvan Karimi Galougahi
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.,The University of Sydney, Sydney, Australia.,Heart Research Institute, Sydney, Australia
| | - Sanjay Patel
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.,The University of Sydney, Sydney, Australia.,Heart Research Institute, Sydney, Australia
| |
Collapse
|
40
|
Leutner M, Matzhold C, Bellach L, Deischinger C, Harreiter J, Thurner S, Klimek P, Kautzky-Willer A. Response to: 'Association between osteoporosis and statins therapy' by Lai. Ann Rheum Dis 2021; 80:e181. [PMID: 31653651 DOI: 10.1136/annrheumdis-2019-216494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Michael Leutner
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Caspar Matzhold
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
| | - Luise Bellach
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Carola Deischinger
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Jürgen Harreiter
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Thurner
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
- Santa Fe Institute, Santa Fe, NM, USA
- IIASA, Laxenburg, Austria
| | - Peter Klimek
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Lai SW. Association between osteoporosis and statins therapy. Ann Rheum Dis 2021; 80:e180. [PMID: 31653652 DOI: 10.1136/annrheumdis-2019-216464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Shih-Wei Lai
- College of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
42
|
Song Y, Liu J, Zhao K, Gao L, Zhao J. Cholesterol-induced toxicity: An integrated view of the role of cholesterol in multiple diseases. Cell Metab 2021; 33:1911-1925. [PMID: 34562355 DOI: 10.1016/j.cmet.2021.09.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
High levels of cholesterol are generally considered to be associated with atherosclerosis. In the past two decades, however, a number of studies have shown that excess cholesterol accumulation in various tissues and organs plays a critical role in the pathogenesis of multiple diseases. Here, we summarize the effects of excess cholesterol on disease pathogenesis, including liver diseases, diabetes, chronic kidney disease, Alzheimer's disease, osteoporosis, osteoarthritis, pituitary-thyroid axis dysfunction, immune disorders, and COVID-19, while proposing that excess cholesterol-induced toxicity is ubiquitous. We believe this concept will help broaden the appreciation of the toxic effect of excess cholesterol, and thus potentially expand the therapeutic use of cholesterol-lowering medications.
Collapse
Affiliation(s)
- Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Junjun Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Ke Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China.
| |
Collapse
|
43
|
Efficacy of Lipid-Lowering Therapy during Cardiac Rehabilitation in Patients with Diabetes Mellitus and Coronary Heart Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8090105. [PMID: 34564123 PMCID: PMC8470282 DOI: 10.3390/jcdd8090105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Cardiac rehabilitation (CR) in patients with coronary heart disease (CHD) increases adherence to a healthy lifestyle and to secondary preventive medication. A notable example of such medication is lipid-lowering therapy (LLT). LLT during CR improves quality of life and prognosis, and thus is particularly relevant for patients with diabetes mellitus, which is a major risk factor for CHD. Design: A prospective, multicenter registry study with patients from six rehabilitation centers in Germany. Methods: During CR, 1100 patients with a minimum age of 18 years and CHD documented by coronary angiography were included in a LLT registry. Results: In 369 patients (33.9%), diabetes mellitus was diagnosed. Diabetic patients were older (65.5 ± 9.0 vs. 62.2 ± 10.9 years, p < 0.001) than nondiabetic patients and were more likely to be obese (BMI: 30.2 ± 5.2 kg/m2 vs. 27.8 ± 4.2 kg/m2, p < 0.001). Analysis indicated that diabetic patients were more likely to show LDL cholesterol levels below 55 mg/dL than patients without diabetes at the start of CR (Odds Ratio (OR) 1.9; 95% CI 1.3 to 2.9) until 3 months of follow-up (OR 1.9; 95% CI 1.2 to 2.9). During 12 months of follow-up, overall and LDL cholesterol levels decreased within the first 3 months and remained at the lower level thereafter (p < 0.001), irrespective of prevalent diabetes. At the end of the follow-up period, LDL cholesterol did not differ significantly between patients with or without diabetes mellitus (p = 0.413). Conclusion: Within 3 months after CR, total and LDL cholesterol were significantly reduced, irrespective of prevalent diabetes mellitus. In addition, CHD patients with diabetes responded faster to LTT than nondiabetic patients, suggesting that diabetic patients benefit more from LLT treatment during CR.
Collapse
|
44
|
Mauvais-Jarvis F, Berthold HK, Campesi I, Carrero JJ, Dakal S, Franconi F, Gouni-Berthold I, Heiman ML, Kautzky-Willer A, Klein SL, Murphy A, Regitz-Zagrosek V, Reue K, Rubin JB. Sex- and Gender-Based Pharmacological Response to Drugs. Pharmacol Rev 2021; 73:730-762. [PMID: 33653873 PMCID: PMC7938661 DOI: 10.1124/pharmrev.120.000206] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In humans, the combination of all sex-specific genetic, epigenetic, and hormonal influences of biologic sex produces different in vivo environments for male and female cells. We dissect how these influences of sex modify the pharmacokinetics and pharmacodynamics of multiple drugs and provide examples for common drugs acting on specific organ systems. We also discuss how gender of physicians and patients may influence the therapeutic response to drugs. We aim to highlight sex as a genetic modifier of the pharmacological response to drugs, which should be considered as a necessary step toward precision medicine that will benefit men and women. SIGNIFICANCE STATEMENT: This study discusses the influences of biologic sex on the pharmacokinetics and pharmacodynamics of drugs and provides examples for common drugs acting on specific organ systems. This study also discusses how gender of physicians and patients influence the therapeutic response to drugs.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Heiner K Berthold
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Ilaria Campesi
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Juan-Jesus Carrero
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Santosh Dakal
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Flavia Franconi
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Ioanna Gouni-Berthold
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Mark L Heiman
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Alexandra Kautzky-Willer
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Sabra L Klein
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Anne Murphy
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Vera Regitz-Zagrosek
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Karen Reue
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| | - Joshua B Rubin
- Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
| |
Collapse
|
45
|
Leutner M, Matzhold C, Kautzky A, Kaleta M, Thurner S, Klimek P, Kautzky-Willer A. Major Depressive Disorder (MDD) and Antidepressant Medication Are Overrepresented in High-Dose Statin Treatment. Front Med (Lausanne) 2021; 8:608083. [PMID: 33644093 PMCID: PMC7904887 DOI: 10.3389/fmed.2021.608083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/12/2021] [Indexed: 01/24/2023] Open
Abstract
Objective: To examine the dose-dependent relationship of different types of statins with the occurrence of major depressive disorder (MDD) and prescription of antidepressant medication. Methods: This cross-sectional study used medical claims data for the general Austrian population (n = 7,481,168) to identify all statin-treated patients. We analyzed all patients with MDD undergoing statin treatment and calculated the average defined daily dose for six different types of statins. In a sub-analysis conducted independently of inpatient care, we investigated all patients on antidepressant medication (statin-treated patients: n = 98,913; non-statin-treated patients: n = 789,683). Multivariate logistic regression analyses were conducted to calculate the risk of diagnosed MDD and prescription of antidepressant medication in patients treated with different types of statins and dosages compared to non-statin-treated patients. Results: In this study, there was an overrepresentation of MDD in statin-treated patients when compared to non-statin-treated patients (OR: 1.22, 95% CI: 1.20–1.25). However, there was a dose dependent relationship between statins and diagnosis of MDD. Compared to controls, the ORs of MDD were lower for low-dose statin-treated patients (simvastatin>0– < =10 mg:OR: 0.59, 95% CI: 0.54–0.64; atorvastatin>0– < =10 mg:OR:0.65, 95%CI: 0.59–0.70; rosuvastatin>0– < =10 mg:OR: 0.68, 95% CI: 0.53–0.85). In higher statin dosages there was an overrepresentation of MDD (simvastatin>40– < =60 mg:OR: 2.42, 95% CI: 2.18–2.70, >60–80 mg:OR: 5.27, 95% CI: 4.21–6.60; atorvastatin>40– < =60 mg:OR: 2.71, 95% CI: 1.98–3.72, >60– < =80 mg:OR: 3.73, 95% CI: 2.22–6.28; rosuvastatin>20– < =40 mg:OR: 2.09, 95% CI: 1.31–3.34). The results were confirmed in a sex-specific analysis and in a cohort of patients taking antidepressants, prescribed independently of inpatient care. Conclusions: This study shows that it is important to carefully re-investigate the relationship between statins and MDD. High-dose statin treatment was related to an overrepresentation, low-dose statin treatment to an underrepresentation of MDD.
Collapse
Affiliation(s)
- Michael Leutner
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Caspar Matzhold
- Section for Science of Complex Systems, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria.,Complexity Science Hub Vienna, Vienna, Austria
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Michaela Kaleta
- Section for Science of Complex Systems, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria.,Complexity Science Hub Vienna, Vienna, Austria
| | - Stefan Thurner
- Section for Science of Complex Systems, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria.,Complexity Science Hub Vienna, Vienna, Austria.,Santa Fe Institute, Santa Fe, NM, United States.,Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Peter Klimek
- Section for Science of Complex Systems, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria.,Complexity Science Hub Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Gender Institute, Gars am Kamp, Austria
| |
Collapse
|
46
|
Zhang F, Huang X, Qi Y, Qian Z, Ni S, Zhong Z, Zhang X, Li D, Yu B. Juglanin Inhibits Osteoclastogenesis in Ovariectomized Mice via the Suppression of NF-κB Signaling Pathways. Front Pharmacol 2021; 11:596230. [PMID: 33708115 PMCID: PMC7941268 DOI: 10.3389/fphar.2020.596230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Bone metabolism is a physiological process that involves both osteoblasts and osteoclasts. Pathological changes of osteoclasts are commonly seen in osteoporosis diseases. Juglanin is a natural compound, reported to have an inhibitory effect on inflammation, oxidative stress and cancer progression. The purpose of this study is to explore the role that Juglanin plays on the osteoclast functions and underlying signaling pathways. In vitro study demonstrated that Juglanin had negative influence on osteoclastic differentiation by suppressing the transcription activity of osteoclastogenesis-related genes and proteins. To determine the underlying mechanism, Western blot was employed to show that Juglanin could significantly have negative effect on the phosphorylation of P50, P65, I-κB, ultimately suppressing the expression and transcriptional activity of nuclear factor of activated T cells (NFATc1). In vivo Juglanin treatment attenuate bone reducing in mice with removed ovary through suppressing osteoclast functioning. Taken together, our study demonstrated that in the molecular mechanism, JUG inhibited the expression of receptor activator of nuclear factor-κ B ligand (RANKL) induced NF - κ B signaling pathway, thus may play a vital part in preventing postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Fangxue Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiaowei Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhan Qi
- Department of Plastic Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi Qian
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuo Ni
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zeyuan Zhong
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xu Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.,Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
47
|
Oh KS, Febres-Aldana CA, Kuritzky N, Ujueta F, Arenas IA, Sriganeshan V, Medina AM, Poppiti R. Cellular senescence evaluated by P16INK4a immunohistochemistry is a prevalent phenomenon in advanced calcific aortic valve disease. Cardiovasc Pathol 2021; 52:107318. [PMID: 33450362 DOI: 10.1016/j.carpath.2021.107318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fibrosis, calcification, and ossification are histopathologic hallmarks of calcific aortic valve disease (CAVD), a leading cause of morbidity and mortality in the aging population. Cellular senescence contributes to a functional decay in chronic diseases by intensifying tissue remodeling and impairing tissue regeneration. We evaluated the expression of P16INK4A and P53 as surrogate markers of senescence in CAVD. METHODS Aortic valves from 27 individuals with severe CAVD requiring aortic valve replacement were selected for routine histologic processing. Immunohistochemical expression of P16INK4A and P53 was quantified using computerized image analysis on fields matching compartments with varying degrees of tissue remodeling. RESULTS All aortic valves demonstrated P16INK4A and P53-positive cells. The percentage of P16INK4A -positive cells, but not of P53, was higher in areas of calcification and/or ossification (57.21%±26.31, n=40) and severe fibrosis (54.79%±27.19, n=25) than in areas with minimal to mild tissue remodeling (13.69% ± 11.88, n=16, P<.0001). P16INK4A expression was observed in interstitial valve cells within all compartments proportional to the degree of fibrosis and did not correlate with age, severity of aortic stenosis, or P53 expression. Multiple linear regression analysis by backward elimination revealed P16INK4A expression was lower among statin users (P<.01). CONCLUSIONS P16INK4A- expression is ubiquitous in calcified aortic valves and correlates with severity of tissue remodeling, suggesting a role of cellular senescence in the progression of CAVD. Further research is needed to identify possible treatment modalities as disease modifying agents for CAVD.
Collapse
Affiliation(s)
- Kei Shing Oh
- Arkadi M. Rywlin, MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA.
| | - Christopher A Febres-Aldana
- Arkadi M. Rywlin, MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Nicholas Kuritzky
- Department of Radiation Oncology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Francisco Ujueta
- Department of Internal Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Ivan A Arenas
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Vathany Sriganeshan
- Arkadi M. Rywlin, MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ana Maria Medina
- Arkadi M. Rywlin, MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Robert Poppiti
- Arkadi M. Rywlin, MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
48
|
White AMB, Mishcon HR, Redwanski JL, Hills RD. Statin Treatment in Specific Patient Groups: Role for Improved Cardiovascular Risk Markers. J Clin Med 2020; 9:E3748. [PMID: 33233352 PMCID: PMC7700563 DOI: 10.3390/jcm9113748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
Ample evidence supports the use of statin therapy for secondary prevention in patients with a history of atherosclerotic cardiovascular disease (ASCVD), but evidence is wanting in the case of primary prevention, low-risk individuals, and elderly adults 65+. Statins are effective in lowering low-density lipoprotein (LDL), which has long been a target for treatment decisions. We discuss the weakening dependence between cholesterol levels and mortality as a function of age and highlight recent findings on lipoprotein subfractions and other superior markers of ASCVD risk. The efficacy of statins is compared for distinct subsets of patients based on age, diabetes, ASCVD, and coronary artery calcium (CAC) status. Most cardiovascular risk calculators heavily weight age and overestimate one's absolute risk of ASCVD, particularly in very old adults. Improvements in risk assessment enable the identification of specific patient populations that benefit most from statin treatment. Derisking is particularly important for adults over 75, in whom treatment benefits are reduced and adverse musculoskeletal effects are amplified. The CAC score stratifies the benefit effect size obtainable with statins, and forms of coenzyme Q are discussed for improving patient outcomes. Robust risk estimator tools and personalized, evidence-based approaches are needed to optimally reduce cardiovascular events and mortality rates through administration of cholesterol-lowering medications.
Collapse
Affiliation(s)
- Alyssa M. B. White
- Department of Pharmaceutical Sciences and Administration, University of New England, Portland, ME 04103, USA; (A.M.B.W.); (H.R.M.)
| | - Hillary R. Mishcon
- Department of Pharmaceutical Sciences and Administration, University of New England, Portland, ME 04103, USA; (A.M.B.W.); (H.R.M.)
| | - John L. Redwanski
- Department of Pharmacy Practice, School of Pharmacy, University of New England, Portland, ME 04103, USA;
| | - Ronald D. Hills
- Department of Pharmaceutical Sciences and Administration, University of New England, Portland, ME 04103, USA; (A.M.B.W.); (H.R.M.)
| |
Collapse
|
49
|
Shaposhnik II, Genkel VV, Salashenko AO. [Combined Lipid-Lowering Therapy in Elderly and Senile Patients]. KARDIOLOGIIA 2020; 60:103-107. [PMID: 33155948 DOI: 10.18087/cardio.2020.7.n1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The article discusses issues of lipid-lowering therapy in elderly and senile patients. Major statements of actual clinical guidelines are provided. Issues of statin therapy in patients older than 65 and new data on statin safety in such patients are discussed in detail. The authors presented results of clinical studies 2019 on the use of ezetimibe in patients older than 75 as a part of primary and secondary prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- I I Shaposhnik
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk
| | - V V Genkel
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk
| | - A O Salashenko
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk
| |
Collapse
|
50
|
MUW researcher of the month. Wien Klin Wochenschr 2020; 132:490-491. [DOI: 10.1007/s00508-020-01728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|